Mahler's measure and Special Values of L-functions

David Boyd
University of British Columbia

Pacific Northwest Number Theory Conference 2015

Mahler's measure

- If $P(x)=a_{0} x^{d}+\cdots+a_{d}=a_{0} \prod_{j=1}^{d}\left(x-\alpha_{j}\right)$ then the Mahler measure of P is

$$
\left.M(P)=\left|a_{0}\right| \prod_{j=1}^{d} \max \left(\left|\alpha_{j}\right|, 1\right)\right)
$$

and the logarithmic Mahler measure of P is

$$
m(P)=\log M(P)=\log \left|a_{0}\right|+\sum_{j=1}^{d} \log ^{+}\left|\alpha_{j}\right|
$$

- If $P \in \mathbb{Z}[x]$ then $M(P)$ is an algebraic integer. $M(P)=1$ if and only if all the zeros of P are roots of unity (cyclotomic polynomials).

Lehmer's question

- In 1933, D.H. Lehmer was interested in the prime factors occurring in sequences of numbers of the form

$$
\Delta_{n}(P)=a_{0}^{n} \prod_{j=1}^{d}\left(\alpha_{j}^{n}-1\right)
$$

- The growth of these numbers satisfies

$$
\lim _{n \rightarrow \infty}\left|\Delta_{n}\right|^{1 / n}=M(P)
$$

- Lehmer asked whether for non-cyclotomic P, the growth rate could be smaller than $M(P)=1.1762808 \cdots=\lambda$, attained for the "Lehmer polynomial"

$$
P(x)=x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1 .
$$

Dick Lehmer 1927

$\lambda=1.17628081825991750 \ldots$

$\log \lambda=0.162357612007738139 \ldots$

Mahler's measure for many variables

- Jensen's formula from Complex Analysis gives

$$
m(P)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i t}\right)\right| d t
$$

- And then, for example, if $n \rightarrow \infty$,

$$
m\left(1+x+x^{n}\right) \rightarrow \frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \log \left|1+e^{i t}+e^{i u}\right| d t d u
$$

- suggesting that if $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, we define

$$
\begin{gathered}
m(P)=\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}} \\
\mathbb{T}^{n}=\left\{\left|x_{1}\right|=1\right\} \times \cdots \times\left\{\left|x_{n}\right|=1\right\}
\end{gathered}
$$

Kurt Mahler

$$
m(P)=
$$

$$
\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}}
$$

What does the Mahler measure measure?

- Mahler (1962) introduced his measure as a tool in proving inequalities useful in transcendence theory.
- The main advantage of $M(P)$ over other measures of the size of P is that $M(P Q)=M(P) M(Q)$.
- A more intrinsic meaning: $P\left(x_{1}, \ldots, x_{n}\right)$ may occur as a characteristic polynomial in the description of certain discrete dynamical systems.
- In this case, $m(P)$ measures the rate of growth of configurations of a certain size as the system evolves so $m(P)$ is the entropy of the system, e.g. Lind, Schmidt and Ward (1990).

The set \mathbb{L} of all measures

- B-Lawton (1980-1982): if $k_{2} \rightarrow \infty, \ldots, k_{n} \rightarrow \infty$ then

$$
m\left(P\left(x, x^{k_{2}}, \ldots, x^{k_{n}}\right)\right) \rightarrow m\left(P\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- so $m\left(P\left(x_{1}, \ldots, x_{n}\right)\right)$ is the limit of measures of one-variable polynomials
- Conjecture $(B, 1981): \mathbb{L}$ is a closed subset of the real numbers. From this a qualitative form of "Lehmer's conjecture" would follow.
- $m(1+x+y)$ is a limit point of \mathbb{L}, in fact B (1981), generalized by Condon (2012)

$$
m\left(1+x+x^{n}\right)=m(1+x+y)+c(n) / n^{2}+O\left(1 / n^{3}\right)
$$

where $c(n) \neq 0$ depends only on $n \bmod 3$

A Sign of Things to Come: Smyth's formula

- Smyth (1981), Ray (1987)

$$
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}\left(\chi_{-3},-1\right)
$$

- Notation for some basic constants

$$
d_{f}=L^{\prime}\left(\chi_{-f},-1\right)=\frac{f^{3 / 2}}{4 \pi} L\left(\chi_{-f}, 2\right)
$$

- e.g.

$$
\begin{aligned}
& L\left(\chi_{-3}, 2\right)=1-\frac{1}{2^{2}}+\frac{1}{4^{2}}-\frac{1}{5^{2}}+\ldots \\
& L\left(\chi_{-4}, 2\right)=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\ldots
\end{aligned}
$$

Chris Smyth

$$
\begin{gathered}
m(1+x+y)=L^{\prime}(\chi-3,-1) \\
=0.323065947219450514 \ldots
\end{gathered}
$$

Aside: A possible connection with topology?

- Milnor (1982) - "Hyperbolic Geometry the first 150 Years" recalled a result of Lobachevsky:

The number πd_{3} is the volume of a hyperbolic tetrahedron T with all vertices at infinity (and thus all dihedral angles equal to $\pi / 3$).

- Riley (1975) the complement of the figure-8 knot can be triangulated by 2 such equilateral tetrahedra.
- Does the appearance of d_{3} in the formula for $m(1+x+y)$ have any relationship to these facts from hyperbolic geometry?

Some small measures

$$
\begin{gathered}
\beta_{1}=m(1+x+y)=d_{3}=0.32306594 \ldots \\
\alpha_{2}:=m(x+y+1+1 / x+1 / y)=0.25133043 \ldots \\
\alpha_{1}:=m(x y+y+x+1+1 / x+1 / y+1 /(x y))=0.22748122 \ldots
\end{gathered}
$$

- Notice that the polynomials in the latter two formulas are reciprocal, i.e. invariant under $x \rightarrow 1 / x, y \rightarrow 1 / y$.
- Are there formulas for α_{1} and α_{2} like Smyth's formula for β_{1} ?
- Are α_{1} and α_{2} genuine limit points of \mathbb{L} ?
- Are α_{1} and α_{2} the smallest two limit points of \mathbb{L} ?
- Mossinghoff and B (2005) used a variety of methods to search for $m(P(x, y))<\log (1.37)=0.3148 \ldots<\beta_{1}$ and found 48 of them.

Deninger's Conjecture

- Deninger (1995): Provided $P\left(x_{1}, \ldots, x_{n}\right) \neq 0$ on $\mathbb{T}^{n}, m(P)$ is related to the cohomology of the variety $\mathcal{V}=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\}$.
- In particular (here $P=0$ does intersect \mathbb{T}^{2} but harmlessly.)

$$
m(1+x+1 / x+y+1 / y) \stackrel{?}{=} L^{\prime}\left(E_{15}, 0\right)
$$

E_{15} the elliptic curve of conductor $N=15$ defined by $P=0$.

- More notation: If E_{N} is an elliptic curve of conductor N, write

$$
b_{N}=L^{\prime}\left(E_{N}, 0\right)=\frac{N}{\pi^{2}} L\left(E_{N}, 2\right)
$$

- The smallest possible conductors for elliptic curves over \mathbb{Q} are 11 , $14,15,17,19,20,21$ and 24 (each with 1 isogeny class).

Christopher Deninger

$$
\begin{gathered}
m(1+x+1 / x+y+1 / y) \\
=0.2513304337132522 \ldots \\
\stackrel{?}{=} L^{\prime}\left(E_{15}, 0\right)
\end{gathered}
$$

Elliptic curve L-functions

$$
L(E, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}
$$

where the a_{p} are given by counting points on $E\left(\mathbb{F}_{p}\right)$

- The a_{n} are also the coefficients of a cusp form of weight 2 on $\Gamma_{0}(N)$, e.g. for $N=15$,

$$
\sum_{n=1}^{\infty} a_{n} q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{3 n}\right)\left(1-q^{5 n}\right)\left(1-q^{15 n}\right)
$$

Conjectures inspired by computation

- ($B, 1996$) If k is an integer then for certain specific rationals r_{k},

$$
F(k):=m(k+x+1 / x+y+1 / y) \stackrel{?}{=} r_{k} b_{N_{k}}
$$

- (Rodriguez-Villegas, 1997) Let $q=\exp (\pi i \tau)$ be the modulus of the elliptic curve $k+x+1 / x+y+1 / y=0$, then

$$
m(k+x+1 / x+y+1 / y)=\operatorname{Re}\left(-\pi i \tau+2 \sum_{n=1}^{\infty} \sum_{d \mid n}\binom{-4}{d} d^{2} \frac{q^{n}}{n}\right)
$$

- Hence the conjecture (\star) follows (with generic rationals) from the Bloch-Beilinson conjectures.
- In fact would follow from these conjectures even for $k^{2} \in \mathbb{Q}$.

Fernando Rodriguez-Villegas

$$
\begin{aligned}
& m(k+x+1 / x+y+1 / y)= \\
& \operatorname{Re}\left(-\pi i \tau+2 \sum_{n=1}^{\infty} \sum_{d \mid n}\binom{-4}{d} d^{2} \frac{q^{n}}{n}\right)
\end{aligned}
$$

Conjectures become Theorems

- (Rodriguez-Villegas, 1997) (\star) is true for $k^{2}=8,18$ and 32 using some of the proven cases of Beilinson's conjecture, e.g. for CM curves
- (Lalín - Rogers, 2006) ($*$) is true for $k=2$ and $k=8$. by establishing a number of useful functional equations for the function $F(k)$ in the LHS of (\star) using calculations in $K_{2}(E)$
- (Rogers - Zudilin, 2012) (\star) is true for $k^{2}=-4,-1$ and 2 , by proving directly formulas for $L(E, 2)$ as special values of ${ }_{3} F_{2}$ hypergeometric functions and then comparing directly with the corresponding formula for $F(k)$ of Rodriguez-Villegas.
- But what about the case $k=1$?

Matilde Lalín and Mat Rogers 2006

Continuing the detour into Hyperbolic Geometry -A-polynomials

- By a result of Thurston the complement of any knot in 3-space can be triangulated by a finite collection of hyperbolic tetrahedra $T(z)$ with well-determined "shapes".
- The shape $z \in \mathbb{C}$ is equal to the cross-ratio of the sides of $T(z)$ the volume of the tetrahedron is given by $\mathcal{D}(z)$, where \mathcal{D} is the
- Bloch-Wigner dilogarithm

$$
\mathcal{D}(z):=\operatorname{Im}\left(\operatorname{Li}_{2}(z)\right)+\arg (1-z) \log |z|
$$

where

$$
\operatorname{Li}_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

The A-polynomial of a hyperbolic knot

- (Cooper, Culler, Gillet, Long and Shalen 1994) defined a new knot invariant, $A_{K}(x, y)$ for each knot K in 3-space
- (B and Rodriguez-Villegas, 2005) For any $K, m\left(A_{K}\right)$ is a finite sum of $\mathcal{D}(z)$ where the z are algebraic numbers.
- Under favourable circumstances $\pi m\left(A_{K}\right)=\operatorname{vol}\left(\mathbb{H}^{3} \backslash K\right)$.
- In particular this holds for the figure-8 knot where

$$
A_{K}(x, y)=-y+x^{2}-x-1-1 / x+1 / x^{2}-1 / y
$$

The Figure-8 Knot and its A-polynomial

Finally the long sought after formula for α_{2} !

- (Rogers - Zudilin, 2014) (\star) is true for $k=1$.

Their method is elementary but complex. It depends on a direct and clever integration of certain modular equations of Ramanujan.

- In the midst of their calculation, they need a formula for $m(A)$ where

$$
A(x, y)=-y+x^{2}-x-1-1 / x+1 / x^{2}-1 / y
$$

- $A(x, y)=0$ defines an elliptic curve of conductor 15 but their proof requires that $m(A)=2 d_{3}$ not a rational multiple of b_{15}.
- However, we recognize this polynomial as exactly $A_{K}(x, y)$ the A-polynomial of the figure-8 knot so the result of the previous slide gives exactly what is needed!

Mat Rogers and Wadim Zudilin

More recent results about $m(k+x+y+1 / x+1 / y)$.

- Brunault (2015) uses Siegel modular units to parametrize E_{N}
- thus proves the conjecture (\star) for $k=3$ and $k=12$
- with conductors $N=21$ and $N=48$, respectively.
- As in all of the earlier results, an individual calculation is needed for each value of k
- So we are still seeking a general method that will deal with the whole family of curves $k+x+1 / x+y+1 / y$
$F(k)=m(k+x+y+1 / x+1 / y)$ if k^{2} is not rational.
- Samart (2015) has shown that if $k^{2} \notin \mathbb{Q}$ so that E_{k} is not defined over \mathbb{Q} then we can still expect formulas for $F(k)$ in certain situations.
- For example, he proves that

$$
F(\sqrt{8 \pm 6 \sqrt{2}})=\frac{1}{2}\left(b_{64} \pm b_{32}\right)
$$

so in this case (\star) does not hold - because E_{k} is defined over $\mathbb{Q}(\sqrt{2})$ and not over \mathbb{Q}

What about the limit point α_{1} ?

- A conjecture from (B, 1996):

$$
\alpha_{1}=m(x y+y+x+1+1 / x+1 / y+1 /(x y)) \stackrel{?}{=} b_{14} \quad(\star \star)
$$

- Mellit (2012) proved this as well as 4 other of the formulas conjectured in ($\mathrm{B}, 1996$) involving elliptic curves of conductor 14.
- He begins by observing that both sides of ($\star \star$) can be expressed as linear combinations of elliptic dilogarithms.
- Then he uses a method of "parallel lines" to generate enough linear relations between values of elliptic dilogs at points of $E(\mathbb{Q})$ to deduce ($* \star$)
- The method seems to work for $N=20,24$ but not for $N=15$.

Other methods and results

- Brunault (2006) parametrizes $X_{1}(11)$ by modular units to prove

$$
m\left(y^{2}+\left(x^{2}+2 x-1\right) y+x^{3}\right)=5 b_{11}
$$

- $X_{1}(11)$ has a model $y^{2}+y+x^{3}+x^{2}=0$
- Write $y^{2}+y+x^{3}+x^{2}=\left(y-y_{1}(t)\right)\left(y-y_{2}(t)\right)$ for $x=e^{i t}$, then
- $m(P)=\frac{1}{\pi} \int_{0}^{\pi}|\log | y_{2}(t)| |=0.4056029 \ldots$ seemingly not $r b_{11}$
- However $\frac{1}{\pi} \int_{0}^{\pi} \log \left|y_{2}(t)\right|=0.1521471 \ldots=b_{11}$ to 50 d.p.
- Fortunately (for Lehmer!) this is not a Mahler measure since $b_{11}=0.1521471 \ldots<0.1623637 \ldots=\log ($ Lehmer's constant)

Workshop at CRM, Montreal, February 2015

David, Matilde and Fernando - Niven Lectures 2007

