Mahler's measure and L-functions of elliptic curves at $s=3$

David Boyd

University of British Columbia

SFU-UBC Number Theory Seminar

Mahler's measure

- If $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the logarithmic Mahler measure is

$$
\begin{gathered}
m(P)=\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}} \\
\mathbb{T}^{n}=\left\{\left|x_{1}\right|=1\right\} \times \cdots \times\left\{\left|x_{n}\right|=1\right\}
\end{gathered}
$$

- If $P(x)=a_{0} \prod_{j=1}^{d}\left(x-\alpha_{j}\right)$, Jensen gives

$$
m(P)=\log \left|a_{0}\right|+\sum_{j=1}^{d} \log ^{+}\left|\alpha_{j}\right|
$$

the logarithm of an algebraic integer if $P \in \mathbb{Z}[x]$.

Why the torus?

- B-Lawton (1980's)

$$
m\left(P\left(x, x^{k_{2}}, \ldots, x^{k_{n}}\right)\right) \rightarrow m\left(P\left(x_{1}, \ldots, x_{n}\right)\right)
$$

if $k_{2} \rightarrow \infty, \ldots, k_{n} \rightarrow \infty$ in a suitable manner.

- so every $m\left(P\left(x_{1}, \ldots, x_{n}\right)\right)$ is the limit of measures of one-variable polynomials
- This would not be true if we integrated over the N-ball, for example

Examples with more variables

- Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

- Notation for some basic constants

$$
d_{f}=L^{\prime}\left(\chi_{-f},-1\right)=\frac{f^{3 / 2}}{4 \pi} L\left(\chi_{-f}, 2\right), \quad z_{3}=\frac{1}{\pi^{2}} \zeta(3)
$$

Dirichlet L-functions

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where $\chi(n)$ is a Dirichlet character

- e.g.

$$
L\left(\chi_{-3}, 2\right)=1-\frac{1}{2^{2}}+\frac{1}{4^{2}}-\frac{1}{5^{2}}+\ldots
$$

the signs are given by the Legendre symbol $\left(\frac{n}{3}\right)$

Deninger's insight

- Deninger (1995): Provided $P\left(x_{1}, \ldots, x_{n}\right) \neq 0$ on $\mathbb{T}^{n}, m(P)$ is related to the cohomology of the variety $\mathcal{V}=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\}$.
- In particular (here $P=0$ does intersect \mathbb{T}^{2} but harmlessly.)

$$
m(1+x+1 / x+y+1 / y) \stackrel{?}{=} L^{\prime}\left(E_{15}, 0\right)
$$

E_{15} the elliptic curve of conductor $N=15$ defined by $P=0$.

- More notation

$$
b_{N}=L^{\prime}\left(E_{N}, 0\right)=\frac{N}{\pi^{2}} L\left(E_{N}, 2\right),
$$

E_{N} an elliptic curve of conductor N.

Elliptic curve L-functions

$$
L(E, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}
$$

where the a_{p} are given by counting points on $E\left(\mathbb{F}_{p}\right)$

- The a_{n} are also the coefficients of a cusp form of weight 2 on $\Gamma_{0}(N)$, e.g. for $N=15$,

$$
\sum_{n=1}^{\infty} a_{n} q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{3 n}\right)\left(1-q^{5 n}\right)\left(1-q^{15 n}\right)
$$

Recipe for making conjectures

- Compute $m(P)$ for lots of $P(x, y)$
- Stir in various constants, $d_{3}, d_{4}, d_{7}, \ldots, b_{11}, b_{14}, \ldots$
- Apply the Lenstra-Lenstra- Lovasz algorithm (LLL)
- Publish the results

Conjectures follow from deeper conjectures

- (B, 1996)
$m(k+x+1 / x+y+1 / y) \stackrel{?}{=} r_{k} L^{\prime}\left(E_{N_{k}}, 0\right)$, for specific rationals $r_{k}(\star)$
- (Rodriguez-Villegas, 1997)

$$
m(k+x+1 / x+y+1 / y)=\operatorname{Re}\left(-\pi i \tau+2 \sum_{n=1}^{\infty} \sum_{d \mid n}\binom{-4}{d} d^{2} \frac{q^{n}}{n}\right)
$$

where $q=\exp (\pi i \tau)$ is the modulus of the curve $E_{N_{k}}$

- Hence the conjecture (\star) follows (with generic rationals) from the Bloch-Beilinson conjectures.

Conjectures become Theorems

- (Rodriguez-Villegas, 1997) (\star) is true for $k=3 \sqrt{2}$
- (Lalín - Rogers, 2006) (\star) is true for $k=2$ and $k=8$
- (Brunault, 2005)

$$
m\left(y^{2}+\left(x^{2}+2 x-1\right) y+x^{3}\right)=\frac{5}{4} b_{11}
$$

as conjectured in (B, 1996)

Precursors of a general idea

- (Smyth, 2002)

$$
m\left(1+x^{-1}+y+(1+x+y) z\right)=\frac{14}{3} \frac{\zeta(3)}{\pi^{2}}=\frac{14}{3} z_{3}
$$

- (Lalín, 2003)

$$
m\left(\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)+\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1+x_{4}\right) x_{5}\right)=93 \frac{\zeta(5)}{\pi^{4}}
$$

Maillot's insight

- (Darboux, 1875) If $P^{*}(\mathbf{x})=\mathbf{x}^{\operatorname{deg}(P)} P\left(\mathbf{x}^{-1}\right)$ is the reciprocal of P and if

$$
\mathcal{V}=\{P=0\}, \quad \text { and } \quad \mathcal{W}=\{P=0\} \cap\left\{P^{*}=0\right\}
$$

then

$$
\mathcal{V} \cap \mathbb{T}^{n}=\mathcal{W} \cap \mathbb{T}^{n}
$$

- (Maillot, 2003) In case \mathcal{V} intersects \mathbb{T}^{n} non-trivially, $m(P)$ is related to the cohomology of \mathcal{W}.
- The reason that Smyth's and Lalín's examples involve only ordinary polylogarithms can be "explained" using this observation.

Elliptic curves again

- (Rodriguez-Villegas, 2003) If $P=(1+x)(1+y)+z$, then \mathcal{W} is an elliptic curve of conductor 15 , so perhaps

$$
\begin{gathered}
m(P) \stackrel{?}{=} r L^{\prime}\left(E_{15},-1\right), \quad \text { with } \quad r \in \mathbb{Q} \\
L^{\prime}\left(E_{N},-1\right)=2 \frac{N^{2}}{(2 \pi)^{4}} L\left(E_{N}, 3\right)
\end{gathered}
$$

- (B, 2003) Yes!

$$
m(P)=2 L^{\prime}\left(E_{15},-1\right), \text { to } 28 \text { decimal places }
$$

- More Notation

$$
L_{N}=L^{\prime}\left(E_{N},-1\right)=2 \frac{N^{2}}{(2 \pi)^{4}} L\left(E_{N}, 3\right)
$$

Recipe for making more conjectures

- Compute $m(P)$ for lots of $P(x, y, z)$ with \mathcal{W} a curve of small genus
- Stir in various constants, $d_{3}, d_{4}, d_{7}, \ldots, z_{3}, L_{11}, L_{14}, \ldots$
- Apply the Lenstra-Lenstra- Lovasz algorithm (LLL)
- Show the results to Fernando, Matilde and Mat to see if they can prove them
- Publish the results

A very useful formula

- (Cassaigne-Maillot, 2000) for $a, b, c \in \mathbb{C}^{*}$,

$$
=\left\{\begin{array}{lr}
m(a+b y+c z) \\
\frac{1}{\pi}\left(\mathcal{D}\left(\frac{|a|}{|b|} \mathrm{e}^{\mathrm{i} \gamma}\right)+\alpha \log |a|+\beta \log |b|+\gamma \log |c|\right), & \text { if } \triangle \\
\max \{\log |a|, \log |b|, \log |c|\}, & \text { if not } \triangle
\end{array}\right.
$$

- The condition \triangle means that $|a|,|b|,|c|$ form the sides of a triangle with angles α, β, γ.
- Bloch-Wigner dilogarithm

$$
\mathcal{D}(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

Computing $m(P)$ for some 3-variable examples

- If $P(x, y, z)=a(x)+b(x) y+c(x) z$ then $f(t)=m\left(P\left(\mathrm{e}^{\mathrm{i} t}, y, z\right)\right)$ is given by the Cassaigne-Maillot formula
- Numerically integrate to compute

$$
m(P(x, y, z))=\frac{1}{\pi} \int_{0}^{\pi} f(t) d t
$$

- On non- \triangle intervals, we integrate logs and hence obtain dilogs of algebraic numbers
- On \triangle intervals, we integrate dilogs and hence expect to obtain tri-logs perhaps elliptic trilogs $(\longrightarrow L(E, 3)$ by Zagier's conjecture).

Computing $m(P)$ - a simple example

- $P(x, y, z)=(1+x)(1+y)+z$, so $a=b=1+x$ and $c=1$.
- If $x=e^{i t}$ then $|a|=|b|=2 \cos \left(\frac{t}{2}\right)$
- If $|a|>\frac{1}{2}$, i.e. $t<t_{0}=2 \cos ^{-1}\left(\frac{1}{4}\right)=2.63623 \ldots$ then we are in the (isoceles) \triangle case with $\gamma=2 \sin ^{-1}(1 /(4 \cos (t / 2)))$ and $f(t)=$ the hard part of the C-M formula.
- If $t \geq t_{0}$ then $f(t)=\log |c|=0$, by the easy part of the formula.
- $m(P)=0.4839979734786385357732733911=2 L_{15}$ to 28 d.p.

Which polynomials?

- $P(x, y, z)=a(x)+b(x) y+c(x) z$, with a, b, c cyclotomic of degree ≤ 4
- Eliminate z from P and P^{*} to obtain an equation for

$$
\mathcal{W}=\{Q(x, y)=0\}
$$

- \mathcal{W} is the hyperelliptic curve $Y^{2}=\operatorname{disc}_{y} Q$, genus g, say
- If $g \leq 2$ compute $m(P)$ and apply the recipe of the previous slide to make conjectures

Examples of genus 0

- 1. Conjectured by B (2003), proved in John Condon's thesis (2004)

$$
m(x-1+(x+1)(y+z))=\frac{28}{5} z_{3}
$$

- 2.

$$
m\left(x^{2}+1+\left(x^{2}+x+1\right)(y+z)\right)=\frac{10}{9} d_{3}+\frac{35}{18} z_{3}
$$

Matilde Lalín and Mat Rogers each have proofs of this (2006)

- 3.

$$
m\left((x-1)^{2}+\left(x^{2}+1\right)(y+z)\right)=-d_{3}+2 d_{4}
$$

NB: no trilog term here - we do integrate a dilog.
The negative coefficient of d_{3} is also notable (and useful).

Examples of genus 1

- 1. A mixture of a dilog and $L\left(E_{45}, 3\right)$

$$
m\left(1+\left(x^{2}-x+1\right) y+\left(x^{2}+x+1\right) z\right) \stackrel{?}{=} d_{3}+\frac{1}{6} L_{45}
$$

- 2. Here \mathcal{W} is an elliptic curve of conductor 57 , but $m(P)$ is an ordinary trilog.

$$
m\left(x^{2}+x+1+\left(x^{2}-1\right)(y+z)\right) \stackrel{?}{=} \frac{28}{5} z_{3}
$$

- 3. Here we have both the ordinary trilog z_{3} and an elliptic trilog L_{21}

$$
m\left(x-1+\left(x^{2}-1\right) y+\left(x^{2}+x+1\right) z\right) \stackrel{?}{=} \frac{2}{3} d_{3}+\frac{199}{72} z_{3}+\frac{11}{24} L_{21}
$$

Examples of genus 2

- Since $Q(x, y)$ is reciprocal $\operatorname{Jac}(\mathcal{W})=E \times F$ for elliptic curves E, F (Jacobi, 1832)
- 1. Here E and F have conductors 14 and $112=2^{4} .7$

$$
m\left((x-1)^{3}+(x+1)(y+z)\right) \stackrel{?}{=} 6 L_{14}
$$

- 2. Here E and F have conductors 108 and $36\left(E: Y^{2}=X^{3}+4\right)$

$$
m\left((x-1)^{3}+(x+1)^{3}(y+z)\right) \stackrel{?}{=}-\frac{28}{15} z_{3}+\frac{2}{15} L_{108}
$$

Representing $L(E, 3)$

- Combining the genus 0 example

$$
m\left(P_{1}\right)=m(x-1+(x+1)(y+z))=\frac{28}{5} z_{3}
$$

- with the genus 2 example

$$
m\left(P_{2}\right)=m\left((x-1)^{3}+(x+1)^{3}(y+z)\right) \stackrel{?}{=}-\frac{28}{15} z_{3}+\frac{2}{15} L_{108}
$$

- we obtain

$$
m\left(P_{1} P_{2}^{3}\right) \stackrel{?}{=} \frac{2}{5} L_{108}
$$

showing the importance of negative coefficients in these formulas

Exotic formulas

- 1. This example is of genus 1 with $E: Y^{2}=X^{3}+X$ of conductor 64, but we have no formula for $m\left(P_{1}\right)$

$$
P_{1}=(x-1)^{2}+(x+1)^{2}(y+z)
$$

- We also have no formula for the following genus 2 example with $\mathrm{Jac}=E \times F$ with E, F of conductors 64,192

$$
P_{2}=(x+1)^{2}+\left(x^{4}+1\right) y+\left(x^{2}+1\right)\left(x^{2}+x+1\right) z
$$

- However, the missing ingredients of the two formulas must be the same since

$$
m\left(P_{1}^{12} P_{2}^{19}\right)=12 m\left(P_{1}\right)+19 m\left(P_{2}\right) \stackrel{?}{=}-19 d_{3}+20 d_{4}+6 L_{64}
$$

