Computing A-polynomials using Puiseux expansions

David W. Boyd

The University of British Columbia

The A-polynomial of a knot complement is a two variable polynomial $A(x, y)$ with integer coefficients that is notoriously difficult to compute in general. The computation requires the elimination of variables in a large set of polynomial equations. We present a method of computing this polynomial using Puiseux expansions about certain geometrically meaningful solutions of the equations and then using linear algebra. We give some examples of A-polynomials that were previously inaccessible by earlier methods.

Congeting A-polyrionmidt using
Piriseux expansuies
K knot in $S^{3} \rightarrow A(x, y) \in \mathbb{Z}[x, y]$
A-polynomial (not Alexander)

Two almost equivalent definitions:
(1) In terms of representations

$$
\begin{equation*}
\pi_{1}(K) \rightarrow S L(2, \mathbb{C}) \tag{194}
\end{equation*}
$$

(2) In termes of triangulations of $X=8^{3}, K$ into ideal tetrahedea in H^{3}, ngperbdic 3-space - related to reps

$$
\pi_{1}(K) \rightarrow P S L(2, C)=\operatorname{Iscm}+\left(H 1^{3}\right)
$$

Computing $A(x, y)$ io usually difficult requiring elinsination of variables in lange sygtons of polynomial eqns A resultank - Gröbner boses

For (1), one starts with a presentation of π_{1} interns of g generators

- in practice this works only of $g=2$ (and sells not to long)

For (2), one stats with a triangulation of $\$^{3}, K$ into t ideal tetrahedra and this works in practice ally if
$t \leq 8$ (or so, depending on complexity of equs)

Our new method which uses Puiseux expanaino depends on some other quantities being small;
(i) $d=$ degree of the Shape field (e., $d \leq 12$)
(ii) Segue (A, x) and degree (A, y) e.g. $A(x, y) 16 \times 80$ or so.

Some Turk's Head Knots

The gluing equatiais
If $X=S^{3} \backslash K=\bigcup_{k=1}^{t} \Delta_{k}$, each

an ideal tetrahedion in $H^{3}=$ hypubolic 3 -pace. .

$$
\cong \mathbb{C} \times(0, \infty)
$$

U_{p} to isonctry,
$\Delta_{k} \cong \Delta(z)$ with verticies at $0,1, z, \infty, z \in \mathbb{C}$ $\operatorname{vol}\left(\Delta_{k}\right)=D(z)$, the Bloch-Wignar didgr. (\& $\pi m(A)=\sum D\left(\alpha_{j}\right)$, centain $\alpha_{j} \in \overline{\mathbb{Q}}$)

The cowhinatorics of the thiagulation leat mo the glung equs
(G) $f_{j}=\prod_{j=1}^{t} z_{j}^{a_{i j}}\left(1-z_{j}\right)^{b_{i j}}=1, \quad i=1, \ldots, t+2$ where $f_{j}=1(j \leq t)$ are "edge" squs 2 $f_{t+1}=1, f_{t+2}=1$ are the lougitudes" 4"maciolicin" equs.
We "deforme" the last the eques to

$$
f_{t+1}=x^{2}, f_{6+3}=
$$

and them eliminate $z_{1}, \ldots, z_{\epsilon}$ from then nesulting.

$$
A(x, y) \in \mathbb{Z}[x, y]
$$

The "Puisenx" meturd.
(1) Find the gequetric sole of (G) (with $x=y=1$), say $z_{j}=\alpha_{j} \in \mathbb{C}$ with $\operatorname{Im}\left(\alpha_{j}\right)>0$.
The α_{j} are algebraic and $S h=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is the shape fidd.

- user Snap Pea (Weeks)
or Snap (Goodman et al)
(2) Wite $y=1+1$ and furn the soln of $A(x, 1+0)=0$ is $x=1+\sum_{k=1}^{\infty} c_{i} s^{k} \quad$ (ns ramification, by Neumann-zagien).
Indeed, using their proof, the shapes z_{j} ado subtle

$$
z_{j}=\alpha_{j}+\sum_{k=1}^{\infty} c_{j k} k^{k} \quad(j=1, \ldots, t)
$$

(3) Caspute the C_{k}, C_{k} fo $k=1,2,3, \ldots, N$ by cteratividy substitution in the eques (G) and sobering a system of lien equs for

$$
\left(c_{0 k}, c_{k}, \ldots, c_{t k}\right)
$$

The $c_{j k}$ are ail in 5 h .
(4) Basic Riven algebra mature

Assuming $A(x, y)=\sum_{\substack{0 \leq i \leq d_{1} \\ 0 \leq j \leq d_{2}}} a_{i j} x^{i} y^{j},\left(a_{i j} \in \mathbb{Z}\right)$
with $d N \geqslant\left(d_{1}+1\right)\left(d_{2}+1\right)$
$d=\operatorname{deg}\left(C_{u_{\infty}}\right)$ where $C u_{\infty}=\mathbb{Q}\left(C_{01}, C_{3}, C_{3,}, \ldots\right) \subseteq S t$.
If a solution is found with $A \neq 0$, check various conditions to see if is a plausible candidate for A.
If $A=0$ then N is too small or the guess for d_{1}, d_{2} is wrong. - Try again!
Variants:
(2) Not uncommaly, $d_{1}=\operatorname{dog}(A, x)=d=\operatorname{dog}(1,1)$.

Than

$$
\begin{aligned}
A(x, y) & =c_{0}(y) \prod_{j=1}^{d}\left(x-X^{(i)}(a)\right)+O\left(2^{N+1}\right) \\
& =\sum_{i=0}^{\alpha} x^{i} c_{i}(y), y=1+\alpha .
\end{aligned}
$$

So egg. $\operatorname{Tr}(X(\alpha))=-\frac{C_{1}(y)}{C_{0}(y)}=-\frac{C_{1}(1+\alpha)}{C_{0}(1+\alpha)}$, a ration In of s obtainable by cutinued frometion if $N>d_{2}$.
Sunicially for $\operatorname{Tr}\left(X_{(a)}^{k}\right) \&$ hence $C_{i}(1+\alpha)$, by Neutron's fanulae.

Vaivart (3). ("hints")
Fraw just a fow tans of the Puisecy expansisi $z_{j}=Z_{j}(s)$ of the shapes, are may surmine relation $Z_{i}=Z_{j}$ from $Z_{i}(a)=Z_{j}(a)+O\left(a^{n}\right)$ (e.g. $N=10$ is reasmably courving).

Thase "hiits" can suiplify the equs (G) enougn so tuat they cam be solved by elimination meturds.

Vaniant (4). Use other solus berides the gematio soln, e.g. for $(n, 0)$ surgary which has $y=\xi_{n}$.
(a) ej. if $\operatorname{deg}\left(C u_{\infty}(n, 0)\right)=d_{1}>\operatorname{deg}\left(C_{u_{\infty}}\right)$, one can use Vainaut (2) lut with the ($n, 0$) -solen.
(b) Couline the solution for raicose n to solve for $a_{i j}$ as in (1) with smaller N. ($n=2$ is best smice otherwise tivite to work over an extension of \mathbb{Q}).

Examples:

$$
8^{*}=8_{18} \quad t=13, g=3, d=4
$$

$$
i \cdot e_{1} d_{1}=d
$$

$\rightarrow A(x, y) 4 \times 16$ let $106 \quad(\operatorname{method}(2))$
$12 n 706 \quad t=14$, in fact $\alpha_{j}=8\left[\xi_{4}\right]+6\left[\xi_{i}\right]$

$$
\text { so } \quad t=14,(\sqrt{-1}, \sqrt{-3}) \text { but } C_{\text {an }}=Q(\sqrt{-1})
$$

using "hints" $\rightarrow A(x, y) 12 \times 42$ int 60120

$$
\begin{aligned}
& \text { Using huts } \rightarrow 10^{*}=10,23 \quad t=18, g=3, d=4 \quad\left(s h=Q\left(s_{s}\right)\right) \\
& \text { ut } 18870
\end{aligned}
$$

$\rightarrow A(x, y) 8 \times 40$ ht 18870
Using (4) (a) since $\operatorname{deg}(\operatorname{sh}(2,0))=8=\log (A, x)$

$$
\begin{aligned}
& 14^{*}=14019470 \quad t=28, g=3, \quad d=6 \\
& \rightarrow A(x, y) \quad 12 \times 84 \quad \text { int }=14859035072
\end{aligned}
$$

Here not enomple tan to find $A(x, y)$ int enmptufid $P_{j}(z, y)$ for cam slag en $j=1, \ldots, t$ and hence a and sole of dagne 6 at $x=-1, y=1$ Coupling aud use (4)(b)

$$
16^{*}=16 a 379778 \quad t=32,9=3, d=8
$$

$\longrightarrow A(x, y) \& \times 64$ lat 1264620800 netuot (2) srice $d_{1}=d$.
$20^{*} \quad t=42, g=3, d=8$
$\rightarrow A(x, y) \quad 8 \times 80$ lut 321926321690050
meturx (4) (b) using

$$
\operatorname{deg} S h=8 \text { and } \operatorname{deg} \operatorname{Sh}(2,0)=8 .
$$

dodew: $t=46, g=4, d=4$
but canshow $\operatorname{dag}(A, x) \geqslant 24$ no the
Piniseux methor mus out of stoon
However - as damanstrated at Bronnomene cinflavienci
$A\left(x^{5}, y\right)=$ prodent of 10 polys in $\mathbb{Q}(\xi, a)[x, y]$
degue 16×16
$\rightarrow A(x, y) 32 \times 160$ with
height $=40233375155685120881665697593844$

8^{*} Apoly

$$
\left\lfloor\begin{array}{rrrrr}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -12 & 0 & 0 \\
0 & 0 & 54 & 0 & 0 \\
0 & 0 & -112 & 0 & 0 \\
0 & -2 & 109 & -2 & 0 \\
0 & 12 & -64 & 12 & 0 \\
0 & -14 & 74 & -14 & 0 \\
0 & -28 & -100 & -28 & 0 \\
1 & 68 & 106 & 68 & 1 \\
0 & -28 & -100 & -28 & 0 \\
0 & -14 & 74 & -14 & 0 \\
0 & 12 & -64 & 12 & 0 \\
0 & -2 & 109 & -2 & 0 \\
0 & 0 & -112 & 0 & 0 \\
0 & 0 & 54 & 0 & 0 \\
0 & 0 & -12 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right\rfloor
$$

Hase 2
$\left[\left.\begin{array}{rrrrrrrrr}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -25 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 270 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1640 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6075 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & -13710 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & -75 & 16850 & -75 & 0 & 0 & 0 \\ 0 & 0 & 0 & 585 & -5215 & 585 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2400 & -11290 & -2400 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5125 & 7275 & 5125 & 0 & 0 & 0 \\ 0 & 0 & 6 & -3353 & 9720 & -3353 & 6 & 0 & 0 \\ 0 & 0 & -75 & -8250 & -7400 & -8250 & -75 & 0 & 0 \\ 0 & 0 & 360 & 17470 & -4740 & 17470 & 360 & 0 & 0 \\ 0 & 0 & -755 & -4900 & 2515 & -4900 & -755 & 0 & 0 \\ 0 & 0 & 275 & -11425 & -725 & -11425 & 275 & 0 & 0 \\ 0 & 4 & 1099 & -578 & 6848 & -578 & 1099 & 4 & 0 \\ 0 & -25 & 1475 & 17200 & -4950 & 17200 & 1475 & -25 & 0 \\ 0 & 45 & -10910 & -7565 & -9320 & -7565 & -10910 & 45 & 0 \\ 0 & 5 & 14080 & -5740 & 18870 & -5740 & 14080 & 5 & 0 \\ 0 & -150 & 400 & 7600 & -1250 & 7600 & 400 & -150 & 0 \\ 1 & 242 & -11914 & -7396 & -16312 & -7396 & -11914 & 242 & 1 \\ 0 & -150 & 400 & 7600 & -1250 & 7600 & 400 & -150 & 0 \\ 0 & 5 & 14080 & -5740 & 18870 & -5740 & 14080 & 5 & 0 \\ 0 & 45 & -10910 & -7565 & -9320 & -7565 & -10910 & 45 & 0 \\ 0 & -25 & 1475 & 17200 & -4950 & 17200 & 1475 & -25 & 0 \\ 0 & 4 & 1099 & -578 & 6848 & -578 & 1099 & 4 & 0 \\ 0 & 0 & 275 & -11425 & -725 & -11425 & 275 & 0 & 0 \\ 0 & 0 & -755 & -4900 & 2515 & -4900 & -755 & 0 & 0 \\ 0 & 0 & 360 & 17470 & -4740 & 17470 & 360 & 0 & 0 \\ 0 & 0 & -75 & -8250 & -7400 & -8250 & -75 & 0 & 0 \\ 0 & 0 & 6 & -3353 & 9720 & -3353 & 6 & 0 & 0 \\ 0 & 0 & 0 & 5125 & 7275 & 5125 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2400 & -11290 & -2400 & 0 & 0 & 0 \\ 0 & 0 & 0 & 585 & -5215 & 585 & 0 & 0 & 0 \\ 0 & 0 & 0 & -75 & 16850 & -75 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & -13710 & 4 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 6075 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1640 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 270 & 0 & 0 & 0 & 0\end{array} \right\rvert\,\right.$

