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Mahler’s measure and special L-values Introduction & Early History

Mahler’s measure

If P ∈ C[x±1
1 , . . . , x±1

n ], the logarithmic Mahler measure is

m(P) =
1

(2πi)n

∫
Tn

log |P(x1, . . . , xn)|dx1

x1
· · · dxn

xn

Tn = {|x1| = 1} × · · · × {|xn| = 1}

If P(x) = a0
∏d

j=1(x − αj), Jensen gives

m(P) = log |a0|+
d∑

j=1

log+ |αj |,

the logarithm of an algebraic integer if P ∈ Z[x ].
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Mahler’s measure and special L-values Introduction & Early History

Why the torus?

B-Lawton (1980’s)

m
(
P(x , xk2 , . . . , xkn )

)
→ m

(
P(x1, . . . , xn)

)
,

if k2 →∞, . . . , kn →∞ in a suitable manner.

so every m(P(x1, . . . , xn)) is the limit of measures of one-variable
polynomials

This would not be true if we integrated over the N-ball, for example
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Mahler’s measure and special L-values Introduction & Early History

Examples with more variables

Smyth (1981)

m(1 + x + y) =
3
√

3
4π

L(χ−3,2) = L′(χ−3,−1)

m(1 + x + y + z) =
7

2π2 ζ(3)

Notation for some basic constants

df = L′(χ−f ,−1) =
f 3/2

4π
L(χ−f ,2), z3 =

1
π2 ζ(3)
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Mahler’s measure and special L-values Introduction & Early History

Dirichlet L-functions

L(χ, s) =
∞∑

n=1

χ(n)

ns

where χ(n) is a Dirichlet character

e.g.

L(χ−3,2) = 1− 1
22 +

1
42 −

1
52 + . . . ,

the signs are given by the Legendre symbol
(n

3

)
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Mahler’s measure and special L-values Introduction & Early History

Deninger’s insight

Deninger (1995): Provided P(x1, . . . , xn) 6= 0 on Tn, m(P) is
related to the cohomology of the variety V = {P(x1, . . . , xn) = 0}.

In particular (here P = 0 does intersect T2 but harmlessly.)

m(1 + x + 1/x + y + 1/y)
?
= L′(E15,0)

E15 the elliptic curve of conductor N = 15 defined by P = 0.

More notation
bN = L′(EN ,0) =

N
π2 L(EN ,2),

EN an elliptic curve of conductor N.
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Mahler’s measure and special L-values Introduction & Early History

Elliptic curve L-functions

L(E , s) =
∞∑

n=1

an

ns =
∏

p

(
1− app−s + p1−2s

)−1

where the ap are given by counting points on E(Fp)

The an are also the coefficients of a cusp form of weight 2 on
Γ0(N), e.g. for N = 15,

∞∑
n=1

anqn = q
∞∏

n=1

(1− qn)(1− q3n)(1− q5n)(1− q15n)
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Mahler’s measure and special L-values Introduction & Early History

Recipe for making conjectures

Compute m(P) for lots of P(x , y)

Stir in various constants, d3,d4,d7, . . . ,b11,b14, . . .

Apply the Lenstra–Lenstra– Lovasz algorithm (LLL)

Publish the results
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Mahler’s measure and special L-values Introduction & Early History

Conjectures follow from deeper conjectures

(B, 1996)

m(k+x+1/x+y+1/y)
?
= rkL′(ENk ,0), for specific rationals rk (?)

(Rodriguez-Villegas, 1997)

m(k + x + 1/x + y + 1/y) = Re
(
−πiτ + 2

∞∑
n=1

∑
d |n

(
−4
d

)
d2 qn

n

)
where q = exp(πiτ) is the modulus of the curve ENk

Hence the conjecture (?) follows (with generic rationals) from the
Bloch-Beilinson conjectures.
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Mahler’s measure and special L-values Introduction & Early History

Conjectures become Theorems

(Rodriguez-Villegas, 1997) (?) is true for k = 3
√

2

(Lalı́n – Rogers, 2006) (?) is true for k = 2 and k = 8

(Brunault, 2005)

m(y2 + (x2 + 2x − 1)y + x3) =
5
4

b11,

as conjectured in (B, 1996)
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

Precursors of a general idea

(Smyth, 2002)

m(1 + x−1 + y + (1 + x + y)z) =
14
3
ζ(3)

π2 =
14
3

z3

(Lalı́n, 2003 )

m((1 + x1)(1 + x2)(1 + x3) + (1− x2)(1− x3)(1 + x4)x5) = 93
ζ(5)

π4
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

Maillot’s insight

(Darboux, 1875) If P∗(x) = xdeg(P)P(x−1) is the reciprocal of P
and if

V = {P = 0}, and W = {P = 0} ∩ {P∗ = 0},

then
V ∩ Tn =W ∩ Tn

(Maillot, 2003) In case V intersects Tn non-trivially, m(P) is related
to the cohomology ofW.

The reason that Smyth’s and Lalı́n’s examples involve only
ordinary polylogarithms can be “explained” using this observation.
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

Elliptic curves again

(Rodriguez-Villegas, 2003) If P = (1 + x)(1 + y) + z,
thenW is an elliptic curve of conductor 15, so perhaps

m(P)
?
= rL′(E15,−1), with r ∈ Q

L′(EN ,−1) = 2
N2

(2π)4 L(EN ,3)

(B, 2003) Yes!

m(P) = 2L′(E15,−1), to 28 decimal places

More Notation

LN = L′(EN ,−1) = 2
N2

(2π)4 L(EN ,3)
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

Recipe for making more conjectures

Compute m(P) for lots of P(x , y , z) withW a curve of small genus

Stir in various constants, d3,d4,d7, . . . , z3,L11,L14, . . .

Apply the Lenstra–Lenstra– Lovasz algorithm (LLL)

Show the results to Fernando, Matilde and Mat to see if they can
prove them

Publish the results
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

A very useful formula

(Cassaigne–Maillot, 2000) for a,b, c ∈ C∗,

m(a + by + cz)

=


1
π

(
D
( |a|
|b|e

iγ
)

+ α log |a|+ β log |b|+ γ log |c|
)
, if 4

max{log |a|, log |b|, log |c|}, if not 4

The condition 4 means that |a|, |b|, |c| form the sides of a triangle
with angles α, β, γ.

Bloch–Wigner dilogarithm

D(x) := Im(Li2(x)) + arg(1− x) log |x |
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

Computing m(P) for some 3-variable examples

If P(x , y , z) = a(x) + b(x)y + c(x)z then f (t) = m(P(eit , y , z)) is
given by the Cassaigne–Maillot formula

Numerically integrate to compute

m(P(x , y , z)) =
1
π

∫ π

0
f (t) dt

On non-4 intervals, we integrate logs and hence obtain dilogs of
algebraic numbers

On 4 intervals, we integrate dilogs and hence expect to obtain
tri-logs perhaps elliptic trilogs (−→ L(E ,3) by Zagier’s conjecture).
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Mahler’s measure and special L-values Polynomials with 3 (or more) variables

Computing m(P) – a simple example

P(x , y , z) = (1 + x)(1 + y) + z, so a = b = 1 + x and c = 1.

If x = eit then |a| = |b| = 2 cos( t
2)

If |a| > 1
2 , i.e. t < t0 = 2 cos−1(1

4) = 2.63623 . . . then we are in the

(isoceles) 4 case with γ = 2 sin−1
(

1/
(
4 cos(t/2)

))
and f (t) = the

hard part of the C-M formula.

If t ≥ t0 then f (t) = log |c| = 0, by the easy part of the formula.

m(P) = 0.4839979734786385357732733911 = 2L15 to 28 d.p.
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Mahler’s measure and special L-values A survey of about 300 polynomials

Which polynomials?

P(x , y , z) = a(x) + b(x)y + c(x)z, with a,b, c cyclotomic of
degree ≤ 4

Eliminate z from P and P∗ to obtain an equation for

W = {Q(x , y) = 0}

W is the hyperelliptic curve Y 2 = discy Q, genus g, say

If g ≤ 2 compute m(P) and apply the recipe of the previous slide
to make conjectures
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Mahler’s measure and special L-values A survey of about 300 polynomials

Examples of genus 0

1. Conjectured by B (2003), proved in John Condon’s thesis
(2004)

m(x − 1 + (x + 1)(y + z)) =
28
5

z3

2.
m(x2 + 1 + (x2 + x + 1)(y + z)) =

10
9

d3 +
35
18

z3

Matilde Lalı́n and Mat Rogers each have proofs of this (2006)
3.

m((x − 1)2 + (x2 + 1)(y + z)) = −d3 + 2d4

NB: no trilog term here – we do integrate a dilog.
The negative coefficient of d3 is also notable (and useful).
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Mahler’s measure and special L-values A survey of about 300 polynomials

Examples of genus 1

1. A mixture of a dilog and L(E45,3)

m(1 + (x2 − x + 1)y + (x2 + x + 1)z)
?
= d3 +

1
6

L45

2. HereW is an elliptic curve of conductor 57, but m(P) is an
ordinary trilog.

m(x2 + x + 1 + (x2 − 1)(y + z))
?
=

28
5

z3

3. Here we have both the ordinary trilog z3 and an elliptic trilog L21

m(x − 1 + (x2 − 1)y + (x2 + x + 1)z)
?
=

2
3

d3 +
199
72

z3 +
11
24

L21
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Mahler’s measure and special L-values A survey of about 300 polynomials

Examples of genus 2

Since Q(x , y) is reciprocal Jac(W) = E × F
for elliptic curves E ,F (Jacobi, 1832)

1. Here E and F have conductors 14 and 112 = 24 · 7

m((x − 1)3 + (x + 1)(y + z))
?
= 6L14

2. Here E and F have conductors 108 and 36 (E : Y 2 = X 3 + 4)

m((x − 1)3 + (x + 1)3(y + z))
?
= −28

15
z3 +

2
15

L108
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Mahler’s measure and special L-values A survey of about 300 polynomials

Representing L(E , 3)

Combining the genus 0 example

m(P1) = m(x − 1 + (x + 1)(y + z)) =
28
5

z3

with the genus 2 example

m(P2) = m((x − 1)3 + (x + 1)3(y + z))
?
= −28

15
z3 +

2
15

L108

we obtain
m(P1P3

2 )
?
=

2
5

L108,

showing the importance of negative coefficients in these formulas
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Mahler’s measure and special L-values A survey of about 300 polynomials

Exotic formulas

1. This example is of genus 1 with E : Y 2 = X 3 + X of conductor
64, but we have no formula for m(P1)

P1 = (x − 1)2 + (x + 1)2(y + z)

We also have no formula for the following genus 2 example with
Jac = E × F with E ,F of conductors 64,192

P2 = (x + 1)2 + (x4 + 1)y + (x2 + 1)(x2 + x + 1)z

However, the missing ingredients of the two formulas must be the
same since

m(P12
1 P19

2 ) = 12m(P1) + 19m(P2)
?
= −19d3 + 20d4 + 6L64
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