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Abstract

The author uses irrationality and linear independence measures for certain algebraic
numbers to derive explicit upper bounds for the solutions of related norm form equa-
tions. The Lenstra-Lenstra-Lovász lattice basis reduction algorithm is then utilized to
show that the integer solutions to

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = ±1

(where K = Q( 4
√
N4 − 1, 4

√
N4 + 1)) are given by (x, y, z) = (0, 0,±1), (±1, 0,±N)

and (0,±1,±N), for 5 ≤ N ≤ 100.

1 Introduction

There has been a great deal of recent work published on techniques for finding the integer
solutions of certain Diophantine equations. Most of the effective results in this area rely
upon Baker’s theory of linear forms in logarithms (for surveys of applications of this method
to diophantine problems, the reader is directed to [19] and [22]). Via this approach, for
instance, it is possible to find explicit upper bounds for the size of solutions to a given Thue
equation

F (x, y) = m

where F (x, y) ∈ Z[x, y] is, say, an irreducible binary form (of degree ≥ 3) and m is a nonzero
integer. Since these bounds are often extremely large, it is necessary to combine this with
computational techniques from Diophantine approximation in order to fully determine all
solutions (see e.g. [20], [23], [24], [25], [26] and [27]).

In this paper, we restrict our attention to norm form equations of the specific type

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = u (1.1)

for integral u and K = Q( 4
√
N4 − 1, 4

√
N4 + 1). By a theorem of Schmidt [17], these equa-

tions have only finitely many solutions for each fixed N ≥ 2. Further, from work of Győry
and Papp [11] (see also Győry [10] and Kotov [12] ), since[

Q( 4
√
N4 − 1, 4

√
N4 + 1) : Q( 4

√
N4 + 1)

]
= 4

and [
Q( 4
√
N4 + 1) : Q

]
= 4

it follows that we may find effective bounds for solutions to (1.1) through the theory of
linear forms in logarithms. For additional results along these lines, see the papers of Gaál
[7], [8], [9] and Sprindz̆uk [21].
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In [1], Baker gave a technique for solving restricted classes of norm form equations
without using linear forms in logarithms. Instead, he deduced effective lower bounds for the
linear forms dividing the given norms via the method of Padé approximation to binomial
functions. Fel’dman [6] also took this approach and showed how to bound solutions to

NK/Q(x1θ1 + x2θ2 + · · ·+ xmθm) = f(x1, x2, . . . , xm)

where K = Q(θ1, . . . , θm), f is a polynomial in x1, . . . , xm and θ1, . . . , θm are algebraic
numbers satisfying certain approximation properties. Neither author, however, explicitly
solved any particular norm form equations.

Here, we will follow Fel’dman’s exposition closely, deriving, in Section 2, lower bounds
for forms related to

|x 4
√
N4 − 1 + y

4
√
N4 + 1 + z|.

In Sections 3 and 4, we apply these to show, for instance, that solutions to (1.1) with N ≥ 20
satisfy

max{|x|, |y|, |z|} < 106 N5/2 |u|1/6.7.

Through the use of the algorithm of Lenstra, Lenstra and Lovász for lattice basis reduction
(see [13]), we are able to reduce these bounds and solve

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = ±1 (1.2)

for 5 ≤ N ≤ 100, finding that, in each case, all solutions are given by (x, y, z) = (0, 0,±1),
(±1, 0,±N) and (0,±1,±N).

2 Some Diophantine Approximation Results

In [2], following work of Osgood [14], Fel’dman [5] and Rickert [16], we considered the
problem of simultaneously approximating functions of the form

(1 + a0x)s/n, . . . , (1 + amx)s/n

where the ai’s are distinct integers, a0 = 0, |ai| < |x|−1 for 0 ≤ i ≤ m and s and n
are positive, relatively prime integers with s < n. These approximations derive from the
integral (see Rickert [16])

Ii(x) =
1

2πi

∫
γ

(1 + zx)k(1 + zx)s/n

(z − ai)(A(z))k
dz (0 ≤ i ≤ m) (2.1)

where k is a positive integer,

A(z) =
m∏
i=0

(z − ai)

and γ a closed, counter-clockwise contour enclosing the poles of the integrand. From the
Residue theorem,

Ii(x) =
m∑
j=0

pij(x)(1 + ajx)s/n (0 ≤ i ≤ m)
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where the pij(x)’s are polynomials in x with rational coefficients and degree at most k. By
Lemma 3.3 of [16], we have

pij(x) =
∑ (

k + s/n

hj

)
(1 + ajx)k−hjxhj

m∏
l=0
l 6= j

(
−kil
hl

)
(aj − al)−kil−hl (2.2)

where
∑

refers to summation over nonnegative h0, . . . , hm with h0 + · · ·+ hm = k+ δij − 1
for δij the Kronecker delta. Bounding |pij(1/N)| and |Ii(1/N)| and finding, for eack k,
rational Ck such that Ckpij(1/N) is integral, we may deduce lower bounds for simultaneous
rational approximation to the numbers

1, (1 + a1/N)s/n, . . . , (1 + am/N)s/n

through application of

Lemma 2.1 Let θ1, . . . θm be arbitrary real numbers and θ0 = 1. Suppose there exist
positive real numbers l, p, L and P (L > 1) such that for each positive integer k, we can find
integers pijk (0 ≤ i, j ≤ m) with nonzero determinant,

|pijk| ≤ pP k (0 ≤ i, j ≤ m)

and ∣∣∣∣∣∣
m∑
j=0

pijkθj

∣∣∣∣∣∣ ≤ lL−k (0 ≤ i ≤ m).

Then we may conclude that

max
{∣∣∣∣θ1 −

p1

q

∣∣∣∣ , . . . , ∣∣∣∣θm − pm
q

∣∣∣∣} > cq−λ

for all integers p1, . . . , pm and q, where

λ = 1 +
log(P )
log(L)

and
c−1 = 2 m p P (max(1, 2l))λ−1.

Proof : This is a slight modification of Lemma 2.1 of [16]. 2

This result will allow us to derive lower bounds for the moduli of the linear factors of the
norm forms in (1.1). We take s = 1 and n = 4 and consider separately the cases

(1) m = 1, a1 = 2

and
(2) m = 2, a1 = −1, a2 = 1.

Our techniques for finding upper bounds for |pij(1/N)| and |Ii(1/N)| follow from those of
Rickert [16] and, while not asymptotically sharp, are suitable for our purposes. We prove
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Lemma 2.2 If 0 ≤ i, j ≤ m, then
(i) If m = 1 and a1 = 2, then

|pij(1/N)| ≤ 1.43

(
N +

√
2 + 1

N

)1/4(
1 +
√

2 + 1
N

)k
.

(ii) If m = 2, a1 = −1 and a2 = 1, then

|pij(1/N)| ≤ 1.55

(
N
√

3 + 2
N
√

3−
√

3

)1/4(
3
√

3
2

(
1 +

2
N
√

3

))k
.

Proof : (i) We note that pij(1/N)(1 + aj/N)1/4 is given by the same integral as (2.1), only
with the contour changed so as to enclose only the pole corresponding to z = aj , for
0 ≤ j ≤ m. Since a0 = 0 and a1 = 2, it follows that the lemniscate

|z(z − 2)| = 1

splits into two such contours, each, by numerical integration, of length less than 3.709.
Further, on this lemniscate, we have

√
2− 1 ≤ |z|, |z − 2| ≤

√
2 + 1.

These inequalities, together with (2.1) imply that

|pij(1/N)| ≤ 3.709
2π

(
1√

2− 1

)(
1 +
√

2 + 1
N

)1/4(
1 +
√

2 + 1
N

)k
which is less than

1.43

(
N +

√
2 + 1

N

)1/4(
1 +
√

2 + 1
N

)k
.

(ii) This is a special case of Lemma 2.2 in [3] which in turn follows from Rickert’s Lemma
4.1 in [16]. 2

For the integrals Ii(1/N), we have

Lemma 2.3 If 0 ≤ i ≤ m, then
(i) If m = 1 and a1 = 2, then

|Ii(1/N)| ≤ 5N
8(N − 2)

(4N(N − 2))−k .

(ii) If m = 2, a1 = −1 and a2 = 1, then

|Ii(1/N)| ≤ 135N
512(N − 1)

(
27
4

(N3 −N)
)−k
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Proof : (i) From (2.1), we may write

Ii(x) =
∞∑
h=0

(
k + 1/4

h

)
xhJih (0 ≤ i ≤ m) (2.3)

where

Jih =
1

2πi

∫
γ

zh

(z − ai)(A(z))k
dz

vanishes for h < (m+ 1)k. By Lemma 3.2 of [16], if we let

Ji(x) =
∞∑
h=0

xhJih (0 ≤ i ≤ m)

then
Ji(x) =

−1
(1− aix)(A(1/x))k

(0 ≤ i ≤ m) (2.4)

provided |x|−1 > |ai|, for 0 ≤ i ≤ m. From (2.3), we have

|Ii(1/N)| ≤
∞∑
h=0

∣∣∣∣(k + 1/4
h

)∣∣∣∣ |Jih|N−h
and so if m = 1 and n = 4, from∣∣∣∣(k + 1/4

h

)∣∣∣∣ ≤ ∣∣∣∣(k + 1/4
2k

)∣∣∣∣ (h ≥ 2k),

we have

|Ii(1/N)| ≤
∣∣∣∣(k + 1/4

2k

)∣∣∣∣ ∞∑
h=0

|Jih|N−h. (2.5)

Now, from (2.4),

J0(x) =
−x2k

(1 − 2x)k

whence J0h ≤ 0 for all h. Also

J1(x) =
−x2k

(1− 2x)k+1
,

so that J1h ≤ 0 for all h. Thus (2.5) yields

|Ii(1/N)| ≤
∣∣∣∣(k + 1/4

2k

)∣∣∣∣ |Ji(1/N)|

and the inequalities ∣∣∣∣(k + 1/4
2k

)∣∣∣∣ ≤ (5
8

)
4−k (k ≥ 1)

and

|Ji(1/N)| ≤
(

N

N − 2

)
(N(N − 2))−k

imply the result as stated.
(ii) The result here is essentially just Lemma 2.3 in [3].

2
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We now turn our attention to determining, for each k, rational Ck such that Ckpij(1/N)
are integral for 0 ≤ i, j ≤ m.

From [2], we have

Lemma 2.4 (i) If m = 1 and a1 = 2, then

24k pij(x) ∈ Z[x].

(ii) If m = 2, a1 = −1 and a2 = 1, then

24k−1 pij(x) ∈ Z[x].

Proof : See [2], Lemma 3.1 of [3] and Lemma 4.3 of [16] for details. 2

The shape of the coefficients of the pij ’s, as given in (2.2), suggests the presence of
potentially large integer common factors. It is these factors that enable us to sharpen the
work of Osgood, Fel’dman and Rickert and extend our results to a wider class of norm form
equations. Define, for {x} = x− [x] and 1 ≤ r < n, S(r,m, n, k) to be the set of all primes
p satisfying p >

√
nk + 1, (p, nk) = 1 , pr ≡ 1 mod n and

{
k−1
p

}
> max

{
mn−r
mn , rn

}
. If

m = 1, we add the additional restriction that (p, nk − n− 1) = 1. We proved in [2] that

Lemma 2.5 If p ∈ S(r,m, n, k), then

ordp

((
k + 1/n
h0

)(
k + h1 − 1

h1

)
· · ·
(
k + hm − 1

hm

))
≥ 1

for all nonnegative integers h0, h1 . . . , hm with sum equal to k or k − 1.

Define Π1(k) to be the greatest common divisor of the coefficients of all the polynomials
24kpij(x) (0 ≤ i, j ≤ 1) for m = 1 and a1 = 2 and similarly define Π2(k) relative to
23k−1pij(x) (0 ≤ i, j ≤ 2,m = 2, a1 = −1, a2 = 1). Then Lemma 2.5 implies that

Lemma 2.6 We have
(i) Π1(k) >

1
143

(3/2)k (k ≥ 1)

(ii) Π2(k) >
1

679
(4/3)k (k ≥ 1).

Proof : The proof of (ii) is given in [3] and depends upon recent estimates for primes in
arithmetic progressions due to Ramaré and Rumely [15]. The first assertion follows from
Lemma 3.3 of [3], where, via bounds upon the Chebyshev function

θ(x) =
∑
p≤x

log p

from Schoenfeld [18], it is shown that

Π1(k) > (3/2)k

for all k ≥ 271. Explicitly computing the coefficients of the pij(x)’s and their greatest
common divisor, for 1 ≤ k ≤ 270, yields (i). 2
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We separately consider

pijk = 24k Nk Π1(k)−1 pij(1/N) (m = 1, a1 = 2)

and
pijk = 24k−1 Nk Π2(k)−1 pij(1/N) (m = 2, a1 = −1, a2 = 1).

Applying Lemma 2.1 and arguing as in [3], while noting that Lemma 3.4 of [16] ensures the
nonvanishing of det(pijk), we find

Theorem 2.7 (i) If p, q and N are positive integers with N ≥ 255, then∣∣∣∣∣ 4

√
1 +

2
N
− p

q

∣∣∣∣∣ > (3.7× 107 N
)−1

q−λ

where

λ = 1 +
log
(

32N+32(
√

2+1)
3

)
log
(

3(N−2)
8

) .

(ii) If p1, p2, q and N are positive integers with N ≥ 256, then

max

{∣∣∣∣∣ 4

√
1− 1

N
− p1

q

∣∣∣∣∣ ,
∣∣∣∣∣ 4

√
1 +

1
N
− p2

q

∣∣∣∣∣
}
>
(
5.6× 106 N

)−1
q−λ

where

λ = 1 +
log(18

√
3N + 36)

log
(

9
16 (N2 − 1)

) .
We remark that in Theorem 4.3 of [3], we derive a weaker version of (ii) subject to the

condition N ≥ 4.

3 A Class of Norm Form Equations

We now turn our attention to equation (1.1), where we suppose N ≥ 4. It is straightforward
to show that

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) =

∏
0≤s,t≤3

Ls,t

where
Ls,t = isx

4
√
N4 − 1 + ity

4
√
N4 + 1 + z, (3.1)

so to solve (1.1) effectively, it will suffice to deduce suitable lower bounds for the linear
forms |Ls,t|.

Throughout this section, we will assume that xyz 6= 0, dealing with the degenerate cases
in section 4. Define X = max{|x|, |y|, |z|} and suppose that X = |z|. If L is any of the
forms Ls,t (0 ≤ s, t ≤ 3), we associate to L the forms Lk (1 ≤ k ≤ 3) defined by

Lk = ikL + (1− ik)z. (3.2)

Since
max{|L|, |Lk|} ≥

1
2
(
|Lk − ikL|

)
=

1
2
|1− ik||z|
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we conclude that the product of the three largest of |L|, |L1|, L2| and |L3| is bounded below
by X3/2. Since this construction divides the forms Ls,t (0 ≤ s, t ≤ 3) into four disjoint
groups of four forms each (say by taking L to be, successively, L0,0, L0,1,L0,2 and L0,3 ), we
have that the product of the twelve largest of the |Ls,t| is at least X12/16.

Let the four smallest of the |Ls,t| be those associated with the forms L(i) for 0 ≤ i ≤ 3,
where |L(0)| is minimal. If Im(L(0)) 6= 0, then since xyz 6= 0, considering real and imaginary
parts yields

|L(0)| ≥ 1

whence ∣∣NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ ≥ 1
16

X12. (3.3)

If, however, Im(L(0)) = 0 and |L(0)| < 1, then, without loss of generality, L(0) = L0,0 and
L(1), L(2) and L(3) belong to the disjoint classes of forms associated via equation (3.2) to
L0,1, L0,2 and L0,3 respectively. Again considering real and imaginary parts, it follows that

|L(k)| ≥ |Im(L(k))| ≥ 4
√
N4 − 1

for k = 1 or 3, while

|L(2)| ≥ min{2 4
√
N4 − 1− 1, X} := m(N).

The last inequality follows from the fact that the real forms L0,2 and L2,0 differ from L0,0

by 2y 4
√
N4 + 1 and 2x 4

√
N4 − 1 respectively. Thus, if xyz 6= 0, X = |z| and |L0,0| < 1, then∣∣NK/Q(x 4

√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ > m(N)
16

|L0,0|
√
N4 − 1 X12. (3.4)

It remains to bound |L0,0| from below. By Theorem 2.7 (ii), we have, if p1, p2, q and N are
nonzero integers with N ≥ 4, then

max
{∣∣∣∣ 4
√
N4 − 1 − p1

q

∣∣∣∣ , ∣∣∣∣ 4
√
N4 + 1 − p2

q

∣∣∣∣} > c−1
1 q−λ (3.5)

where

λ = 1 +
log(18

√
3N4 + 36)

log(9(N8 − 1)/16)
and

c1 = 5.6× 106 Nλ+3.

To move from these lower bounds to ones for the related linear forms, we use a standard
transference principle, namely

Lemma 3.1 Suppose that θ1 and θ2 are real numbers such that, if p1, p2 and q are any
positive integers, then

max
{∣∣∣∣θ1 −

p1

q

∣∣∣∣ , ∣∣∣∣θ2 −
p2

q

∣∣∣∣} > c−1
1 q−λ

where c1 > 0 and λ < 2. We conclude that if x, y and z are integers, not all zero, and
X = max{|x|, |y|, |z|}, then

| x θ1 + y θ2 + z | > c−1
2 X−λ1

where c2 = c
2

2−λ
1 2

2λ
2−λ and λ1 = 2λ−2

2−λ .
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Proof : This is just a special case of Theorem II, Chapter 5 of [4]. 2

Applying this result in our situation yields∣∣∣x 4
√
N4 − 1 + y

4
√
N4 + 1 + z

∣∣∣ > (c−2
1 2−2λX−2λ+2

) 1
2−λ

where X = max{|x|, |y|, |z|}. Thus, we may conclude, from (3.3) and (3.4), that if xyz 6= 0
and X = |z|, then∣∣NK/Q(x 4

√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ > m(N)
16

(c12λ)
−2

2−λ
√
N4 − 1 X

26−14λ
2−λ (3.6)

for c1 and λ as in (3.5).
If, on the other hand, X = |x| or X = |y|, we argue in a similar fashion, only with the

linear forms Ls,t of (3.1) divided into disjoint groups of four by associating to a given form
L, the three forms

Lk = L+ ikx
4
√
N4 − 1 (1 ≤ k ≤ 3)

or
Lk = L+ iky

4
√
N4 + 1 (1 ≤ k ≤ 3)

respectively. The lower bounds obtained for

|NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z)|

are in both cases at least as strong as (3.6) and hence (3.6) holds for any xyz 6= 0 with
X = max{|x|, |y|, |z|}. Since it is relatively easy to show by calculus that the functions(

1
16

(c12λ)
−2

2−λ
√
N4 − 1 (2 4

√
N4 − 1− 1)

) λ−2
26−14λ

N−5/2

and (
1
16

(c12λ)
−2

2−λ
√
N4 − 1

) λ−2
28−15λ

N−5/2

are decreasing in N (for N ≥ 4), by computing the various constants in (3.6), we attain

Theorem 3.2 If x, y, z, u and N are integers with xyz 6= 0, N ≥ 4 and

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = u

then
max{|x|, |y|, |z|} < c2N

5/2|u|1/c3

where we may take c2 and c3 as given in the following table :

N c2 c3 N c2 c3
4 1.1× 10649 0.2 13 2.4× 107 7.6
5 1.4× 1026 3.8 14 1.2× 107 7.7
6 1.1× 1016 5.2 15 6.7× 106 7.8
7 3.1× 1012 6.0 16 4.2× 106 7.8
8 4.6× 1010 6.5 17 2.7× 106 7.9
9 3.4× 109 6.8 18 1.9× 106 8.0
10 5.6× 108 7.1 19 1.4× 106 8.0
11 1.5× 108 7.3 ≥ 20 106 8.1
12 5.3× 107 7.4
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The functions c2(N) and c3(N) in the above tend to 0 and 10, respectively, as N tends to
infinity.

Let us now consider equation (1.2) with 5 ≤ N ≤ 100 and xyz 6= 0. The previous result
asserts that we may bound solutions to these equations by

max{|x|, |y|, |z|} ≤M

where M may be taken as follows :

N = 5 M = 1028

N = 6 M = 1018

N = 7 M = 1015

8 ≤ N ≤ 100 M = 1013

To reduce these upper bounds to a workable size, we apply the Lenstra-Lenstra-Lovász (L3)
algorithm, following closely the work of Tzanakis and de Weger in [24] (see also [25]).

If xyz 6= 0, then to have∣∣NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ = 1

we must have, without loss of generality,

|L0,0| =
∣∣∣x 4
√
N4 − 1 + y

4
√
N4 + 1 + z

∣∣∣ ≤ X−12 (4.1)

where
X = max{|x|, |y|, |z|} ≤M.

Choose an integer c0 such that c0 > M3 and consider the lattice Γ associated with the
matrix

A =

 1 0 0
0 1 0[

c0
4
√
N4 − 1

] [
c0

4
√
N4 + 1

]
c0

 .

We apply the L3 algorithm to find a reduced basis b1,b2,b3 of Γ and note that by Propo-
sition (1.11) of [13], if x 6= 0 ∈ Γ, then

|x| ≥ 1
2
|b1|. (4.2)

Since

A

 x
y
z

 =

 x
y
Λ

 ∈ Γ

where
Λ = x

[
c0

4
√
N4 − 1

]
+ y

[
c0

4
√
N4 + 1

]
+ zc0,

we have
|Λ − c0L0,0| < 2M.

Therefore
|Λ| < c0 |L0,0|+ 2M. (4.3)
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On the other hand, (4.2) implies that

x2 + y2 + Λ2 ≥ 1
4
|b1|2

so that

|Λ| ≥
√

1
4
|b1|2 − 2M2 (4.4)

provided |b1| >
√

2M . Together, (4.3) and (4.4) yield the inequality

|L0,0| >
1
c0

(√
1
4
|b1|2 − 2M2 − 2M

)
:= F (c0, N,M)

as long as |b1| >
√

2M and so from (4.1), we conclude that

X ≤ C(c0, N,M)

where

C(c0, N,M) =
{
F (c0, N,M)−1/12 if |b1| > 2

√
6M

M otherwise.

To explicitly perform the lattice basis reduction for specific choices of c0, N and M , we
utilize an existing implementation of the L3 algorithm in Maple V. If we set N = 5 and
apply this procedure, we find that

C(1087, 5, 1028) < 111250

so that in this case, if xyz 6= 0, then solutions to (1.2) satisfy

max{|x|, |y|, |z|} ≤ 111249.

Since
C(1018, 5, 111249) < 14

and
C(109, 5, 100) < 4,

two further iterations reduce the above bound to

max{|x|, |y|, |z|} ≤ 3.

Similarly, the inequalities
C(1057, 6, 1018) < 1633,

C(1013, 6, 1633) < 7,

C(109, 6, 100) < 4,

C(1048, 7, 1015) < 538

and
C(1011, 7, 537) < 5

imply that
max{|x|, |y|, |z|} ≤ 3 or 4

11



for solutions to (1.2) with xyz 6= 0 and N = 6 or 7, respectively. In all the remaining cases
(i.e. 8 ≤ N ≤ 100), we find that C(1052, N, 1013) is less than 1657 and are able to further
reduce these bounds by computing C(c0, N, 1656) as follows :

C(1013, N, 1656) < 6 N = 8 C(1018, N, 1656) < 13 49 ≤ N ≤ 57
C(1013, N, 1656) < 7 9 ≤ N ≤ 13 C(1019, N, 1656) < 14 58 ≤ N ≤ 65
C(1014, N, 1656) < 8 14 ≤ N ≤ 20 C(1019, N, 1656) < 15 66 ≤ N ≤ 73
C(1015, N, 1656) < 9 21 ≤ N ≤ 27 C(1020, N, 1656) < 16 74 ≤ N ≤ 82
C(1016, N, 1656) < 10 28 ≤ N ≤ 35 C(1020, N, 1656) < 17 83 ≤ N ≤ 91
C(1017, N, 1656) < 11 36 ≤ N ≤ 42 C(1020, N, 1656) < 18 92 ≤ N ≤ 100.
C(1017, N, 1656) < 12 43 ≤ N ≤ 48

Explicitly computing
NK/Q(x 4

√
N4 − 1 + y 4

√
N4 + 1 + z)

for these remaining cases, we conclude

Theorem 3.3 If x, y, z and N are integers with 5 ≤ N ≤ 100, then the equation

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = ±1

has no solutions with xyz 6= 0.

4 Degenerate Cases

We now turn our attention to the situation when at least one of x, y or z vanishes. To avoid
trivialities, we assume that not all of x, y and z are zero, so that X = max{|x|, |y|, |z|} is at
least 1.

If x = 0, then

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) =

3∏
k=0

(iky 4
√
N4 + 1 + z)4. (3.7)

Since ∣∣∣±iy 4
√
N4 + 1 + z

∣∣∣ ≥ max{|y| 4
√
N4 + 1, |z|} ≥ X

and
max{

∣∣∣y 4
√
N4 + 1 + z

∣∣∣ , ∣∣∣−y 4
√
N4 + 1 + z

∣∣∣} ≥ max{|y| 4
√
N4 + 1, |z|} ≥ X,

it remains to bound the smaller of
∣∣±y 4
√
N4 + 1 + z

∣∣.
By Theorem 2.7 (i), we have∣∣∣±y 4

√
N4 + 1 + z

∣∣∣ > (7.4× 107N4)−1X−λ1+1

for

λ1 = 1 +
log(32(2N4 +

√
2 + 1)/3)

log(3(N4 − 1)/4)
,

where the inequality follows from treating the cases |z| ≥ |y|N and |z| < |y|N separately.
Thus (3.7) implies that∣∣NK/Q(x 4

√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ > (7.4× 107N4)−4X16−4λ1 . (3.8)
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The case when y = 0 is similar. We use Theorem 2.7 (i), supposing that z 6= 0, to deduce
a bound for ∣∣∣±x 4

√
N4 − 1 + z

∣∣∣ =
(
|z|
N

4
√
N4 − 1

) ∣∣∣∣∣ 4

√
1 +

1
N4 − 1

± xN

z

∣∣∣∣∣
and find that∣∣NK/Q(x 4

√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ > (7.4× 107N4)−4X16−4λ2 (3.9)

where

λ2 = 1 +
log(32(2N4 +

√
2− 1)/3)

log(3(N4 − 2)/4)
.

If, however, z = 0, then

∣∣NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ =
3∏

k=0

|ikx 4
√
N4 − 1 + y

4
√
N4 + 1|4

and we have ∣∣∣±ix 4
√
N4 − 1 + y

4
√
N4 + 1

∣∣∣ ≥ 4
√
N4 − 1 X

and

max
{∣∣∣−x 4

√
N4 − 1 + y

4
√
N4 + 1

∣∣∣ , ∣∣∣x 4
√
N4 − 1 + y

4
√
N4 + 1

∣∣∣} ≥ 4
√
N4 − 1 X.

Further, Theorem 2.7 (i) gives∣∣∣±x 4
√
N4 − 1 + y

4
√
N4 + 1

∣∣∣ > (3.7× 107N3)−1X−λ3+1

with

λ3 = 1 +
log(32(N4 +

√
2)/3)

log(3(N4 − 3)/8)
.

It follows that in this situation, we have∣∣NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z)

∣∣ > (3.8× 107)−4X16−4λ3 (3.10)

and so, combining (3.8), (3.9) and (3.10), computing

(7.4× 107N4)
4

16−4λ2

and noting that this quantity decreases as N increases yields

Theorem 4.1 If x, y, z, u and N are integers with xyz = 0, N ≥ 4 and

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = u

then
max{|x|, |y|, |z|} < c2N

5/2|u|1/c3
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for c2 and c3 as follows :

N c2 c3 N c2 c3
4 1118042 5.0 11 54227 6.4
5 383474 5.5 12 47158 6.5
6 205615 5.8 13 41769 6.5
7 134945 6.0 14 37532 6.6
8 98951 6.1 15 34119 6.6
9 77699 6.2 16 31311 6.6
10 63868 6.3 ≥ 17 28963 6.7

Here, the functions c2(N) and c3(N) tend to 0 and 8, respectively, as N →∞.
We once again set out to reduce the above bounds upon solutions to (1.2), via the L3

algorithm. If x = 0, from our previous remarks we have, without loss of generality,∣∣∣y 4
√
N4 + 1 + z

∣∣∣ ≤ X−3

where X = max{|y|, |z|} ≤M . Choose c0 > M2 and consider Γ derived from

A =
(

1 0[
c0

4
√
N4 + 1

]
c0

)
.

As before, we find a reduced basis b1,b2 for Γ with ( by Proposition (1.11) of [13])

|x| ≥ 1√
2
|b1|

for all x 6= 0 ∈ Γ. Arguing as previously, we find that

X ≤ C1(c0, N,M)

where

C1(c0, N,M) =
{
F1(c0, N,M)−1/3 if |b1| > 2M

M otherwise

and

F1(c0, N,M) =
1
c0

(√
1
2
|b1|2 −M2 −M

)
.

For each N between 5 and 100, we note that Theorem 4.1 implies the bound X ≤ 1010.
We find that

C1(1026, N, 1010) < 152780, 5 ≤ N ≤ 100

and
C1(1016, N, 152779) < 3563, 5 ≤ N ≤ 100.

Since we also have

C1(1011, N, 3562) <

{
221 5 ≤ N ≤ 39
2N 40 ≤ N ≤ 100,

C1(109, N, 220) <

{
73 5 ≤ N ≤ 17
2N 18 ≤ N ≤ 39,

14



C1(107, N, 72) <

{
19 5 ≤ N ≤ 8
2N 9 ≤ N ≤ 17

and
C1(300000, N, 18)< 2N

for 5 ≤ N ≤ 8, it follows that solutions to (1.2) with x = 0 satisfy

max{|y|, |z|} < 2N.

We handle the cases when y = 0 or z = 0 in a similar fashion, considering lattices
generated by

A =
(

1 0[
c0

4
√
N4 − 1

]
c0

)
and

A =
(

1 0[
c0

4
√
N4 − 1

] [
c0

4
√
N4 + 1

] )
respectively. In either situation, we again find an explicit pair of functions C2(c0, N,M) and
C3(c0, N,M) with

max{|x|, |y|, |z|} ≤
{
C2(c0, N,M) if y = 0
C3(c0, N,M) if z = 0

and through application of the L3 algorithm as above, find in all cases that solutions to

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = ±1

with 5 ≤ N ≤ 100 and xyz = 0 satisfy

max{|x|, |y|, |z|} < 2N.

To conclude, we are only left to check the remaining small values for x, y and z. To do
this, we once again explicitly compute

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z)

and see whether (1.2) is satisfied. Performing this computation, in conjunction with Theo-
rem 3.3, yields

Theorem 4.2 If x, y, z and N are integers with 5 ≤ N ≤ 100, then the equation

NK/Q(x 4
√
N4 − 1 + y 4

√
N4 + 1 + z) = ±1

has only the ten integral solutions given by (x, y, z) = (0, 0,±1),(±1, 0,±N) and (0,±1,±N).

5 Concluding Remarks

In the results of the previous section, we have omitted the case N = 4 due to computational
constraints. If N ≤ 3, we are unable to produce any bound upon supposed solutions to
(1.1) by this method. Since, as mentioned in the introduction, it is possible to derive
explicit bounds via linear forms in logarithms, for N ≥ 2, it would be of interest to see how
difficult such a computation would be to carry out and how the results would compare to
those given in Sections 3 and 4.
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