Mathematics 103 — Section 202 — Spring 2001 Fifth homework — due Monday, February 26

Exercise 1. (a) Find the following indefinite integrals using the substitution rule:

(i)
$$\int \sin(3x) dx$$

(ii)
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$

(iii)
$$\int x^3 \sqrt{x^4 + 1} dx$$

(iv)
$$\int \frac{4}{1 + 2x} dx$$
.

(b) Find the following definite integrals using the substitution rule:

(i)
$$\int_0^5 \sqrt{3+2x} \, dx$$

(ii) $\int_0^{\pi/4} \sin(4t) \, dt$
(iii) $\int_0^4 \frac{dx}{(x-2)^3}$
(iv) $\int_0^{\sqrt{\pi}} x \cos(x^2) \, dx$.

Exercise 2. Evaluate the following integrals. You must show all your work to get credit.

(a)
$$\int \frac{1}{1-y} dy$$

(b) $\int_0^T te^{-2t} dt$
(c) $\int \frac{2}{4+x^2} dx$
(d) $\int_2^p \frac{1}{1-y^2} dy$
(e) $\int_1^p \frac{1}{2+2y+y^2} dy$
(f) $\int_0^{\pi} x \sin\left(\frac{x}{2}\right) dx$
(g) $\int_1^S \frac{k_1}{k_2-n} dn$ (k_2 outside the range [1, S])

Exercise 3. Find the mean value of the function

$$f(x) = \sin(\pi x/2)$$

over the interval [0, 2].

Exercise 4. The intensity of light cast by a streetlamp at a distance x (in meters) along the street from the base of the lamp is found to be approximately $I(x) = 20^2 - x^2$ in arbitrary units for -20 < x < 20. (a) Find the mean intensity of the light over the interval -5 < x < 5. (b) Find the mean intensity over -7 < x < 7. (c) Find the value of b such that the mean intensity over [-b, b] is $I_{av} = 10$.

Exercise 5. In November 1999, the rain in Vancouver fell at the rate $R(t) = 4((1 + t \sin(\pi t/30)))$ where t is time in days and R(t) is in cm/day. Find the total amount of rain that fell and the mean rate of rainfall over the first 10 days of the month ($0 \le t \le 10$) and over the whole month (0 < t < 30).

Exercise 6. Consider a distribution function y = f(x) > 0 defined on some interval [a, b]. The **median** of f is defined to be a value of the independent variable, x, say x = m which splits the area under f(x) into two equal portions, i.e. such that

$$\int_{a}^{m} f(x) \, dx = \int_{m}^{b} f(x) \, dx = \frac{1}{2} \int_{a}^{b} f(x) \, dx$$

Use this definition to find the median of the following functions on the indicated interval.

(a) $f(x) = 1 - x^2$, $(-1 \le x \le 1)$ (b) f(x) = |1 - x|, $(-1 \le x \le 1)$ (c) f(x) = 5 - x, $(0 \le x \le 5)$ (d) $f(x) = \sin(2x)$, $(0 \le x \le \pi/4)$

[Remark: it will help to sketch the given function and interval and use considerations of symmetry for some of these examples.]