Mahler's measure and Special Values of L-functions

David Boyd

University of British Columbia

Pacific Northwest Number Theory Conference 2015

David Boyd (UBC)

Mahler measure and L-functions

Eugene, May 15, 2015 1 /

Mahler's measure

• If
$$P(x) = a_0 x^d + \dots + a_d = a_0 \prod_{j=1}^d (x - \alpha_j)$$
 then the *Mahler* measure of *P* is

$$M(P) = |a_0| \prod_{j=1}^d \max(|\alpha_j|, 1)),$$

and the logarithmic Mahler measure of P is

$$m(P) = \log M(P) = \log |a_0| + \sum_{j=1}^d \log^+ |\alpha_j|.$$

If P ∈ ℤ[x] then M(P) is an algebraic integer. M(P) = 1 if and only if all the zeros of P are roots of unity (cyclotomic polynomials).

David Boyd (UBC)

Lehmer's question

 In 1933, D.H. Lehmer was interested in the prime factors occurring in sequences of numbers of the form

$$\Delta_n(\boldsymbol{P}) = \boldsymbol{a}_0^n \prod_{j=1}^d (\alpha_j^n - 1)$$

• The growth of these numbers satisfies

$$\lim_{n\to\infty} |\Delta_n|^{1/n} = M(P).$$

• Lehmer asked whether for non-cyclotomic *P*, the growth rate could be smaller than $M(P) = 1.1762808 \cdots = \lambda$, attained for the "Lehmer polynomial"

$$P(x) = x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1.$$

Dick Lehmer 1927

 $\lambda = 1.17628081825991750...$ log $\lambda = 0.162357612007738139...$

Mahler's measure for many variables

Jensen's formula from Complex Analysis gives

$$m(P) = rac{1}{2\pi} \int_0^{2\pi} \log |P(e^{it})| dt$$

• And then, for example, if $n \to \infty$,

$$m(1 + x + x^n) \rightarrow rac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \log|1 + e^{it} + e^{iu}|dt du$$

• suggesting that if $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, we define

$$m(P) = \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1,\ldots,x_n)| \frac{dx_1}{x_1} \cdots \frac{dx_n}{x_n}$$

$$\mathbb{T}^n = \{|x_1| = 1\} \times \cdots \times \{|x_n| = 1\}$$

< ロ > < 同 > < 回 > < 回 >

Kurt Mahler

$$m(P) = \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \cdots \frac{dx_n}{x_n}$$

David Boyd (UBC)

2

イロン イロン イヨン イヨン

What does the Mahler measure measure?

- Mahler (1962) introduced his measure as a tool in proving inequalities useful in transcendence theory.
- The main advantage of *M*(*P*) over other measures of the size of *P* is that *M*(*PQ*) = *M*(*P*)*M*(*Q*).
- A more intrinsic meaning: *P*(*x*₁,...,*x*_n) may occur as a characteristic polynomial in the description of certain discrete dynamical systems.
- In this case, m(P) measures the rate of growth of configurations of a certain size as the system evolves so m(P) is the *entropy* of the system, e.g. Lind, Schmidt and Ward (1990).

The set \mathbb{L} of all measures

• B-Lawton (1980-1982): if $k_2 \rightarrow \infty, \dots, k_n \rightarrow \infty$ then

$$m(P(x, x^{k_2}, \ldots, x^{k_n})) \rightarrow m(P(x_1, \ldots, x_n))$$

- so m(P(x₁,...,x_n)) is the limit of measures of one-variable polynomials
- Conjecture (B, 1981): L is a closed subset of the real numbers.
 From this a qualitative form of "Lehmer's conjecture" would follow.
- *m*(1 + *x* + *y*) is a limit point of L, in fact B (1981), generalized by Condon (2012)

$$m(1 + x + x^n) = m(1 + x + y) + c(n)/n^2 + O(1/n^3),$$

where $c(n) \neq 0$ depends only on *n* mod 3

A Sign of Things to Come: Smyth's formula

• Smyth (1981), Ray (1987)

$$m(1 + x + y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3}, 2) = L'(\chi_{-3}, -1)$$

• Notation for some basic constants

$$d_f = L'(\chi_{-f}, -1) = \frac{f^{3/2}}{4\pi}L(\chi_{-f}, 2)$$

• e.g.

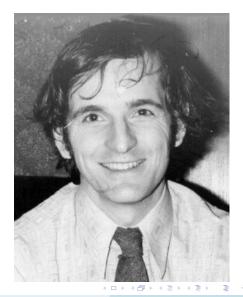
$$L(\chi_{-3}, 2) = 1 - \frac{1}{2^2} + \frac{1}{4^2} - \frac{1}{5^2} + \dots$$
•
$$L(\chi_{-4}, 2) = 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chris Smyth

$$m(1 + x + y) = L'(\chi_{-3}, -1)$$

 $= 0.323065947219450514\ldots$



Aside: A possible connection with topology?

 Milnor (1982) – "Hyperbolic Geometry the first 150 Years" recalled a result of Lobachevsky:

The number πd_3 is the volume of a hyperbolic tetrahedron T with all vertices at infinity (and thus all dihedral angles equal to $\pi/3$).

- Riley (1975) the complement of the figure-8 knot can be triangulated by 2 such equilateral tetrahedra.
- Does the appearance of d_3 in the formula for m(1 + x + y) have any relationship to these facts from hyperbolic geometry?

イロト 不得 トイヨト イヨト

Some small measures

$$\beta_1 = m(1 + x + y) = d_3 = 0.32306594...$$

$$\alpha_2 := m(x + y + 1 + 1/x + 1/y) = 0.25133043...$$

$$\alpha_1 := m(xy + y + x + 1 + 1/x + 1/y + 1/(xy)) = 0.22748122...$$

- Notice that the polynomials in the latter two formulas are *reciprocal*, i.e. invariant under x → 1/x, y → 1/y.
- Are there formulas for α_1 and α_2 like Smyth's formula for β_1 ?
- Are α_1 and α_2 genuine limit points of L?
- Are α_1 and α_2 the smallest two limit points of \mathbb{L} ?
- Mossinghoff and B (2005) used a variety of methods to search for $m(P(x, y)) < \log(1.37) = 0.3148 \dots < \beta_1$ and found 48 of them.

< 回 ト < 三 ト < 三

Deninger's Conjecture

- Deninger (1995): Provided $P(x_1, ..., x_n) \neq 0$ on \mathbb{T}^n , m(P) is related to the cohomology of the variety $\mathcal{V} = \{P(x_1, ..., x_n) = 0\}$.
- In particular (here P = 0 does intersect \mathbb{T}^2 but harmlessly.)

$$m(1 + x + 1/x + y + 1/y) \stackrel{?}{=} L'(E_{15}, 0)$$

 E_{15} the elliptic curve of conductor N = 15 defined by P = 0.

• More notation: If *E_N* is an elliptic curve of conductor *N*, write

$$b_N = L'(E_N, 0) = \frac{N}{\pi^2}L(E_N, 2),$$

• The smallest possible conductors for elliptic curves over \mathbb{Q} are 11, 14, 15, 17, 19, 20, 21 and 24 (each with 1 isogeny class).

イロト 不得 トイヨト イヨト 二日

Christopher Deninger

m(1 + x + 1/x + y + 1/y)= 0.2513304337132522... $\stackrel{?}{=} L'(E_{15}, 0)$

David Boyd (UBC)

→ ∃ > < ∃</p>

A .

Elliptic curve L-functions

۲

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_p \left(1 - a_p p^{-s} + p^{1-2s}\right)^{-1}$$

where the a_p are given by counting points on $E(\mathbb{F}_p)$

• The a_n are also the coefficients of a cusp form of weight 2 on $\Gamma_0(N)$, e.g. for N = 15,

$$\sum_{n=1}^{\infty} a_n q^n = q \prod_{n=1}^{\infty} (1-q^n)(1-q^{3n})(1-q^{5n})(1-q^{15n})$$

Conjectures inspired by computation

• (B, 1996) If k is an integer then for certain specific rationals r_k ,

$$F(k) := m(k + x + 1/x + y + 1/y) \stackrel{?}{=} r_k b_{N_k}$$
(*)

 (Rodriguez-Villegas, 1997) Let q = exp(πiτ) be the modulus of the elliptic curve k + x + 1/x + y + 1/y = 0, then

$$m(k+x+1/x+y+1/y) = \operatorname{Re}\left(-\pi i\tau + 2\sum_{n=1}^{\infty}\sum_{d|n} \binom{-4}{d} d^2 \frac{q^n}{n}\right)$$

- Hence the conjecture (*) follows (with generic rationals) from the Bloch-Beilinson conjectures.
- In fact would follow from these conjectures even for $k^2 \in \mathbb{Q}$.

イロト 不得 トイヨト イヨト

Fernando Rodriguez-Villegas

$$m(k+x+1/x+y+1/y) =$$

$$\operatorname{Re}\left(-\pi i\tau + 2\sum_{n=1}^{\infty}\sum_{d|n} \binom{-4}{d} d^{2} \frac{q^{n}}{n}\right)$$

イロト イロト イヨト イヨト

David Boyd (UBC)

Mahler measure and L-functions

Conjectures become Theorems

- (Rodriguez-Villegas, 1997) (*) is true for k² = 8, 18 and 32 using some of the proven cases of Beilinson's conjecture, e.g. for CM curves
- (Lalín Rogers, 2006) (*) is true for k = 2 and k = 8.
 by establishing a number of useful functional equations for the function F(k) in the LHS of (*) using calculations in K₂(E)
- (Rogers Zudilin, 2012) (★) is true for k² = -4, -1 and 2, by proving directly formulas for L(E, 2) as special values of ₃F₂ hypergeometric functions and then comparing directly with the corresponding formula for F(k) of Rodriguez-Villegas.
- But what about the case k = 1?

イロト 不得 トイヨト イヨト 二日

Matilde Lalín and Mat Rogers 2006

David Boyd (UBC)

Mahler measure and L-functions

⊒ ▶ ৰ ≣ ▶ ৰ ≣ ▶ ≣ ৩ ৭.0 Eugene, May 15, 2015 19 / 29

Continuing the detour into Hyperbolic Geometry - A-polynomials

- By a result of Thurston the complement of any knot in 3-space can be triangulated by a finite collection of hyperbolic tetrahedra T(z) with well-determined "shapes".
- The shape $z \in \mathbb{C}$ is equal to the cross-ratio of the sides of T(z) the volume of the tetrahedron is given by $\mathcal{D}(z)$, where \mathcal{D} is the
- Bloch–Wigner dilogarithm

$$\mathcal{D}(z) := \operatorname{Im}(\operatorname{Li}_2(z)) + \arg(1-z)\log|z|$$

where

$$\mathrm{Li}_2(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The A-polynomial of a hyperbolic knot

- (Cooper, Culler, Gillet, Long and Shalen 1994) defined a new knot invariant, A_K(x, y) for each knot K in 3-space
- (B and Rodriguez-Villegas, 2005) For any K, m(A_K) is a finite sum of D(z) where the z are algebraic numbers.
- Under favourable circumstances $\pi m(A_K) = vol(\mathbb{H}^3 \setminus K)$.
- In particular this holds for the figure-8 knot where

$$A_{K}(x,y) = -y + x^{2} - x - 1 - \frac{1}{x} + \frac{1}{x^{2}} - \frac{1}{y}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Figure-8 Knot and its A-polynomial

$$A_{K}(x,y) = -y + x^{2} - x - 1 - \frac{1}{x} + \frac{1}{x^{2}} - \frac{1}{y}$$
$$m(A_{K}) = \frac{1}{\pi} \text{ vol}(\mathbb{H}^{3} \setminus K) = 2d_{3}$$

æ

Finally the long sought after formula for α_2 !

- (Rogers Zudilin, 2014) (*) is true for k = 1.
 Their method is elementary but complex. It depends on a direct and clever integration of certain modular equations of Ramanujan.
- In the midst of their calculation, they need a formula for m(A) where

$$A(x,y) = -y + x^2 - x - 1 - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{y}.$$

- A(x, y) = 0 defines an elliptic curve of conductor 15 but their proof requires that m(A) = 2d₃ not a rational multiple of b₁₅.
- However, we recognize this polynomial as exactly A_K(x, y) the A-polynomial of the figure-8 knot so the result of the previous slide gives exactly what is needed!

イロト 不得 トイヨト イヨト

Mat Rogers and Wadim Zudilin

David Boyd (UBC)

Mahler measure and L-functions

Eugene, May 15, 2015 24 / 29

More recent results about m(k + x + y + 1/x + 1/y).

- Brunault (2015) uses Siegel modular units to parametrize E_N
- thus proves the conjecture (*) for k = 3 and k = 12
- with conductors N = 21 and N = 48, respectively.
- As in all of the earlier results, an individual calculation is needed for each value of *k*
- So we are still seeking a general method that will deal with the whole family of curves k + x + 1/x + y + 1/y

F(k) = m(k + x + y + 1/x + 1/y) if k^2 is not rational.

- Samart (2015) has shown that if k² ∉ Q so that E_k is not defined over Q then we can still expect formulas for F(k) in certain situations.
- For example, he proves that

$$F(\sqrt{8\pm 6\sqrt{2}}) = rac{1}{2}(b_{64}\pm b_{32})$$

so in this case (*) does not hold – because E_k is defined over $\mathbb{Q}(\sqrt{2})$ and not over \mathbb{Q}

What about the limit point α_1 ?

• A conjecture from (B, 1996):

$$\alpha_1 = m(xy + y + x + 1 + 1/x + 1/y + 1/(xy)) \stackrel{?}{=} b_{14} \qquad (\star\star)$$

- Mellit (2012) proved this as well as 4 other of the formulas conjectured in (B, 1996) involving elliptic curves of conductor 14.
- He begins by observing that both sides of (**) can be expressed as linear combinations of elliptic dilogarithms.
- Then he uses a method of "parallel lines" to generate enough linear relations between values of elliptic dilogs at points of E(Q) to deduce (★★)
- The method seems to work for N = 20,24 but not for N = 15.

Other methods and results

• Brunault (2006) parametrizes $X_1(11)$ by modular units to prove

$$m(y^2 + (x^2 + 2x - 1)y + x^3) = 5b_{11}$$

- $X_1(11)$ has a model $y^2 + y + x^3 + x^2 = 0$
- Write $y^2 + y + x^3 + x^2 = (y y_1(t))(y y_2(t))$ for $x = e^{it}$, then
- $m(P) = \frac{1}{\pi} \int_0^{\pi} |\log |y_2(t)|| = 0.4056029...$ seemingly not rb_{11}
- However $\frac{1}{\pi} \int_0^{\pi} \log |y_2(t)| = 0.1521471 \dots = b_{11}$ to 50 d.p.
- Fortunately (for Lehmer!) this is not a Mahler measure since
 b₁₁ = 0.1521471... < 0.1623637... = log(Lehmer's constant)

イロト 不得 トイヨト イヨト ニヨー

Workshop at CRM, Montreal, February 2015

David Boyd (UBC)

Mahler measure and L-functions

Eugene, May 15, 2015 29 / 29

David, Matilde and Fernando - Niven Lectures 2007

David Boyd (UBC)

Mahler measure and L-functions

Eugene, May 15, 2015 30 / 29