Computing A-polynomials using Puiseux expansions

David W. Boyd

The University of British Columbia

The A-polynomial of a knot complement is a two variable polynomial A(x, y) with integer coefficients that is notoriously difficult to compute in general. The computation requires the elimination of variables in a large set of polynomial equations. We present a method of computing this polynomial using Puiseux expansions about certain geometrically meaningful solutions of the equations and then using linear algebra. We give some examples of A-polynomials that were previously inaccessible by earlier methods.

1. Conjusting A-polynomials using Philseux espansi K knot in S' -> A(x,y) EZ[x,y] A-polynomial (not Alexander) Two almost equivalent definitions: (1) In terms of representations (CCGLS) 194) $\pi_1(K) \longrightarrow SL(2,\mathbb{C})$ (2) In terms of triangulations of X= 83K into ideal tetrahedra in H13, hyperbolic 3-space - related to reps $\pi_i(K) \to PSL(2,\mathbb{C}) = Isom^+(H/^3)$ Computing A(x,y) is usually difficult requiring elimination of variables in large systens of polynomial eqns (- Gröbner bases.

For (1), one starts with a presentation of TT, interes of g generators - in practice this works only of g=2 (and relns not too long) For (2), one starts with a triangulation of \$3. K into t ideal tetrahedra and this works in practice any if t ≤ 8 (or so, depending on complexity of ems) Our new method which uses Puiseux espansions depends an some other quantities being small; (i) d = degree of the Shape field (e.g. d = 12) (ii) degree (A, x) and degree (A, y) e.g. A(x,y) 16 × 80 or so.

2,

non 2-bridge 8-crossing knots						
Rolfson	Convey	#tet	#gen	dej	Sym	
85	3,3,2	8	2	5	D2	
8,0	3,21,2	9	2	11	Z2	
815	21,21,2	1)	2	7	D_2	
816	•2.20	П	3	5	Z2	
8,7	•2 •2	12	3	18	22	
8,8	8*	13	3	4	\mathcal{D}_{8}	
8,9	3,3,2-	non-hyperbolic				
ocs	3,21,2-	5	2	5	Z _s	
821	21,21,2-	7	2	4	De	

٤.

Some Turk's Head knots

The gluing equations 5. If $X = S^{3} \setminus K = \bigcup_{k=1}^{t} \Delta_{k}$, each $\Delta k =$ an ideal tetrahedron in H³ = hyperbolic 3-space. $\cong \mathbb{C} \times (\circ, \infty)$ Up to isometry, $\Delta_{k} \cong \Delta(z)$ with vertices at $0, 1, 2, \infty, z \in \mathbb{C}$ Vol (An) = D(2), the Block-Wigner dilog. $(\$ \pi m(A) = \sum D(d_j), \text{ certain } d_j \in \overline{\mathbb{Q}})$ The continatories of the triangulation lead to the gluing eques $f_{j} = TT z_{j}^{a_{ij}} (1-z_{j})^{b_{ij}} = 1, \quad i = 1, ..., \xi + 2$ where $f_j = 1$ (j ≤ t) are "edge" spus e It+1= 1, ft+2=1 are the longitude" & "maridian" We "deform" the last two eques to fe+1 = x, f6+2 = y and then eliminate Z1, ..., Zf from the resulting. system trobtin A(x,y) E Z [x,y]

The "Puiseux" meturd.

(1) Find the geauctric solu of (G) (with x=y=1), say $z_j = z_j \in \mathbb{C}$ with $Im(x_j) > 0$. The dj are algebrain and Sh= Q(x1,...,x4) is the shape field. - use Snap Pea (Weeks) or Snap (Good Man et al) (2) Write y= 1+ e and from the solar of A(x, 1+0) = 0 is $\chi = 1 + \sum_{k=1}^{\infty} \zeta_k s^k$ (no ramification by Neumann-Eaguer). Indeed, using their proof, he shapes Z; also satisfy $z_j = d_j + \sum_{k=1}^{\infty} c_{jk} d^k \quad (j=1,...,t).$ (3) Compute the Ck, Gik for h= 1, 2, 3, ..., N by Eteratively substituting in the eques (G) and soliring a system of licen eque for

6

(Cok, Cik, ..., Cth)

The Cik are all in Shr.

(4) Basic knien algebra method
Assuming
$$A(x, y) = \sum_{\substack{0 \le i \le d_1 \\ 0 \le j \le d_2}} a_{ij} x^i y J$$
, $(a_{ij} \in \mathbb{Z})$

with
$$d N \ge (d_1+1)(d_2+1)$$
 (usually =)
 $d = deg(Cu_{00})$ where $Cu_{00} = OP(C_{01}, Co_2, Co_3, ...) \le Sh$.

Variants:
(2) Not uncommany,
$$d_1 = deg(A, x) = d = deg(A)$$
.
Then
 $A(x,y) = Co(y) TT(x - X(y)) + O(a^{N+1})$
 $j=1$
 $= \sum_{k=0}^{d} x^i C_i(y), y = 1+A$.

So e.g. $Tr(X(a)) = -\frac{C_1(y)}{G(y)} = -\frac{C_1(y)}{G(1+a)}$, a ratiand for of a obtainable by Caltinued Fronties if N > da. Sincilarly for Tr(X(a)) & hence $C_i(1+a)$, by Newton's formulae.

,

9.	
$\frac{\xi_{xamples:}}{8^{*}=8_{18}} = 13, g=3, d=4 \qquad iven d_{1}=d \\ = 4 \qquad iv$	
12n706 $t=14$, in fact $d_j = 8[S_4]+6[S_6]$ so $Sh = Q(\sqrt{-1},\sqrt{-3})$ but $C_{er} = Q(\sqrt{-1})$ using "hints" $\rightarrow A(x,y)$ 12 x 42 ht 60120	
$10^{+} = 10_{123} \qquad t = 18, g = 3, d = 4 \qquad (Sh = Q(S_{S}))$ $\rightarrow A(x,y) \ 8 \times 40 \ ht \ 18870$ $4(x,y) \ 8 \times 40 \ ht \ 18870 = 8 = \log(A,x)$ $U_{Sing} (4)(a) \ Since \ deg(Sh(2,0)) = 8 = \log(A,x)$	- 22
14 [#] = 140 19470 t=28, g=3, d=b -> A(x,y) 12x84 ht = 14859035072 Have not enough tene to find A(x,y) but	
enopute find $P_j(z_j, y)$ for call shape $j=1,,t$ and hence a 2nd soln of dague 6 at $x=-1, y=1$ Coultime and use $\Theta(b)$	

10 16 = 16a 379778 t= 32, g=3, d=8 -> ACX, Y) 8×64 ht 1264620800 netrof @ nice d, = d. t=42, g=3, d=8 20* -> A(x,y) 8×80 ht 321926321690050 method (4)(b) using deg Sh = 8 and dag Sh(2,0) = 8. doder, : t=46, 9=4, d=4 but can show day (A, x) ≥ 24 so the Puiseux method runs art of steam However - as domaistrated at Bronnande culavaic A(x⁵, y) = product of 10 polyo in Q(S,)[x, y] degree 16 × 16 -> A(x,y) 32x160 with neight = 4023337515568512088166569759384

8* Apoly

-

0	0	1	0	0
0°	0	-12	0	0
0	0	54	0	0
0	0	-112	0	0
0	-2	109	-2	0
0	12	-64	12	0
0	-14	74	-14	0
0	-28	-100	-28	0
1	68	106	68	1
0	-28	-100	-28	0
0	-14	74	-14	0
0	12	-64	12	0
0	-2	109	-2	0
0	0	-112	0	0
0	0	54	0	0
0	0	-12	0	0
0	0	1	0	0

Page 2

10" A-polynomial

•	0	0	0	0	1	0	0	0	0	
	0	0	0	0	-25	0	0	0	0	
	0	0	0	0	270	0	0	• • • 0	0	
	0	0	0	0	-1640	0	0	0	0	·
	0	0	· . 0	0	6075	0	0	0	0.	
	0	0	0	4	-13710	. 4	0	0	0	
	0	0	0	-75	16850	-75	0	0	0	
	0	0	0	585	-5215	585	0	0	0	
	0	0	.0	-2400	-11290	-2400	0	0	0	
	0	0	0	5125	7275	5125	0	0	0	
	0	0	6	-3353	9720	-3353	6	0	0	
	0	0	-75	-8250	-7400	-8250	-75	0	0	
	0	0	360	17470 ⁻	-4740	17470	360	0	0	
	0	0	-755	-4900	2515	-4900	-755	0	0	
	0	0	275	-11425	-725	-11425	275	0	0	
	0	4	1099	-578	6848	-578	1099	4	0	
	0	-25	1475	17200	-4950	17200	1475	-25	0	
	0	45	-10910	-7565	-9320	-7565	-10910	45	0	
	0	5	14080	-5740	18870	-5740	14080	- 5	0	
	0	-150	400	7600	-1250	7600	400	-150	0	
	1	242	-11914	-7396	-16312	-7396	-11914	242	1	
•	0	-150	400	7600	-1250	7600	400	-150	0	
	0	5	14080	-5740	18870	-5740	14080	5	0	
	0	45	-10910	-7565	-9320	-7565	-10910	45	0	
	0	-25	1475	17200	-4950	17200	1475	-25	0	
	0	4	1099	-578	6848	-578	1099	4	0	
	0	0	275	-11425	-725	-11425	275	0	0	
	0	0	-755	-4900	2515	-4900	-755	0	0	
	0	0	360	17470	-4740	17470	360	0	0	
	0	0	-75	-8250	-7400	-8250	-75	0	0	
	0	0	6	-3353	9720	-3353.	6	0	0	
	0	0	0	5125	7275	5125	0	0	0	
	0	0	0	-2400	-112 9 0	-2400	0	0	0	
	0	0	0	.585	-5215	585	0	0	0	
	0	0	0	-75	16850	-75	0	0	. O	
	0	0	0	· 4	-13710	4	. 0	0	0	
	0	0.	0	0	6075	0	. 0.	. 0	0	
	0	0	· 0	0	-1640	0	0	0	0	
	0	0	0	0	270	0	0	0	0	