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INTERSECTIONS OF RECURRENCE SEQUENCES

MICHAEL A. BENNETT AND ÁKOS PINTÉR

(Communicated by Matthew Papanikolas)

Abstract. We derive sharp upper bounds for the size of the intersection of
certain linear recurrence sequences. As a consequence of these, we partially
resolve a conjecture of Yuan on simultaneous Pellian equations, under the
condition that one of the parameters involved is suitably large.

1. Introduction

Let {um}∞m=0 and {vn}∞n=0 be integral linear recurrence sequences. That is,
let us suppose that there exist positive integers h and k, and rational integers
a1, a2, . . . , ah, u0, u1, . . . uh−1, b1, b2, . . . , bk and v0, v1, . . . vk−1, such that

um+h = ah−1um+h−1 + ah−2um+h−2 + · · ·+ a0um, for m = 0, 1, 2, . . .

and

vn+k = bk−1vn+k−1 + bk−2vn+k−2 + · · ·+ b0vn, for n = 0, 1, 2, . . .

Then, as is well-known, there further exist algebraic integers

α1, . . . , αh, β1, . . . , βk

and polynomials P1, . . . , Ph, Q1, . . . , Qk, with algebraic coefficients, such that we
may write

um = P1(m)αm
1 + · · ·+ Ph(m)αm

h , P1 �= 0,

and

vn = Q1(n)β
n
1 + · · ·+Qk(n)β

n
k , Q1 �= 0,

for each pair of nonnegative integers m and n. It is certainly possible that such
sequences may share values, even infinitely many, but, typically, our expectation
is that their intersection is finite. Our goal in this paper is to derive a very sharp
estimate for the size of such an intersection, for a specific class of recurrences. This
problem is studied in detail in much greater generality by, for example, Laurent [8]
and Schlickewei and Schmidt [13], [14].
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As a qualitative example of the type of theorem available in the literature, let
us mention the main result of [11]:

Theorem 1.1. (Mignotte) For {um}∞m=0 and {vn}∞n=0 as above with the additional
assumptions that

|α1| > max{1, |α2|, . . . , |αh|} and |β1| > max{1, |β2|, . . . , |βk|},
there exists an effectively computable constant m0 such that if um = vn with m ≥
m0, then necessarily

P1(m)αm
1 = Q1(n)β

n
1 .

If this last relation occurs infinitely often, then there exist positive integers x and
y such that αx

1 = βy
1 . If, further, the polynomials P1 and Q1 are actually constant,

then the set of pairs of integers (m,n) for which um = vn lie in the union of a finite
set with a finite number of arithmetic progressions.

If we can rule out the presence of such progressions, then the corresponding
intersection is necessarily finite. In this context, our main result quantifies the
size of such an intersection, at least under favourable circumstances. While our
arguments lead to a more general statement, we will restrict our attention somewhat
in the interests of simplicity. Here and henceforth, by h(α) we mean the absolute
logarithmic Weil height of an algebraic number of degree d, given by the formula

h(α) =
1

d

(
log |a0|+

d∑
i=1

logmax
(
1, |α(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the
α(i)s are the conjugates of α in the field of complex numbers.

Theorem 1.2. Suppose that {um}∞m=0 and {vn}∞n=0 are integral linear recurrence
sequences, that

α1, . . . , αh, β1, . . . , βk

are algebraic integers, and that

P1, . . . , Ph, Q1, . . . , Qk

are algebraic numbers, for which

(1.1) um = P1α
m
1 + · · ·+ Phα

m
h , P1 �= 0,

and

(1.2) vn = Q1β
n
1 + · · ·+Qkβ

n
k , Q1 �= 0

hold, and we have

(1.3) |α1| > max{1, |α2|, . . . , |αh|} and |β1| > max{1, |β2|, . . . , |βk|}.
Let us assume further that α1, β1, P1 and Q1 are real, that α1 and β1 are multi-
plicatively independent and that P1 �= Q1. Defining

M = max{h(Pi), h(Qj) : 1 ≤ i ≤ h, 1 ≤ j ≤ k}
and

N = max{h, k,M, log |β1|, 3},
there exists an effectively computable absolute constant C such that if

(1.4) log |α1| ≥ CM log |β1| log3 N
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then there is at most one pair of positive integers (m,n) with

um = vn and P1α
m
1 �= Q1β

n
1 .

It is worth observing that the dominant root condition (1.3) is one that occurs
somewhat naturally in a variety of contexts in the theory of recurrence sequences.

In the case where the two recurrences under consideration are both binary, there
are many results in the literature establishing absolute bounds upon the size of
their intersections, under various restrictions. One of the simplest cases is that of
simultaneous Pellian equations, where, given distinct nonsquare positive integers a
and b, we find that the number of positive integral triples (x, y, z) satisfying

(1.5) x2 − az2 = 1, y2 − bz2 = 1

is at most two (a bound that is achieved for infinitely many pairs (a, b); see [2] and
[17]). In the case of the similar simultaneous equations

(1.6) x2 − ay2 = 1, y2 − bz2 = 1,

the number of positive solutions has also been shown (see [6] and [7]) to be at
most two. In this situation, however, we know of no pair (a, b) for which two such
solutions actually exist and Yuan (Conjecture 1.1 of [18]) suggests that (1.6) has,
in fact, at most a single positive solution (x, y, z) for a fixed pair (a, b). We can
verify this conjecture (in a rather stronger form), provided b is sufficiently large as
a function of a. Indeed, a somewhat straightforward corollary of Theorem 1.2 in
this case is the following

Corollary 1.3. Let a and b be nonsquare positive integers and let εa and εb denote
the fundamental units in Q(

√
a) and Q(

√
b), respectively. Then there exists an

effectively computable absolute constant κ such that if

(1.7) log εb > κ log a log εa (logmax{log εa, 3})3 ,
the system of simultaneous equations

(1.8)
∣∣x2 − ay2

∣∣ = ∣∣y2 − bz2
∣∣ = 1.

has at most one solution in positive integers x, y and z.

It is easy to observe that this result is sharp. Defining

Tk =

(
3 + 2

√
2
)k −

(
3− 2

√
2
)k

2
√
2

,

if we choose (a, b) = (2, T 2
k −1) for k suitably large, then inequality (1.7) is satisfied

and equations (1.8) have the positive integer solution (x, y, z) = (Uk, Tk, 1), where

Uk =

(
3 + 2

√
2
)k

+
(
3− 2

√
2
)k

2
.

In what follows, our principal tool will be lower bounds for linear forms in com-
plex logarithms of algebraic numbers. Our hope is that this paper will serve as
a small advertisement for the theory of simultaneous linear forms in logarithms
(indeed, Theorem 1.2 depends fundamentally upon such estimates). These results
have been around for many years, dating to the early days of development of the
general theory, but are neither widely known, nor widely used. One has the sense
that they could find application rather more broadly than is currently the case.
Interested readers are directed to [3], [4], [5], [9], [12], [15] and [16].
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2. Proof of Theorem 1.2

We begin by proving Theorem 1.2. Suppose that we have

um1
= vn1

and um2
= vn2

,

where (m1, n1) and (m2, n2) are distinct pairs of positive integers. Suppose further
that

(2.1) P1α
m1
1 �= Q1β

n1
1 and P1α

m2
1 �= Q1β

n2
1 .

Define

δ =
1

2
min

{
1− max

2≤i≤h

{
log |αi|
log |α1|

}
, 1− max

2≤j≤k

{
log |βj |
log |β1|

}}
.

Then, assuming (1.4) for suitably large C, it follows from (1.3) that

|P1α
mi
1 −Q1β

ni
1 | < 1

2
min{|P1α

mi
1 | , |Q1β

ni
1 |}1−δ.

Since P1, Q1, α1 and β1 are real, if we consider the linear forms

Λi = mi log |α1| − ni log |β1|+ log |P1/Q1|, i = 1, 2,

we therefore have that

(2.2) log |Λi| < −δ min{log |P1α
mi
1 | , log |Q1β

ni
1 |}.

Assumption (2.1) ensures further that Λi �= 0. Since the αi and the βj are roots
of the companion polynomials of the recurrences defining {um}∞m=0 and {vn}∞n=0,
respectively, monic polynomials with integer coefficients, it follows from (1.3) that

h(α1) ≤ log |α1| and h(β1) ≤ log |β1|.

We appeal to standard bounds for linear forms in logarithms to derive a lower
bound upon |Λi|. Specifically, we use the main result of [1].

Theorem 2.1. (Baker-Wüstholz) Let α1, . . . , αn be algebraic numbers different
from 0 and 1, in a fixed number field K of degree d. Define the modified height
h′ by

h′(α) = max

{
h(α),

| logα|
d

,
1

d

}
,

for every nonzero α in K, where h(α) is the usual logarithmic Weil height. Let
b1, . . . , bn be rational integers, not all 0, and with absolute values less than B ≥ 3.
Setting

Λ = b1 logα1 + . . .+ bn logαn �= 0,

we have

log |Λ| > −C(n, d) · h′(α1) · · ·h′(αn) logB,

with

C(n, d) = 18(n+ 1)!nn+1(32d)n+2 log(2nd).

We will also have need of a simultaneous analogue of this result, due to Loxton
[9], which provides a sharper lower bound for linear combinations of logarithms of
algebraic numbers.
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Theorem 2.2. (Loxton) Set

Λi = bi1 logα1 + . . .+ bin logαn, (1 ≤ i ≤ t),

where α1, . . . , αn are multiplicatively independent elements of a fixed number field
K of degree d, the matrix of rational integers (bij) has rank t and the logαj are the
principal values. Let Aj ≥ 4 be an upper bound for exp(h(αj)), B ≥ 4 be an upper
bound for max{|bij |} and put Ω = logA1 · · · logAn. Then

max
1≤i≤t

|Λi| > exp{−C(Ω logΩ)1/t log(BΩ)} with C = (16nd)200n.

Applying Theorem 2.1 thus yields a lower bound of the shape

log |Λi| � −M log ni log |β1| log |α1|,
whereby we reach the conclusion that

ni

log ni
� M log |α1|

and hence, once again appealing to (1.4),

(2.3) ni � M log |α1| log log |α1|.
Next, applying Theorem 2.2 (which we may do since we assume that P1 �= Q1 and
that α1 and β1 are multiplicatively independent) and writing

Ω = M log |α1| log |β1|,
we obtain the inequality

max {log |Λ1| , log |Λ2|} � −(Ω logΩ)1/2 logmax{n1Ω, n2Ω}.
From (2.3), it follows that

max {log |Λ1| , log |Λ2|} � −Ω1/2 log3/2 Ω.

Combining this with inequality (2.2), we therefore have

log |α1| � Ω1/2 log3/2 Ω,

whence

log |α1| � M log |β1| log3 Ω,
contradicting (1.4) if the constant C is chosen suitably large. This completes the
proof of Theorem 1.2.

3. Proof of Corollary 1.3

We next turn our attention to Corollary 1.3. If we have two solutions in positive
integers to equation (1.8), say (x1, y1, z1) and (x2, y2, z2), with x1 < x2, then

(3.1) yi =
εni
a − εa

ni

2
√
a

=
εmi

b + εb
mi

2
, for i ∈ {1, 2},

where the ni and mi are positive integers and εa and εb are the conjugates of εa
and εb in Q(

√
a) and Q(

√
b), respectively. That is, we have umi

= vni
for i = 1, 2,

where the recurrences satisfy h = k = 2,

α1 = εb, α2 = εb, β1 = εa, β2 = εa,

P1 = P2 = 1/2, Q1 =
1

2
√
a

and Q2 = − 1

2
√
a
.
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If we have
P1α

mi
1 = Q1β

ni
1

for either i = 1 or 2, then (3.1) implies that

εni
a =

√
a εmi

b and − εa
ni =

√
a εb

mi ,

whence a = ±1, an immediate contradiction. Since |εa| = |εa|−1 and |εb| = |εb|−1,
these recurrences satisfy (1.3) and hence, applying Theorem 2.2, we conclude as
stated, at least provided the fundamental units εa and εb are multiplicatively inde-
pendent.

Let us now suppose that εa and εb are multiplicatively dependent, satisfying,
say,

εra = εsb,

for r and s coprime, positive integers. If we have even a single solution to equation
(1.8) in positive integers (x, y, z), then there exist positive integers m and n such
that

(3.2) y =
εna − εa

n

2
√
a

=
εmb + εb

m

2
.

The corresponding linear form

Λ = m log εb − n log εa + log(
√
a)

can be rewritten as

Λ =
(mr

s
− n

)
log εa + log(

√
a).

Since we have
|Λ| = log

∣∣εan +
√
a εb

m
∣∣ � √

a ε−m
b � a ε−n

a ,

it follows that

(3.3) log |Λ| � log a− n log εa.

In the other direction, let us begin by noting that mr ≥ ns implies the in-
equality |Λ| ≥ log(

√
a), contradicting (1.7) and (3.3). We may thus assume that

max{mr, ns} = ns. Applying part C of Theorem 3 of Loxton and van der Poorten
[10], we have that

(3.4) s ≤ 2

log
(
1
2 (1 +

√
5)
) log(εa),

whence, from Theorem 2.1,

log |Λ| � − log εa log a log(ns)

and so, appealing to (3.3) and (3.4),

(3.5) n � log a log(ns) � log a log(n log(εa)).

Combining this with (3.2), which implies that

log(εb) � n log(εa),

we contradict (1.7), provided κ is chosen to be suitably large. This completes the
proof of Corollary 1.3.
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