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Abstract

In this paper, we derive a number of explicit lower bounds for rational approxima-
tion to certain cubic irrationalities, proving, for example, that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

4
q−2.5

for any nonzero integers p and q. A number of these irrationality measures improve
known results, including those for 3

√
5, 3
√

7 and 3
√

11. Some Diophantine consequences
are briefly discussed.

1 Introduction

If θ is an algebraic number of degree n, then Liouville’s theorem states that∣∣∣∣θ − p

q

∣∣∣∣ > c(θ) q−n

for any nonzero integers p and q, where c(θ) is an effective constant. Improvements upon
this have implications for the study of Diophantine equations. A stronger inequality was
proven by Roth [18], who deduced that, if ε > 0, then∣∣∣∣θ − p

q

∣∣∣∣ > c(θ, ε) q−2−ε

for nonzero p, q ∈ Z, where the constant c(θ, ε) is, unfortunately, not computable. An
effective improvement upon Liouville was, however, obtained by Baker [1], [2] for specific
classes of algebraic numbers. In particular, he showed that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 10−6q−2.955 (1)

for all positive integers p and q, whence solutions of the equation

x3 − 2y3 = u

satisfy
max{|x|, |y|} ≤

(
3 · 105 · |u|

)23
.

By a more detailed analysis of certain Padé approximants involved in Baker’s results,
Chudnovsky [7] derived some effective improvements upon them. For example, he showed
that ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c q−2.42971 (2)
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for p, q ∈ Z with q 6= 0 and c some effectively computable constant. The actual value
of c, however, was not given. In 1986, Easton [8] produced explicit versions of a number
of Chudnovsky’s bounds for cubic irrationalities. Analogous to (1) and (2), he gave the
inequality ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 2.2× 10−8 q−2.795 (3)

for integers p and q (q 6= 0).
In [4], while studying simultaneous approximation to algebraic numbers, the author

derived a result on approximation to a single algebraic number that is asymptotically equiv-
alent to the aforementioned work of Chudnovsky. This follows work of Rickert [16] and, in
the one dimensional case, is essentially Theorem 2 of Heimonen, et al [10]. For the pur-
poses of obtaining explicit bounds, this new approach has some computational advantages.
Critical to Easton’s estimates are upper and lower bounds due to McCurley [13] upon the
function

θ(x, 3, 2) =
∑
p≤x

p≡2mod3

log p

where the sum is over prime p. We obtain stronger results primarily because we are able to
avoid consideration of θ(x, 3, 2) and instead utilize sharper bounds due to Schoenfeld [19]
(see also Rosser and Schoenfeld [17]) for the function

θ(x) =
∑
p≤x

log p.

Applying these techniques yields, analogous to (1) and (3), the inequality∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1
4
q−2.5 (4)

for positive integers p and q, which implies that∣∣x3 − 2y3
∣∣ ≥ √x

for all nonnegative integers x and y. In the following, we describe the computations necessary
to derive a slightly stronger version of (4) and related results for other cubic irrationalities.
In particular, we prove

Theorem 1.1 Suppose that a and N are positive integers satisfying

8
(√

N +
√
N + a

)2

> a4 κ(a)3,

where

κ(a) =


3
√

3 if ord3 a = 0√
3 if ord3 a = 1

1 if ord3 a > 1

and that p and q are any positive integers. Then we have∣∣∣∣ 3

√
1 +

a

N
− p

q

∣∣∣∣ > (4 κ(a) N)−1 (104 q)−λ
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where

λ = 1 +
log
(
κ(a)

2

(√
N +

√
N + a

)2
)

log
(

2
a2κ(a)

(√
N +

√
N + a

)2
) .

We apply this result to produce explicit measures of irrationality for certain algebraic num-
bers of the form 3

√
m with m ∈ Z, including those considered by Chudnovsky. Specifically,

we show

Corollary 1.2 If p and q are positive integers, then we have∣∣∣∣θ − p

q

∣∣∣∣ > c(θ) q−λ(θ)

where we may take θ, c(θ) and λ(θ) as follows:

θ c(θ) λ(θ) θ c(θ) λ(θ) θ c(θ) λ(θ)
3
√

2 0.25 2.47 3
√

26 0.03 2.53 3
√

63 0.02 2.43
3
√

3 0.39 2.76 3
√

28 0.03 2.52 3
√

65 0.02 2.43
3
√

5 0.29 2.80 3
√

30 0.10 2.72 3
√

66 0.04 2.50
3
√

6 0.01 2.35 3
√

31 0.14 2.97 3
√

67 0.06 2.56
3
√

7 0.08 2.70 3
√

37 0.01 2.27 3
√

68 0.08 2.60
3
√

10 0.15 2.45 3
√

39 0.09 2.21 3
√

70 0.12 2.68
3
√

11 0.22 2.91 3
√

42 0.13 2.46 3
√

76 0.10 2.54
3
√

12 0.28 2.95 3
√

43 0.01 2.32 3
√

78 0.03 2.60
3
√

13 0.35 2.86 3
√

44 0.22 2.87 3
√

83 0.10 2.72
3
√

15 0.19 2.54 3
√

52 0.26 2.97 3
√

84 0.37 2.92
3
√

17 0.01 2.22 3
√

58 0.12 2.71 3
√

90 0.09 2.41
3
√

19 0.02 2.30 3
√

60 0.08 2.61 3
√

91 0.01 2.29
3
√

20 0.01 2.23 3
√

61 0.06 2.56
3
√

22 0.08 2.31 3
√

62 0.04 2.50

Here, we have restricted ourselves to values of 3
√
m with 2 ≤ m ≤ 100 which generate

distinct cubic fields. These results sharpen those of Easton [8] in all cases and include new
effective irrationality measures, in the range considered by Chudnovsky [7], for 3

√
5, 3
√

7 and
3
√

11. While the techniques we utilize are applicable in a somewhat more general setting,
we confine our attention to the special situation of cubic irrationalities for simplicity’s sake.
A different and much more general approach in this case is via linear forms in logarithms
where Baker and Stewart [3] derived an explicit improvement upon Liouville’s Theorem for
all algebraic numbers of the form 3

√
m with m not a cube. In the examples we deal with,

however, the resulting irrationality measures are much stronger by our method. In section
6, we will briefly discuss applications of these results to the solution of certain Diophantine
equations, in particular, to those corresponding to simultaneous figurate numbers.

2 Some Technical Preliminaries

We begin, following Rickert [16], by constructing the diagonal Padé approximants to the
function (1 + ax)1/3, for a any positive integer. These are produced via consideration of the

3



contour integral

Il(x) =
1

2πi

∫
γ

(1 + zx)k+1/3

(z − la)(z(z − a))k
dz (0 ≤ l ≤ 1) (5)

where |x| < 1/a and γ is a closed positively oriented contour enclosing both 0 and a.
Cauchy’s theorem, then, implies that

Il(x) = pl0(x) + (1 + ax)1/3 pl1(x) (0 ≤ l ≤ 1)

where (see Lemma 3.3 of [16]) we have

plm(x) = a−2k
klm∑
r=0

(−1)mr+klm
(
k + 1

3

r

) (
2k − r − 1
klm − r

)
(ax)r (1 + axm)k−r (6)

with klm = k−1+δlm for δlm the Kronecker delta and 0 ≤ l,m ≤ 1. By substituting x = 1/N
(for N > a a positive integer), we obtain a sequence of “good” rational approximations to
(1+a/N)1/3 and can utililize the following lemma to find an explicit measure of irrationality.

Lemma 2.1 Suppose θ is real and that there exist positive real numbers c, d, C and D
(D > 1) such that for each positive integer k, we can find integers plmk (0 ≤ l,m ≤ 1) with
nonzero determinant,

|plmk| ≤ c Ck (0 ≤ l,m ≤ 1)

and
|pl0k + pl1kθ| ≤ d D−k (0 ≤ l ≤ 1).

Then we may conclude that∣∣∣∣θ − p

q

∣∣∣∣ > (3 c C (max{1, 1.5d})
log(C)
log(D)

)−1

q−1− log(C)
log(D)

for all positive integers p and q.

Proof : This is a slight modification of a special case of Lemma 2.1 of [16]. 2

To apply this, for each positive integer k, we need to bound the quantities |Il(1/N)| and
|plm(1/N)| from above and to find a rational Ψk such that Ψk plm(1/N) is an integer for
0 ≤ l,m ≤ 1. Regarding the first of these problems, we prove

Lemma 2.2 If 0 ≤ l ≤ 1 and N ≥ 4a, then

|Il(1/N)| ≤
(
N
(√

N +
√
N + a

)2
)−k

.

Proof : Arguing as in Lemma 3.2 of [4], we have

|Il(1/N)| =
√

3
2π

N−2k

∫ ∞
0

xk+1/3dx

(x+ 1 + al/N) ((x+ 1) (x+ 1 + a/N))k
. (7)

For 1 ≤ k ≤ 10, we check, subject to N ≥ 4a, that

|Il(1/N)| ≤
(
N
(√

N +
√
N + a

)2
)−k

.
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If k > 10, then, noting that ∣∣∣∣ x1/3

x+ 1

∣∣∣∣ ≤ 3
√

4
3

for x ≥ 0, (7) implies that

|Il(1/N)| ≤
√

3 3
√

4
6π

N−2k

∫ ∞
0

(
x

(x+ 1) (x+ 1 + a/N)

)k
dx.

We split this last integral into∫ 4

0

(
x

(x+ 1) (x+ 1 + a/N)

)k
dx

and ∫ ∞
4

(
x

(x+ 1) (x+ 1 + a/N)

)k
dx

and estimate them separately. The first of these is less than

4

 N(√
N +

√
N + a

)2


k

.

The second is no greater than∫ ∞
4

(
x

(x + 1)2

)k
dx <

∫ ∞
5

x−kdx

and since k > 10, this is less than 5−k. From N ≥ 4a, we have

N(√
N +

√
N + a

)2 ≥
4

9 + 4
√

5
>

1
5

whence

|Il(1/N)| ≤ 5
√

3 3
√

4
6π

(
N
(√

N +
√
N + a

)2
)−k

for k > 10, and the result follows. 2

We also have

Lemma 2.3 If 0 ≤ l,m ≤ 1 and N ≥ 4a, then

|plm(1/N)| ≤ 1.16


(√

N +
√
N + a

)2

a2N


k

.
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Proof : The function plm(x)(1+amx)1/3 is given by the integral (5) with the contour changed
so as to enclose the integer am but not a(1−m). We may therefore write

plm(1/N)
(

1 +
am

N

)1/3

=
1

2πi

∫
Γm

(1 + z/N)k+1/3

(z − la)(z(z − a))k
dz (0 ≤ l,m ≤ 1)

where Γ0 and Γ1 are defined by

|z| =
√
N2 + aN −N := c0

and
|z − a| = N + a−

√
N2 + aN := c1

respectively. It follows that

pl0(1/N) =
1

2π

∫ π

−π

(
c0e

iθ

c0eiθ − la

) (
1 + c0e

iθ

N

)k+1/3

(c0eiθ(c0eiθ − a))k
dθ (0 ≤ l ≤ 1)

and the fact that ∣∣c0eiθ − a∣∣ ≥ c1 > c0

implies

|pl0(1/N)| ≤
(

1 +
c0
N

)1/3
(

1 + c0/N

c0c1

)k
.

Arguing similarly and using
c0 ≤

∣∣c1eiθ + a
∣∣ ≤ c1 + a

yields

|pl1(1/N)| ≤ c1
c0

(
1 +

c1
N + a

)1/3
(

max
−π≤θ≤π

∣∣∣∣∣ 1 + c1e
iθ+a
N

c1 (c1eiθ + a)

∣∣∣∣∣
)k

.

By calculus, this is no greater than

c1
c0

(
1 +

c1
N + a

)1/3(1 + c0/N

c0c1

)k
.

Since

1 + c0/N

c0c1
=

(√
N +

√
N + a

)2

a2N

and assuming N ≥ 4a, we have

max

{(
1 +

c0
N

)1/3

,
c1
c0

(
1 +

c1
N + a

)1/3
}

=
c1
c0

(
1 +

c1
N + a

)1/3

< 1.16

and the result obtains. 2
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3 Arithmetic Properties of plm(1/N)

Define, for positive integers j and k, the intervals Ijk by

Ijk =
[
k + 1
j

,
3k − 4
3j − 1

]
.

Also, for 0 ≤ s ≤ k, let

G(s) = gcd
{

3[3s/2]

(
k + 1/3

r

) (
2k − r − 1
s− r

)
: r = 0, 1, . . . s

}
where this latter expression is well defined since Lemma 4.2 of [7] gives that

3[3s/2]

(
k + 1/3

r

)
∈ Z

for 0 ≤ r ≤ s and k ∈ N. If we let

Gk = gcd {G(k), G(k − 1)}

then we have

Lemma 3.1 Suppose that j and k are positive integers with 1 ≤ j ≤
√
k/3. Then if p is

prime with p ∈ Ijk, it follows that p divides Gk.

Proof : We prove that such primes divide G(k), the case with G(k− 1) being similar. From
p ∈ Ijk, we have

(3j − 1)
(
k − 1
3k − 4

)
≤ k − 1

p
≤ j

(
k − 1
k + 1

)
and thus

{
k−1
p

}
> 2/3, where {x} denotes the fractional part of x. Since 1 ≤ j ≤

√
k/3,

one may conclude that p >
√

3k + 1 and so, if 0 ≤ r ≤ k,

ordp

(
2k − r − 1
k − r

)
=
{
k − 1
p

}
+
{
k − r
p

}
−
{

2k − r − 1
p

}
.

If p does not divide
(

2k−r−1
k−r

)
, then{

k − r
p

}
< 1−

{
k − 1
p

}
whence, since

{
k−1
p

}
> 2/3 and p does not divide k,{

r

p

}
≥
{
k

p

}
+
{
k − 1
p

}
+

1
p
− 1. (8)

By Lemma 4.5 of [7], using p >
√

3k + 1, we have

ordp

(
k + 1/3

r

)
=
{
k − r − θ

p

}
+
{
r

p

}
−
{
k − θ
p

}

7



where θ = (pq − 1)/3 for 1 ≤ q ≤ 2 satisfying pq ≡ 1 mod 3. Inequality (8), then, implies
that {

r

p

}
−
{
k − θ
p

}
≥
{
k − 1
p

}
+

1
p
− 2

3
− 1

3p
.

Since this is greater than 0, we have ordp
(
k+1/3
r

)
≥ 1 as desired. 2

We use this result to show

Lemma 3.2 Gk >
1

5563 2k for k ≥ 1.

Proof : Suppose, first, that k ≥ 220000. From Schoenfeld [19], we have that

θ(x) =
∑
p≤x

log p < 1.000081x (x > 0)

where the sum is over prime p. For analogous lower bounds upon θ(x), we utilize Corollary
2* of [19]. Define

Ll,k =
∑
p∈Ilk

log p.

It follows, then, that
L1,k > 0.49584k− 1.99458,

L2,k > 0.09728k− 0.79643

and
L3,k > 0.03943k− 0.49706.

We derive similar inequalities for Ll,k for 4 ≤ l ≤ 18 and, summing them, may thus apply
Lemma 3.1 to conclude that

logGk > 0.69493k− 5.58728 > (log 2)k

so that Gk > 2k for k ≥ 220000.
For 1 ≤ k ≤ 500, we compute Gk directly from the definition and note that in all cases

Gk/2k >
1

5563
(9)

where Gk/2k is minimal for k = 105. For each k with 500 < k ≤ 5000, we compute

Pk =
∏

1≤j≤
√
k/3

∏
p∈Ijk

p

and find that
Pk/2k >

1
5563

(10)

with only 222 exceptions, the last being with k = 1581. For each of these, we calculate Gk
and check that, again, inequality (9) is satisfied.

To tackle the cases with 5000 < k < 220000, we define

Qk,r =
∏

1≤j≤
√
k/3

∏
k+1
j ≤p≤

k+r
j

p (r ≥ 1)

8



and note that
Pk+l ≥ Pk/Qk,r

for 1 ≤ l ≤ r. This observation enables to reduce the roughly 215000 possibilities for k to a
few hundred. For example, if we calculate P100000, we find that

log
(
P100000/2100000

)
> 4582

while
log (Q100000,798) < 4587

so that (10) (and hence (9)) is satisfied for 100000 ≤ k < 100798. Somewhat crudely, this
permits us to check every 20th value for k with 5000 < k ≤ 9000, every 50th k for 9000 <
k ≤ 15000, every 100th k for 15000 < k ≤ 26000, every 200th k for 26000 < k ≤ 38000,
every 300th k for 38000 < k ≤ 63000, every 500th k for 63000 < k ≤ 134000 and every
1000th k for 134000 < k ≤ 220000. Performing these calculations, using Maple V, and
verifying inequality (10) in all cases completes the proof. 2

We note that Lemma 3.2 may be improved somewhat, since one may in fact show that

lim
k→∞

G
1/k
k = 3

√
3 e

−π
√

3
6 = 2.09807 . . . .

4 Proof of Theorem 1.1 and Corollary 1.2

We first note that the condition

8
(√

N +
√
N + a

)2

> a4 κ(a)3 (11)

implies, since a and N are positive integers, that N ≥ 4a. From (6) and the observation
that 3[3r/2]

(
k+1/3
r

)
is an integer for 0 ≤ r ≤ k, if we let

Ψk = Nk a2k 3max{[3k/2]−k ord3a,0} G−1
k ,

then, setting
plmk = Ψk plm(1/N),

we have that plmk ∈ Z for 0 ≤ l,m ≤ 1. Further, Lemma 3.4 of [16] gives that det(plmk) is
nonzero for each positive integer k. Lemmas 2.3 and 3.2 imply, then, that

|plmk| ≤ 6454
(
κ(a)

2

(√
N +

√
N + a

)2
)k

.

Since Lemmas 2.2 and 3.2 yield∣∣∣∣pl0k + pl1k
3

√
1 +

a

N

∣∣∣∣ ≤ 5563
(

2
a2κ(a)

(√
N +

√
N + a

)2
)−k

we may apply Lemma 2.1 to conclude that∣∣∣∣ 3

√
1 +

a

N
− p

q

∣∣∣∣ > c q−λ

9



for positive integers p and q, where λ is as in the statement of the theorem and

c−1 = 9681 (8344.5)λ−1κ(a)
(√

N +
√
N + a

)2

.

Utilizing N ≥ 4a yields
c−1 < 4 κ(a) N 104λ

which completes the proof.
We illustrate the proof of Corollary 1.2 with an effective irrationality measure for 3

√
2.

Taking N = 125 and a = 3 (so that κ(a) =
√

3) in Theorem 1.1 implies that∣∣∣∣45 3
√

2 − 4p
5q

∣∣∣∣ > (500
√

3
)−1

(50000q)−λ

where

λ = 1 +
log
(√

3
2

(
253 + 80

√
10
))

log
(

2
9
√

3

(
253 + 80

√
10
)) = 2.45758 . . . .

It follows that ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > (2.448× 1014
)−1

q−λ

for q ≥ 1, so we have ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1
4
q−2.47 (12)

provided q ≥ 101111.
To check the cases 1 ≤ q < 101111, we note that if p and q fail to satisfy (12), then p/q

must be a convergent in the continued fraction expansion to 3
√

2 (see Theorem 9.7 of [11]).
Computing the first 3000 such convergents using Maple V, we have that only the first 2208
have denominators < 101111. If we denote the ith convergent to 3

√
2 by pi/qi and the ith

partial quotient by ai, then (see Theorem 9.6 of [11])∣∣∣∣ 3
√

2− pi
qi

∣∣∣∣ > 1
(ai+1 + 2) q2

i

whence, if pi/qi does not satisfy (12), we require

ai+1 > 4 q0.47
i − 2. (13)

Checking that the first 100 convergents satisfy (12) and noting that q101 > 1056, from (13)
we need only show that aj < 1026 for 102 ≤ j ≤ 2209 to reach the desired conclusion. Since
the largest value for aj in the range in question is attained by a1991 = 12737, we conclude
as stated.

We argue in a similar fashion to handle the other examples in Corollary 1.2. In each
case, to obtain the bounds cited in Corollary 1.2, we are led to consider no more than
3100 convergents in the related continued fraction expansions and find no partial quotients
exceeding 49968 (the 813th partial quotient to 3

√
5). In the following table, we list the

10



choices of a and N for Theorem 1.1 which generate the examples in Corollary 1.2:

θ a,N θ a,N θ a,N
3
√

2 3, 53 3
√

26 1, 26 3
√

62 1, 31
3
√

3 1, 23 3
√

28 1, 33 3
√

63 1, 63
3
√

5 402657, 5(140145707)3 3
√

30 1, 32 3
√

65 1, 43

3
√

6 5, 6(257)3 3
√

31 15, 31(7)3 3
√

66 1, 2(4)2

3
√

7 15, 7(23)3 3
√

37 1, 37(3)3 3
√

67 3, 43

3
√

10 9, 14(28)2 3
√

39 1, 233 3
√

68 1, 42

3
√

11 1887, 11(11251)3 3
√

42 1, 6(2)3 3
√

70 3, 2(4)2

3
√

12 13, 4(38)3 3
√

43 1, 73 3
√

76 35, 2(2353)3

3
√

13 14, 13(37)3 3
√

44 9, 73 3
√

78 5, 78(11)3

3
√

15 1, 3(2)3 3
√

52 3, 13 3
√

83 19, 2533

3
√

17 1, 17(7)3 3
√

58 3, 29 3
√

84 2927, 1482733

3
√

19 1, 83 3
√

60 1, 15 3
√

90 1, 10(2)3

3
√

20 1, 193 3
√

61 3, 61 3
√

91 1, 91(2)3

3
√

22 3, 7(14)2

5 Applicability of Theorem 1.1

If one is content with effective irrationality measures, rather than explicit, then the best
result in our situation, due to Chudnovsky [7] (see also [4] and [10]), is essentially Theorem
1.1 with the constant 2 appearing in the expression for λ replaced by 3

√
3 e−π

√
3/6 (which

is roughly 2.098 . . . ). This implies new irrationality measures of the form∣∣∣∣ 3
√

5 − p

q

∣∣∣∣ > c1 q
−2.75567

∣∣∣∣ 3
√

7 − p

q

∣∣∣∣ > c2 q
−2.66974

∣∣∣∣ 3
√

11 − p

q

∣∣∣∣ > c3 q
−2.87124

and ∣∣∣∣ 3
√

41 − p

q

∣∣∣∣ > c4 q
−2.99342

where c1, c2, c3 and c4 are effectively computable constants. The first three of these cor-
respond to the choices of a and N given in the previous table while the last follows from
taking a = 51 and N = 41(29)3. Theorem 1.1 also yields the result∣∣∣∣ 3

√
57 − p

q

∣∣∣∣ > (2.2× 1025
)−1

q−2.99738

for integers p and q (q 6= 0), by taking a = 26 and N = 1273. We omit this from Corollary 1.2
since it requires a rather more detailed analysis of the related continued fraction expansion
to reduce the coefficient 2.2× 1025 to something more pleasant.
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To generate these examples, we consider convergents from the continued fraction expan-
sion to 3

√
m. If we are able to find a convergent p/q satisfying, roughly,∣∣∣∣ 3

√
m − p

q

∣∣∣∣ < m−
5
12 q−

9
4

then we may apply Theorem 1.1 with

1 +
a

N
=

p3

mq3
or

mq3

p3

to deduce an irrationality measure for 3
√
m. In each of the cases dealt with in Corollary

1.2, such an approximation occurs among the first 20 convergents. For other examples,
however, we need to search somewhat further; for 3

√
200 the 27th convergent is required,

for 3
√

826, the 25th, etc. All in all, we are able to apply these techniques to derive effective
irrationality measures for 42 of the 74 values for 3

√
m which generate distinct cubic fields

with 2 ≤ m ≤ 100 and for 233 of the 788 such 3
√
m with 2 ≤ m ≤ 1000. The smallest 3

√
m

for which we cannot apparently utilize Theorem 1.1 is with m = 14, where none of the first
2000 convergents yield the desired approximation.

If we define N(x) to be the number of positive integers m ≤ x for which Theorem 1.1
yields an effective improvement upon Liouville’s Theorem for 3

√
m, then we may readily

show that
N(x)� x7/12

for x ≥ 2. To see this, we note that if M is any positive integer and a ∈ N satisfies
a ≤ 2

3M
3/4, then we may apply Theorem 1.1 to produce nontrivial measures of irrationality

for both 3

√
M3+a
M3 and 3

√
M3

M3−a . This implies, in turn, nontrivial measures for all 3
√
m with∣∣M3 −m

∣∣ ≤ 2
3M

3/4, so that we have

N(x) ≥
[x1/3]−1∑
M=2

2
[
2M3/4/3

]
whence, since ∑

M≤x
M3/4 =

4x7/4

7
+ O

(
x3/4

)
the result obtains.

6 Applications to Diophantine Equations

By application of Theorem 1.1 and Corollary 1.2, we are able to show

Theorem 6.1 If x and y are integers, then∣∣x3 − 2y3
∣∣ ≥ max {|x|, |y|}0.53

,∣∣x3 − 3y3
∣∣ ≥ max {|x|, |y|}0.24

and ∣∣x3 − 6y3
∣∣ ≥ max {|x|, |y|}0.65

where the last inequality holds unless |x| = 467 and |y| = 257.
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Proof : We note that the above inequalities are trivial if min {|x|, |y|} ≤ 1. Otherwise, we
consider the cases ∣∣x− 3

√
my
∣∣ < 1

3
√
my

and ∣∣x− 3
√
my
∣∣ ≥ 1

3
√
my

separately and show that, for m = 2 and m = 3, the inequalities follow directly from
Corollary 1.2 and the factorization

x3 −my3 = (x− 3
√
m)
(
x2 + 3

√
mxy + 3

√
m2y2

)
.

In the case m = 6, we can utilize Theorem 1.1 and a slightly more detailed analysis of the
continued fraction expansion to 3

√
6 to show that∣∣∣∣ 3
√

6 − p

q

∣∣∣∣ > 10 q−2.35

provided q > 257. Checking the values 2 ≤ q ≤ 256 yields the stated conclusion. 2

We apply these inequalities to solve a trio of problems on simultaneous figurate numbers.
Let us define, for m and n integers, the sequences

Qm =
m(m+ 1)(2m+ 1)

6

and

Tn =
n(n+ 1)(n+ 2)

6
.

The first of these is just the sum of the first m squares and is known as the mth square
pyramidal number, while the second is the sum of the first n triangular numbers and is called
the nth tetrahedral number. They measure the number of spheres stacked in a pyramid with
a square or triangular base, respectively. We show

Theorem 6.2 If m,n and r are positive integers, then

(i) if Qm = Tn, then m = n = 1

(ii) if Qm = r3, then m = r = 1

and
(iii) if Tn = r3, then n = r = 1.

None of these results are new; in fact, parts (ii) and (iii) of the above Theorem date back
to Lucas [12] and Moret-Blanc [14] (1881) while part (i) was stated as a problem in the
American Mathematical Monthly in 1940 and solved by Finkelstein (Ray Steiner) [9] in
1966, using a variety of number theoretical techniques. Independently, Beukers and Top [5]
in 1988 proved (i) using an inequality similar to those in Theorem 6.1. Following [5] and [9],
we may change variables so that solutions in integers to equations (i), (ii) or (iii) correspond
to integral solutions to the systems of equations

(a) x3 − 2y3 ∈ {−2,−6,−10,−30} ,
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(b) x3 − 3y3 ∈ {1, 3}

or
(c) x3 − 6y3 ∈ {1, 2, 3, 6}

respectively. For example, if Qm = r3, then

2m(2m+ 1)(2m+ 2) = 3(2r)3

whence, taking u = 2m+ 1 and v = 2r, we have u3 − u = 3v3. Therefore, either u = w3 or
u = 3w3, the first of which leads to the equation

x3 − 3y3 = 1

with x = w2 and y = v/w, while the second yields

x3 − 3y3 = 3

for x = 3w2 and y = v/w. Applying Theorem 6.1 to the system of equations (a) implies that
all solutions satisfy max{|x|, |y|} ≤ 612. Similarly, all solutions to (b) satisfy max{|x|, |y|} ≤
97 while all those to (c) have max{|x|, |y|} ≤ 15. Checking beneath these bounds, we find
that the only integer solutions (x, y) to (a) are (0, 1), (−2,−1), (−4,−3) and (−2, 1), while
those to (b) and (c) are given by (0,−1), (1, 0) and (3, 2), and by (0,−1), (1, 0) and (2, 1),
repectively. Working back through our various changes of variables, these imply that the
integral solutions to Qm = Tn are given by (m,n) = (−2,−3), (−1,−2), (−1,−1), (−1, 0),
(0,−2), (0,−1), (0, 0) and (1, 1). Similarly, the integral solutions to Qm = r3 are given by
(m, r) = (−2,−1), (−1, 0), (0, 0) and (1, 1) while those to Tn = r3 are (n, r) = (−3,−1),
(−2, 0), (−1, 0), (0, 0) and (1, 1). Theorem 6.2 therefore follows immediately.

7 Concluding Remarks

As previously mentioned, these results may be extended to rather wider classes of algebraic
numbers than those discussed here. We can, for instance, provide explicit bounds for rational
approximation to fourth or sixth roots of rationals in a completely analogous fashion (i.e.
using only bounds from the work of Rosser and Schoenfeld upon the common factors of the
coefficients of the approximating polynomials). For algebraic numbers of higher degree or
of degree five, however, we need to utilize bounds upon primes in arithmetic progressions,
say via recent work of Ramaré and Rumely [15].
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