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Abstract

Let {uk} be a Lucas sequence. A standard technique for determining the perfect powers
in the sequence {uk} combines bounds coming from linear forms in logarithms with local
information obtained via Frey curves and modularity. The key to this approach is the fact that
the equation uk = xn can be translated into a ternary equation of the form ay2 = bx2n + c
(with a, b, c ∈ Z) for which Frey curves are available. In this paper we consider shifted
powers in Lucas sequences, and consequently equations of the form uk = xn+c which do not
typically correspond to ternary equations with rational unknowns. However, they do, under
certain hypotheses, lead to ternary equations with unknowns in totally real fields, allowing us
to employ Frey curves over those fields instead of Frey curves defined over Q. We illustrate
this approach by showing that the quaternary Diophantine equation x2n ±6xn +1 = 8y2 has
no solutions in positive integers x , y, n with x , n > 1.

1. Introduction

In [17], Stewart proved an effective finiteness result for shifted perfect powers in binary
recurrence sequences. That is, if {uk} is a binary recurrence sequence for which the equation

xn + c = uk (1·1)
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has a solution in integers x, n, c and k, with n � 2 and |x | > 1, then, under mild conditions,
max{|x |, n} is bounded above effectively in terms of c and the recurrence. This statement is
actually a consequence of the following more general theorem of Shorey and Stewart [16].

THEOREM 1 (Shorey and Stewart). Let a, b, c, d, e and f be integers with

(b2 − 4ac)(4ac f + bde − ae2 − cd2 − f b2)� 0.

If x, y and n are integers with |x | > 1 and n > 2, satisfying

ax2n + bxn y + cy2 + dxn + ey + f = 0, (1·2)

then the maximum of |x |, |y| and n is less than a number which is effectively computable in
terms of a, b, c, d, e and f . Further, if e2 � 4c f and x and y are integers satisfying

ax4 + bx2 y + cy2 + dx2 + ey + f = 0,

then the maximum of |x | and |y| is less than a number which is effectively computable in
terms of a, b, c, d, e and f .

To translate such effective statements to explicit ones regarding equations of the shape
(1·1) or (1·2) has proven, with current technology, to be a rather challenging problem (and
has been accomplished in only a handful of cases – notably in the determination of perfect
powers in the Fibonacci sequence [5]). In this paper, we will develop a method which allows
us to explicitly find all shifted perfect powers in a number of classes of Lucas recurrence
sequences which are apparently inaccessible to existing techniques in the literature. Our
approach combines lower bounds for linear forms in logarithms (which underlie the proof
of Theorem 1) with new ideas utilising connections between Hilbert modular forms and
elliptic curves defined over totally real fields.

Whilst we will develop techniques that allow one to carry out such a program in some
generality, to focus our exposition we will essentially concentrate on a single example of an
equation of the shape (1·2), proving the following.

THEOREM 2. The Diophantine equation

x2n ± 6xn + 1 = 8y2 (1·3)

has no solutions in positive integers x, n and y, with x, n > 1.

This result is the final ingredient required in work of the first author [1] on integral points
on congruent number curves. For equation (1·3), it is a fairly routine matter to obtain an
absolute bound on n (via Theorem 1 or otherwise), thereby reducing the problem to that of
finding the integral points on a finite collection of hyperelliptic curves. What is much less
routine is the approach we take to reduce this bound. Indeed, whilst the problem of determ-
ining Fibonacci perfect powers reduces immediately to that of solving ternary equations of
the shape

x2 − 5y2n = ±4, (1·4)

for which Frey (or, if you will, Frey–Hellegouarch) curves are immediately available, the
fundamental difficulty one encounters in attempting to solve equation (1·3) is that it is a
priori quaternary rather than ternary. The principal novelty of this paper is that we are able to
replace (1·3) with an equivalent ternary equation over a real quadratic field for which we are
able to construct Frey curves which we can, in turn, associate with certain Hilbert modular
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forms. As in the work of Bugeaud, Mignotte and Siksek [5], we obtain local information
from these Frey curves to reduce our problem from one of linear forms in three logarithms, to
(the computationally more efficient) two logarithms, and subsequently, to find exceptionally
strong lower bounds upon |x | for nontrivial solutions to (1·3), eventually contradicting more
general lower bounds for linear forms in (many) complex logarithms.

2. Recurrence sequences : descent to a ternary equation

To begin the proof of Theorem 2, let us observe that, if n = 2, equation (1·3) with a (−)

sign is insoluble modulo 8; with a (+) sign (1·3) defines a genus 1 curve that is birational
over Q to the rank 0 elliptic curve with Cremona reference 32a1, and one verifies that the
only solutions on our affine model satisfy (|x |, |y|) = (1, 1). We may thus suppose that
n > 2 is odd and hence consider the equation

x2p + 6x p + 1 = 8y2, (2·1)

where p is an odd prime, and x and y are integers. Note that if we have

u2 + 6u + 1 = 8y2,

where η = sgn(u) ∈ {−1, 1}, then ηu satisfies the recurrence

un+1 = 6un − un−1 + 12 η, (2·2)

with, say, (u0, u1) = (4−3η, 20−3η). Equation (2·1) is thus equivalent to finding all perfect
powers in the recurrence sequence {un}.

Let K = Q(
√

2) and write ε = 1 + √
2 for a fundamental unit of norm −1 in K . Our

main observation that permits application of the so-called modular method is the following.

LEMMA 2·1. If (x, y, p) is a solution to (2·1) then there exist integers k, � and s, and an
α ∈ Z[√2] such that

s εk
√

2 − ε�α p = 1, (2·3)

where k is odd, s ∈ {−1, 1},
Norm(α) = (−1)�+1x and − p − 1

2
� � � p − 1

2
. (2·4)

Proof. We can rewrite (2·1) as

(x p + 3)2 − 8 = 8y2,

whereby 4 | x p + 3 and

y2 − 2

(
x p + 3

4

)2

= −1.

Hence

y +
(

x p + 3

4

)√
2 = sεk, (2·5)

where k is odd.
On the other hand, we can also transform equation (2·1) into(

x p + 1

2

)2

− 2y2 = −x p
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and hence have (
x p + 1

2

)
+ y

√
2 = ε�α p, (2·6)

where α and � satisfy (2·4). From (2·5) and (2·6), we deduce (2·3).

3. Linear forms in logarithms

The purpose of this section is to prove the following proposition, via an appeal to the
theory of linear forms in logarithms.

PROPOSITION 3·1. If the Diophantine equation

x2n ± 6xn + 1 = 8y2

has a solution in positive integers x, n and y, with x, n > 1, then n is divisible by an odd
prime p < 2 · 1010 .

Either equation (2·3) or (2·5) is a suitable starting point for deriving a linear form in log-
arithms leading to an absolute upper bound upon p; we will appeal to the latter. Specifically,
from (2·5), we have

|x p + 3|
4

= εk + ε−k

2
√

2
.

It follows that
|x |p

√
2 ε|k| − 1

is “small”, whereby the same is true of the linear form

� = p log |x | − log
√

2 − |k| log ε. (3·1)

More precisely, it is easy to verify that

log |�| < −p log |x | + 2. (3·2)

For any algebraic number α of degree d over Q, we define as usual the absolute logarithmic
height of α by the formula

h(α) = 1

d

(
log |a0| +

d∑
i=1

log max
(
1, |α(i)|)

)
,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the α(i) are
the conjugates of α in the field of complex numbers. The following is the main result of
Matveev [12, theorem 2·1].

THEOREM 3 (Matveev). Let K be an algebraic number field of degree D over Q and
put χ = 1 if K is real, χ = 2 otherwise. Suppose that α1, α2, . . . , αn ∈ K∗ with absolute
logarithmic heights h(αi) for 1 � i � n, and suppose that

Ai � max{D h(αi), |log αi |}, 1 � i � n,

for some fixed choice of the logarithm. Define

� = b1 log α1 + · · · + bn log αn,
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where the bi are integers and set

B = max{1, max{|bi |Ai/An : 1 � i � n}}.
Define, with e := exp(1), further,

� = A1 · · · An,

C(n) = C(n, χ) = 16

n!χ en(2n + 1 + 2χ)(n + 2)(4n + 4)n+1 (en/2)χ ,

C0 = log
(
e4.4n+7n5.5 D2 log(eD)

)
and W0 = log (1.5eB D log(eD)) .

Then, if log α1, . . . , log αn are linearly independent over Z and bn � 0, we have

log |�| > −C(n) C0 W0 D2 �.

We apply this theorem to our situation, with

D = 2, χ = 1, n = 3, b3 = p, α3 = |x |,
under the assumption that |x | > 1. We conclude, after a little work, that

log |�| > − (88626836156 log p + 232663287513) log |x |.
Combining this with (3·2) (and using that |x | � 7, an almost immediate consequence of
(2·1) and the supposition that |x | > 1; succinctly, 2 is a quadratic residue modulo x , whence
x ≡ ±1 (mod 8)), we obtain the upper bound

p < 2.772 · 1012 =: P0. (3·3)

This bound is the starting point of our analysis. Arguing à la Baker, we may thus find an
effective absolute upper bound upon |x | in (the finite collection of hyperelliptic) equations
(2·1). Let us assume, for the remainder of this section, that

2 · 1010 < p < P0. (3·4)

We will show that (2·1) has no solutions for p satisfying (3·4), via appeal to a complicated
but slightly sharper lower bound for linear forms in three complex logarithms, due to the
third author [13, proposition 5·1]).

THEOREM 4 (Mignotte). Consider three non-zero algebraic numbers α1, α2 and α3,
which are either all real and > 1, or all complex of modulus one and all � 1. Further,
assume that the three numbers α1, α2 and α3 are either all multiplicatively independent, or
that two of the number are multiplicatively independent and the third is a root of unity. We
also consider three positive rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the
linear form

� = b2 log α2 − b1 log α1 − b3 log α3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are
all real or all purely imaginary. Suppose further that

b2| log α2| = b1 | log α1| + b3 | log α3| ± |�|
and put

d1 = gcd(b1, b2) and d3 = gcd(b3, b2).
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Let ρ � e := exp(1) be a real number and set λ = log ρ. Let a1, a2 and a3 be real numbers
such that

ai � ρ| log αi | − log |αi | + 2D h(αi), i ∈ {1, 2, 3},
where D = [Q(α1, α2, α3) : Q] / [R(α1, α2, α3) : R], and assume further that

� := a1a2a3 � 2.5 and a := min{a1, a2, a3} � 0.62.

Let m and L be positive integers with m � 3, L � D + 4 and set K = [m�L]. Let χ be
fixed with 0 < χ � 2 and define

c1 = max{(χmL)2/3,
√

2mL/a}, c2 = max{21/3 (mL)2/3, L
√

m/a}, c3 = (6m2)1/3L ,

Ri = [ci a2a3] , Si = [ci a1a3] and Ti = [ci a1a2] ,

for i ∈ {1, 2, 3}, and set

R = R1 + R2 + R3 + 1, S = S1 + S2 + S3 + 1 and T = T1 + T2 + T3 + 1.

Define

c = max

{
R

La2a3
,

S

La1a3
,

T

La1a2

}
.

Finally, assume that the quantity(
K L

2
+ L

4
− 1 − 2K

3L

)
λ − (D + 1) log L − 3gL2c �

−D(K − 1) log B − 2 log K + 2D log 1.36

is positive, where

g = 1

4
− K 2L

12RST
and B = e3c2�2 L2

4K 2d1d3

(
b1

a2
+ b2

a1

)(
b3

a2
+ b2

a3

)
.

Then either

log � > −(K L + log(3K L))λ, (3·5)

or the following condition holds:
either there exist non-zero rational integers r0 and s0 such that

r0b2 = s0b1 (3·6)

with

|r0| � (R1 + 1)(T1 + 1)

M − T1
and |s0| � (S1 + 1)(T1 + 1)

M − T1
, (3·7)

where

M = max
{

R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χτ
1/2
1

}
, τ1 = (R1+1)(S1+1)(T1+1),

or there exist rational integers r1, s1, t1 and t2, with r1s1 � 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1, (3·8)

which also satisfy

|r1s1| � gcd(r1, s1) · (R1 + 1)(S1 + 1)

M − max{R1, S1} ,
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|s1t1| � gcd(r1, s1) · (S1 + 1)(T1 + 1)

M − max{S1, T1}
and

|r1t2| � gcd(r1, s1) · (R1 + 1)(T1 + 1)

M − max{R1, T1} .
Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

We apply this result with

b2 = p, α2 = |x |, b1 = 1, α1 = √
2, b3 = |k| and α3 = 1 + √

2,

so that we may take

D = 2, d1 = 1, d3 ∈ {1, p}, a1 = ρ + 3

2
log 2, a2 = (ρ + 3) log |x |

and a3 = (ρ + 1) log(1 + √
2), whence a = a1. Our goal is to choose L , m, ρ and χ such

that (3·5) contradicts (3·2), and (3·7) contradicts (3·4), whereby we necessarily have (3·8).
Setting

L = 545, m = 25, ρ = 5 and χ = 2,

we find, after a short Maple computation, that, for 3 · 1010 < p � P0 and all |x | � 7, we are
in situation (3·8), whereby there exist integers r1, s1, t1 and t2 for which

(t1 + r1|k|)s1 = r1t2 p, (3·9)

where ∣∣∣∣ r1s1

gcd(r1, s1)

∣∣∣∣ � 80 and

∣∣∣∣ s1t1

gcd(r1, s1)

∣∣∣∣ � 41.

Similarly, for 2 · 1010 < p < 3 · 1010, we choose

L = 545, m = 21, ρ = 5 and χ = 2,

to deduce the existence of integers r1, s1, t1 and t2 with (3·9) and∣∣∣∣ r1s1

gcd(r1, s1)

∣∣∣∣ � 75 and

∣∣∣∣ s1t1

gcd(r1, s1)

∣∣∣∣ � 39.

Since, in all cases, we assume that p > 2 · 1010, we thus have

max{|r1|, |s1|, |t1|} < p.

Hence, from the fact that gcd(r1, t1) = gcd(s1, t2) = 1, it follows that r1 = ±s1, whereby
t1 + r1|k| = ±t2 p. Without loss of generality, we may thus write

u + r |k| = tp,

where r = |r1| and t = |t2| are positive integers, u = ±t1,

|u| �
{

41 if 3 · 1010 < p � P0,

39 if 2 · 1010 < p < 3 · 1010

and

r �
{

80 if 3 · 1010 < p � P0,

75 if 2 · 1010 < p < 3 · 1010 .
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The linear form � defined in (3·1) may thus be rewritten as a linear form in two logarithms

� = p log

( |x |
(1 + √

2)t/r

)
− log

( √
2

(1 + √
2)u/r

)
.

We are in position to apply the following state-of-the-art lower bound for linear forms in
the logarithms of two algebraic numbers, due to Laurent [11, theorem 2]).

THEOREM 5 (Laurent). Let α1 and α2 be multiplicatively independent algebraic num-
bers, h, ρ and μ be real numbers with ρ > 1 and 1/3 � μ � 1. Set

σ = 1 + 2μ − μ2

2
, λ = σ log ρ, H = h

λ
+ 1

σ
,

ω = 2

(
1 +

√
1 + 1

4H 2

)
, θ =

√
1 + 1

4H 2
+ 1

2H
.

Consider the linear form � = b2 log α2 − b1 log α1, where b1 and b2 are positive integers.
Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R]

and assume that

h � max

{
D

(
log

(
b1

a2
+ b2

a1

)
+ log λ + 1.75

)
+ 0.06, λ,

D log 2

2

}
,

ai � max {1, ρ| log αi | − log |αi | + 2Dh(αi )} (i = 1, 2),

and

a1a2 � λ2.

Then

log |�| � −C

(
h + λ

σ

)2

a1a2 − √
ωθ

(
h + λ

σ

)
− log

(
C ′

(
h + λ

σ

)2

a1a2

)
(3·10)

with

C = μ

λ3σ

(
ω

6
+ 1

2

√
ω2

9
+ 8λω5/4θ1/4

3
√

a1a2 H 1/2
+ 4

3

(
1

a1
+ 1

a2

)
λω

H

)2

and

C ′ =
√

Cσωθ

λ3μ
.

We apply this result with

b1 = 1, b2 = p, α1 =
√

2

(1 + √
2)u/r

and α2 = |x |
(1 + √

2)t/r
,

so that D = 2r ,

h(α1) � log 2

2
+ |u|

2r
log(1 + √

2) and h(α2) � log |x | + t

2r
log(1 + √

2).
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Further, we may choose

a1 =
(

2r + ρ − 1

2

)
log 2 + |u|

(
2 + ρ + 1

r

)
log(1 + √

2)

and

a2 = (8 r + 1) log |x |.
That this latter choice is a valid one follows from the fact that |x |p > (1 + √

2)|k|, whereby

t <

(
u

|k| + r

)
log |x |

log(1 + √
2)

,

and the assumption that ρ < 106, say.
Choosing ρ = 283 and μ = 0.6, we find, for p > 3 ·1010, |x | � 7 and all −41 � u � 41,

1 � r � 80, that inequality (3·10) contradicts (3·2), whilst the same is true (with identical
parameter choices), for primes p with 2 · 1010 < p < 3 · 1010, −38 � u � 38, 1 � r � 75.
The final case is when (r, u) = (75, ±39) which reduces immediately to that with (r0, u0) =
(25, ±13) upon dividing by the gcd(r, u).

Proposition 3·1 thus follows, as desired.

4. Frey curves and Hilbert modular forms

4·1. The Frey curve

We next return to solutions to (2·1), to which we shall now associate a Frey curve:

Es,k : Y 2 = X (X + 1)(X + s · εk
√

2) (4·1)

where the choice of sign s = ±1 and the value of k arises from Lemma 2·1. By an easy
application of Tate’s algorithm we find the following.

LEMMA 4·1. The curve Es,k has minimal discriminant

�min = 32ε2(k+�)α2p

and conductor

N = (
√

2)9 ·
∏
q|α

q.

Our goal is to use the arithmetic of this Frey curve to show that any solution to (2·1)
necessarily closely resembles one of the “trivial” ones with x = 1 and y = k = ±1.

4·2. Irreducibility

We shall make use of the following result due to Freitas and Siksek [9], which is based on
the work of David [6] and Momose [14].

PROPOSITION 4·2. Let K be a totally real Galois number field of degree d, with ring of
integers OK and Galois group G = Gal(K/Q). Let S = {0, 12}G, which we think of as the
set of sequences of values 0, 12 indexed by τ ∈ G. For s = (sτ ) ∈ S and α ∈ K , define the
twisted norm associated to s by

Ns(α) =
∏
τ∈G

τ(α)sτ .
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Let ε1, . . . , εd−1 be a basis for the unit group of K , and define

As := Norm (gcd((Ns(ε1) − 1)OK , . . . , (Ns(εd−1) − 1)OK )) . (4·2)

Let B be the least common multiple of the As taken over all s � (0)τ∈G, (12)τ∈G. Let p � B
be a rational prime, unramified in K , such that p � 17 or p = 11. Let E/K be an elliptic
curve, and q � p be a prime of good reduction for E. Define

Pq(X) = X 2 − aq(E)X + Norm(q)

to be the characteristic polynomial of Frobenius for E at q. Let r � 1 be an integer such
that qr is principal. If E is semistable at all p | p and ρE,p is reducible then

p | Res(Pq(X) , X 12r − 1) (4·3)

where Res denotes the resultant of the two polynomials.

We now return to the case where E = Es,k is our Frey curve (4·1).

LEMMA 4·3. For E = Es,k as above, ρE,p is irreducible for p � 5.

Proof. We suppose first that p � 17 or p = 11, and apply Proposition 4·2. The constant
B in the proposition is simply

B = Norm(ε12 − 1) = −25 · 52 · 72,

whereby if p � 11 then p � B. Suppose that ρE,p is reducible. From (2·1), if q ≡ 3, 5
(mod 8) then q � x and so E has good reduction at (the inert prime) q.

We write μq for the multiplicative order of ε modulo q. Note that the trace aq(Es,k)

depends only on the choice of sign s = ±1 and on the value of k modulo μq . We shall
restrict our attention to the following set of primes

Q = {3, 5, 11, 13, 19, 29, 43, 59, 83, 109, 131, 139, 251, 269, 307, 419, 461, 659}.
The primes q ∈ Q satisfy q ≡ 3, 5 (mod 8) and also

μq | 9240 = 23 · 3 · 5 · 7 · 11.

Recall also that k is odd, and that ±εk
√

2 − 1 = ε�α p � 0 (mod q). Let

S = {(t, m) : 0 � m < 9240 odd, t = ±1, q � (t · εm
√

2 − 1) for all q ∈ Q}. (4·4)

It is clear that there is some (t, m) ∈ S such that aq(Es,k) = aq(Et,m) for all q ∈ Q. By
Proposition 4·2, we see that p divides R(t,m) where

R(t,m) = gcd{Res(x12 − 1, x2 − aq(Et,m)x + q2) : q ∈ Q}.
Using a short Magma [2] script, we computed R(t,m) for (t, m) ∈ S and checked that R(t,m) is
divisible only by powers of 2, 3, 5, 7 and 13. Thus ρE,p is irreducible for p � 17 or p = 11.

We now briefly treat p ∈ {5, 7, 13}. In each case, we will in fact show that there is no
elliptic curve E/K with full 2-torsion and a p-isogeny. Here we found Magma’s built-in
Small Modular Curve package invaluable.

(a) An elliptic curve E/K with full 2-torsion and a 5-isogeny is isogenous over K to
an elliptic curve with a 20-isogeny, and so gives rise to a non-cuspidal K -point on
X0(20). A model for X0(20) is given by the elliptic curve

X0(20) : y2 = x3 + x2 + 4x + 4,
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which has Cremona reference 20A1. This has rank 0 over K , and in fact a full list of
K -points is {∞, (4, ±10), (0, ±2), (−1, 0)}. These points are all cuspidal, complet-
ing the proof for p = 5.

(b) An elliptic curve E/K with a 7-isogeny and a point of order 2 gives rise to a non-
cuspidal K -point on X0(14). A model for X0(14) is given by the elliptic curve

X0(14) : y2 + xy + y = x3 + 4x − 6,

which has Cremona reference 14A1. This again has rank 0 over K . The K -points are
{∞, (9, 23), (1, −1), (2, −5), (9, −33), (2, 2)}. The first four points are cusps. The
last two correspond to elliptic curves with j-invariants −3375 and 16581375. It turns
out that elliptic curves with these j-invariants have only one point of order 2 over K .
This completes the proof for p = 7.

(c) An elliptic curve E/K with a 13-isogeny and a point of order 2 gives rise to a
non-cuspidal K -point on X0(26), which has genus 2. We shall in fact work with
X0(26)/〈w13〉, where w13 is the Atkin-Lehner involution. This quotient is the elliptic
curve with Cremona reference 26B1:

X0(26)/〈w13〉 : y2 + xy + y = x3 − x2 − 3x + 3.

Again this has rank 0 over K , and a full list of K -points is given by

{∞, (−1, −2), (−1, 2), (1, −2), (1, 0), (3, −6), (3, 2)}.
The only K -points we obtain by pulling back to X0(26) are cusps. This completes
the proof.

4·3. Level-lowering

Suppose that p � 5. By [7], elliptic curves over real quadratic fields are modular; in
particular E is modular. We now apply the standard level-lowering recipe found in [8] and
based on theorems of Fujiwara, Jarvis and Rajaei (it is here that we require Lemma 4·3).
From the recipe we know that ρE,p ∼ ρ f,p for some Hilbert newform over K of level
M = (

√
2)9 and prime ideal p | p. Using Magma, we find that the space of Hilbert newforms

of level M is 8-dimensional, and in fact decomposes into 8 rational eigenforms.
Through a small search, we found 8 elliptic curves over K of conductor M. By computing

their traces at small prime ideals, we checked that they are in fact pairwise non-isogenous.
These elliptic curves are all modular by the same theorem cited above, and hence must
correspond to the 8 Hilbert newforms of level M. Thus ρE,p ∼ ρFi ,p where F1, . . . , F8 are
the 8 elliptic curves given as follows:

F1 : Y 2 = X 3 + √
2X 2 + (

√
2 − 1)X,

F2 : Y 2 = X 3 + (−√
2 + 3)X 2 + (−√

2 + 2)X,

F3 : Y 2 = X 3 + (2
√

2 − 1)X 2 + (−√
2 + 2)X,

F4 : Y 2 = X 3 + (
√

2 − 2)X 2 + (−√
2 + 1)X,

F5 : Y 2 = X 3 + (−√
2 + 1)X 2 − √

2X,

F6 : Y 2 = X 3 + (
√

2 − 1)X 2 − √
2X,

F7 : Y 2 = X 3 + (
√

2 + 3)X 2 + (
√

2 + 2)X,

F8 : Y 2 = X 3 − √
2X 2 + (−√

2 − 1)X.
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LEMMA 4·4. Let E = Es,k and let F be one of the eight elliptic curves F1, . . . , F8 above.
Suppose that ρE,p ∼ ρF,p and let q � 2 be a prime ideal of K , and q be the rational prime
such that q | q.

(i) If q � (sεk
√

2 − 1) then aq(E) ≡ aq(F) (mod p).
(ii) If q | (sεk

√
2 − 1) and q � 7 (mod 8) then Norm(q) + 1 ≡ aq(F) (mod p).

(iii) If q | (sεk
√

2 − 1) and q ≡ 7 (mod 8) then Norm(q) + 1 ≡ −aq(F) (mod p).

Proof. From the model (4·1), it is easy to see that Es,k has good reduction at q in case (i),
split multiplicative reduction in case (ii) and non-split multiplicative reduction in case (iii).
If q � p, the lemma follows by comparing traces of the images of Frobenius at q for the
representations ρE,p and ρF,p. For q = p see [10, proposition 3].

LEMMA 4·5. The s = ±1 sign in (2·3), (2·5) and (4·1) is in fact +1. Moreover, either
k ≡ −1 (mod 9240) and ρE,p ∼ ρF2,p or k ≡ 1 (mod 9240) and ρE,p ∼ ρF7,p.

Proof. We shall use ideas from the proof of Lemma 4·3. For a prime ideal q we let μq be
the order of ε modulo q. In the proof of Lemma 4·3, we restricted ourselves to inert primes.
It is useful to now also use split primes. Let

Q = {q : μq | 9240, 3 � Norm(q) < 1000}.
Fix i ∈ {1, 2, . . . , 8} and suppose ρE,p ∼ ρFi ,p where E = Es,k . We let S be given

by (4·4), whereby we know that there is some (t, m) ∈ S such that s = t and k ≡ m
(mod 9240). Let q ∈ Q, and let q be the rational prime satisfying q | q. By Lemma 4·4 we
have the following:

(a) if q � (tεm
√

2 − 1) then aq(Et,m) = aq(Es,k) ≡ aq(Fi) (mod p);
(b) if q | (tεm

√
2 − 1) and q � 7 (mod 8) then Norm(q) + 1 ≡ aq(Fi) (mod p);

(c) if q | (tεm
√

2 − 1) and q ≡ 7 (mod 8) then Norm(q) + 1 ≡ −aq(Fi) (mod p).

Define

βt,m,i (q) =

⎧⎪⎨
⎪⎩

aq(Et,m) − aq(Fi) if q � (tεm
√

2 − 1)

Norm(q) + 1 − aq(Fi) if q | (tεm
√

2 − 1) and q � 7 (mod 8)

Norm(q) + 1 + aq(Fi) if q | (tεm
√

2 − 1) and q ≡ 7 (mod 8) .

We let

γt,m,i = gcd(βt,m,i (q) : q ∈ Q).

Note that if s = t , k ≡ m (mod 9240) and ρE,p ∼ ρFi ,p, then p | γt,m,i . Using a Magma
script, we computed γt,m,i for all (t, m) ∈ S and i ∈ {1, 2, . . . , 8}. We found that all of
these are divisible only by 2 and 3, except for γ1,9239,2 and γ1,1,7 which are both zero. Hence
s = +1, and either k ≡ −1 (mod 9240) and Fi = F2 or k ≡ 1 (mod 9240) and Fi = F7.

Note, in fact, that F2 is isomorphic to E1,−1 and F7 is isomorphic to E1,1 (which explains
why γ1,9239,2 = γ1,1,7 = 0).

We now simplify our Frey curve in (4·1) to take account of the sign s = +1. We denote
the new Frey curve by

Ek : Y 2 = X (X + 1)(X + εk
√

2).

Equations (2·1) and (2·3) satisfy the following useful symmetry.
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LEMMA 4·6. Let (x, y, k, �, α) be a solution to equations (2·1) and (2·3), satisfying (2·4).
Then (x, −y, −k, −�, (−1)�α) is also a solution to equations (2·1) and (2·3), also satisfying
(2·4).

Proof. The lemma follows on conjugating equations (2·3) and (2·5), observing that ε =
−ε−1, and recalling that k is odd.

5. Arithmetic information from Frey curves

We continue with the same notation as in the previous section. Our basic goal is to obtain
lower bounds for the exponent |k| in the event that k � 1.

5·1. Sieving: part I

We begin by sharpening (part of) Lemma 4·5.

PROPOSITION 5·1. Suppose that p � 19 and let

M = 9240
∏

3��<2.4×105
� prime

�. (5·1)

Then k ≡ ±1 (mod M). In particular, k = ±1 or log10 |k| � 103944.

Proof. We start by defining M0 = 9240 = 23 · 3 · 5 · 7 · 11. We know from Lemma 4·5
that k ≡ ±1 (mod M0). By Lemma 4·6, we may assume that k ≡ 1 (mod M0), and will
use this to deduce that k ≡ 1 (mod M). It then plainly follows that if k ≡ −1 (mod M0)

then k ≡ −1 (mod M).
Suppose k ≡ 1 (mod M0). Let

�1 = 3, �2 = 5, �3 = 7, . . .

be the sequence of primes starting with 3. We define Mn = �n · Mn−1. We will show induct-
ively that k ≡ 1 (mod Mn) until Mn = M . A direct computation, showing that M somewhat
exceeds 10103944, yields the last statement in the proposition.

For the inductive step, suppose k ≡ 1 (mod Mn−1). Our strategy is to write down a small
set Q of odd prime ideals q of K satisfying

�n | μq, μq | Mn;
here as before, μq is the multiplicative order of ε modulo q. Let

K = {1, 1 + Mn−1, 1 + 2Mn−1, . . . , 1 + (�n − 1)Mn−1}.
We know that k ≡ m (mod Mn) for some m ∈ K. By the previous section, p divides
β1,m,7(q) for all q ∈ Q. For m ∈ K, we compute gcdq∈Q(β1,m,7(q)). With a sufficiently large
enough initial set Q, we found that this gcd is divisible only by primes � 17 unless m = 1
(in which case it is 0). This shows that k ≡ 1 (mod Mn). The Magma script executing this
proof took roughly 218 hours to run on a 2200MHz AMD Opteron.

5·2. Sieving: part II

In view of Proposition 5·1, we suppose k ≡ ±1 (mod M) where M is given by (5·1).
The objective of this subsection is to show the following.

PROPOSITION 5·2. For primes 19 � p < 2 · 1010 we have k ≡ � ≡ ±1 (mod p), where
k and � are the exponents in (2·3). In particular, via (2·4), we have that � = ±1.
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We shall suppose that k ≡ 1 (mod M) and deduce k ≡ � ≡ 1 (mod p). The Proposition
then follows from Lemma 4·6. Fix p � 19. Inspired by [5, lemma 7·4], we choose an
auxiliary integer q satisfying certain conditions, which we enumerate as needed. The first
two conditions are the following:

(i) q ≡ 1 (mod 8) is prime;
(ii) q = np + 1, where n is an integer.

Fix δ ∈ Fq satisfying δ2 ≡ 2 (mod q) (which we may do, via assumption (i)). Let

q1 = qOK + (
√

2 − δ)OK and q2 = qOK + (
√

2 + δ)OK .

Then q1 and q2 are prime ideals with residue field Fq ,
√

2 ≡ δ (mod q1) and
√

2 ≡ −δ (mod q2).

Let

F1 : Y 2 = X 3 + (δ + 3)X 2 + (δ + 2)X

and

F2 : Y 2 = X 3 + (−δ + 3)X 2 + (−δ + 2)X.

These are the reductions of F7 modulo q1 and q2, respectively. We shall suppose that q is
chosen so that the following condition on the traces of Fi is satisfied.

(iii) aq(Fi)�±2 (mod p) for i = 1, 2.

Note that q ≡ 1 (mod p) by condition (ii). By Lemma 4·4, we see that

qi � (εk
√

2 − 1).

Thus by Lemma 2·1, q � x . Appealing to Lemma 4·4 again, we have

aq1(Ek) ≡ aq(F1) (mod p) and aq2(Ek) ≡ aq(F2) (mod p). (5·2)

By (2·5) and Lemma 4·5, we have

y +
(

x p + 3

4

)√
2 = εk,

whence, using the fact that k is odd,(
x p + 3

2

)√
2 = εk + ε−k . (5·3)

Let

μn(Fq) = {μ ∈ F∗
q : μn ≡ 1 (mod q)},

whereby, as q � x and q = np + 1, we see that

(x p mod q) ∈ μn(Fq).

Let

Wq =
{

e ∈ Fq : e + e−1 = (μ + 3)δ

2
for some μ ∈ μn(Fq)

}
.

By (5·3), we have that

εk ≡ e (mod q1) and εk ≡ −e−1 (mod q2), (5·4)
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for some e ∈ Wq . Moreover, since qi � (εk
√

2 − 1), if we define

Xq = {e ∈ Wq : e � δ±1 (mod q)},
then necessarily (5·3) holds for some e ∈ Xq . In practice, we hope to be able to find a
prime q satisfying the foregoing and forthcoming conditions, with n small. Computing Wq

amounts to solving n quadratic equations in Fq . The size of Wq and thus Xq is at most 2n.
Thus we know that the reduction of εk modulo q1 belongs to this relatively small set. We
will now refine Xq , defining subsets Yq , and Zq that also contain the reduction of εk modulo
q1. To do this, also suppose that q is chosen so that the following condition is satisfied:

(iv) n | M .

Since k ≡ 1 (mod M), we see that (q − 1) | (k − 1)p, whereby

(εk−1)p ≡ 1 (mod qi).

Note that ε ≡ 1 + δ (mod q1). Let

Yq =
{

e ∈ Xq :
(

e

1 + δ

)p

≡ 1 (mod q)

}
.

We see that (5·4) holds for some e ∈ Yq . Heuristically, the probability that a random element
of Xq belongs to Yq is 1/n. Since #Xq � 2n, we expect that #Yq = O(1).

For the next refinement, we will use information derived from the modular approach, as
given in (5·2). Write

E1,e : Y 2 = X (X + 1)(X + e · δ) and E2,e : Y 2 = X (X + 1)(X + e−1 · δ).

Given (5·4), these two elliptic curves over Fq are the reductions of the Frey curve Ek modulo
q1, q2. Let Zq be the set of e ∈ Yq such that

aq(E1,e) ≡ aq(F1) (mod p) and aq(E2,e) ≡ aq(F2) (mod p).

We know from (5·2) that (5·4) holds for some e ∈ Zq . Note that Zq cannot be empty, as the
value k = 1 leads to a solution to our original equation (2·1). Thus certainly, 1 + δ (which
is the reduction of ε modulo q1) must appear in Zq . This, of course, is a useful check on the
correctness of our computations.

It is reasonable to expect on probabilistic grounds that Zq = {1 + δ}. In fact, this is one
of our two final assumptions on q:

(v) Zq = {1 + δ};
(vi) (1 + δ)n � 1 (mod q).

From (v), we see that

(1 + δ)k ≡ εk ≡ 1 + δ (mod q1).

Thus the multiplicative order of 1 + δ in F∗
q divides k − 1. Since q − 1 = np, we have from

(vi) that this multiplicative order must be divisible by p. Therefore, k ≡ 1 (mod p). We
now turn our attention to �. Reducing (2·3) modulo q1 (and recalling the value of the sign
from Lemma 4·5) we have

(1 + δ)δ − (1 + δ)�α p ≡ 1 (mod q1).

As δ2 ≡ 2 (mod q1), it follows that

(1 + δ)�α p ≡ 1 + δ (mod q1)
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and so

(1 + δ)n(�−1) ≡ α−np ≡ 1 (mod q1).

From (vi), we conclude that � ≡ 1 (mod p). The following lemma summarizes the above.

LEMMA 5·3. Suppose k ≡ 1 (mod M). Suppose there is a prime q satisfying conditions
(i)–(vi). Then

k ≡ � ≡ 1 (mod p).

Proof of Proposition 5·2. As observed previously, it is sufficient to suppose that k ≡ 1
(mod M) and show that k ≡ � ≡ 1 (mod p), for primes p in the range 19 � p < 2 · 1010.
We used a Magma script which for each prime p in this range, finds a prime q satisfying con-
ditions (i)–(vi) above. The total processor time for the proof is roughly 1946 hours, although
the computation, running on a 2200MHz AMD Opteron, was spread over 10 processors,
making the actual computation time less than nine days.

6. Reducing our upper bound on p

From Proposition 3·1, we may suppose that p < 2 · 1010. The goal of this section is to
reduce this upper bound still further. Let p � 19. We have, according to Lemma 4·5, that
s = 1 in (2·3). We will assume for the remainder of this section that k > 1. Appealing to
Proposition 5·2, there exists a positive integer k0 such that k = pk0 ± 1, whereby we may
now rewrite

εk
√

2 − εlα p = 1

as one of

α p − √
2

(
εk0

)p = ±1 − √
2, (6·1)

so that

0 < �1 = log(
√

2) − p log
( α

εk0

)
< ε · α−p. (6·2)

Applying Theorem 5, with

b2 = 1, α2 = √
2, b1 = p, α1 = α/εk0 and D = 2,

we may take

a1 = (ρ − 1)
log 2

2p
+ 2 log(α) + 4 h(α) � (ρ − 1)

log 2

2p
+ 6 log(α)

and

a2 =
(

ρ + 3

2

)
log 2.

We choose ρ = 27 and μ = 1/3, whereby a short calculation ensures that inequality (3·10),
together with the fact that α �

√
7, contradicts (6·2) for p > 1637. Computing the first

107 terms in recursion (2·2), verifying that none of them coincide with solutions to (2·1)
and noting that the 107th term exceeds exp(8.8 · 106), we thus have |x | > 102348 and hence
|α| > 101174. Now choosing ρ = 31 and μ = 1/3 in Theorem 5, and using our new lower
bound upon α, we find that p � 941.
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6·1. Handling the values of 19 � p � 941

From equation (6·1), it suffices to solve the family of Thue equations

X p − √
2 Y p = ±1 − √

2, (6·3)

in integers X, Y ∈ Z[√2], for primes p with 19 � p � 941, to handle (2·1) for these values
of p. We will do this under the additional assumption that

Y = εk0 > 1.

We argue as in the proof of [5, proposition 9·3]. Define ω = 21/2p to be real and positive
and let ζ be a primitive p-th root of unity. Set K = Q(ω) and L = Q(ω, ζ ). It is straightfor-
ward to check that an integral basis for K is 1, ω, . . . , ω2p−1, and to use this to deduce that
the discriminant of K is DK = 24p−1 p2p. Moreover, the unit rank of K is p and its Galois
closure is L . We write ε1,1, . . . , ε1,p for a system of fundamental units of K which, via [5,
lemma 9·6], we may suppose to satisfy

p∏
i=1

h(ε1,i ) � 21−p(p!)2(2p)−p RK , (6·4)

where RK denotes the regulator of K . Further, the absolute values of the inverse of the
regulator matrix corresponding to ε1,1, . . . , ε1,p are bounded above by (p!)22−p log3(6p).
There thus exist integers b1, . . . , bp such that

X − ωY = ±ε
b1
1,1 · · · εbp

1,p,

where

B = max{|b1|, . . . , |bp|} � 21−p p(p!)2 log3(6p) h(X − ωY ).

We will assume that k is positive; the argument for negative k is similar and leads to an
identical conclusion. From (6·3), considering imaginary parts, we have that

|X − ωY | = (
√

2 ± 1)

p−1∏
i=1

∣∣X − ωζ i Y
∣∣−1 � (

√
2 + 1) ω1−p |Y |1−p

(p−1)/2∏
i=1

sin−2(π i/p),

whence

|X − ωY | < 2p |Y |1−p. (6·5)

It follows that ∣∣X − ωζ j Y
∣∣ � ω|Y | ∣∣1 − ζ j

∣∣ + 2p |Y |1−p < 2.1 |Y |,
where, from the assumption that k > 1, we have

log |Y | = k ± 1

p
log(1 + √

2) � M

p
log(1 + √

2) > 10103942 log(1 + √
2). (6·6)

Here, M is as in Proposition 5·1. We therefore estimate that

h(X − ωY ) < 0.75 + log |Y | < 1.01 log |Y |,
whereby, crudely,

B < p2p log |Y |. (6·7)



322 M. BENNETT, S. DAHMEN, M. MIGNOTTE AND S. SIKSEK

Define ε2,i and ε3,i for 1 � i � p as the images under σ and σ 2 of ε1,i , where σ is the
field automorphism that sends ω to ωζ and fixes ζ . If, following Siegel, we set

λ = −ζ

1 + ζ
· X − ωY

X − ζωY
= X − ζ 2ωY

X − ζωY
· 1

1 + ζ
− 1,

then we have

λ =
(

ε3,1

ε2,1

)b1

· · ·
(

ε3,p

ε2,p

)bp 1

1 + ζ
− 1.

Since |ζ/(1 + ζ )| < 1, arguing crudely, from (6·5), we have that |λ| < 2p |Y |1−p and so

log |λ| < p log 2 − (p − 1) log |Y |. (6·8)

It follows from (6·6) that |λ| < 1/3 whereby there exists b0 ∈ Z with |b0| � (p + 1)B such
that, if we define a corresponding linear forms in logarithms

� =
∣∣∣∣b0 log(−1) + b1 log

(
ε3,1

ε2,1

)
+ · · · + bp log

(
ε3,p

ε2,p

)
− log (ζ + 1)

∣∣∣∣ ,
we have � � 2|λ|.

To obtain a lower bound upon � (and hence |λ|), we will apply Theorem 3, arguing as in
[5, section 9·3]. Suppressing the details, after some work we arrive at an inequality of the
shape

log |λ| > −22p+16 p2p+11 log
(

p3p log |Y |) (p!)2 RK . (6·9)

We apply [5, lemma 9·1] to bound the regulator RK . If we suppose that we have DK � L ,
then

RK < min{ fK (L , 2 − t/1000) : t = 0, 1, . . . , 999},
where

fK (L , s) = 2−1
(

21−pπ−p
√

L
)s

(�(s/2))2 (�(s))p−1 s2p+1 (s − 1)1−2p.

Since DK = 24p−1 p2p, a short Maple computation reveals that, for 19 � p � 941, we
always have

log RK < 10458, (6·10)

where the largest value of min{ fK (L , 2 − t/1000) : t = 0, 1, . . . , 999} encountered
corresponds to p = 941 and t = 743.

Combining (6·8), (6·9) and (6·10), we thus have

log |Y | < 22p+17 p2p+10 log
(

p3p log |Y |) (p!)2 exp(10458). (6·11)

Since p � 941, in all cases we may conclude that log |Y | < 1015528, contradicting (6·6). We
may thus conclude that (1, ±1) are the only integer solutions to (2·1) for the primes p under
consideration.

6·2. Handling the values of 3 � p � 17

To finish the proof of Theorem 2, it remains to solve (2·1) for primes p with 3 � p �
17, which we shall carry out in this subsection. Our strategy is to reduce the problem of
treating equation (2·1) for a fixed odd prime p to that of solving (a finite collection of) Thue
equations over Z.
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As before, we write ε = 1 + √
2 for the fundamental unit of Z[√2] (the ring of integers

of Q(
√

2)). Consider a solution (x, y, p) to (2·1) and write

z := (x p + 3)/4, (6·12)

so that the integers y and z satisfy

y2 − 2z2 = −1,

hence, as before (see (2·5)),

y + z
√

2 = sεk

for some odd integer k and s ∈ {−1, 1}. Replacing y by −y leads to replacing k by −k (see
the proof of Lemma 4·6), so after possibly changing the sign of y we have

k ≡ s (mod 4).

Writing

a + b
√

2 = ε
k−1

2 ,

for a, b ∈ Z, we have

a2 − 2b2 = (−1)
k−1

2 = s (6·13)

and

y + z
√

2 = sε(a + b
√

2)2

= s(a2 + 4ab + 2b2) + s(a2 + 2ab + 2b2)
√

2.

Using this parametrisation for z together with (6·12) and (6·13), we have

sx p = 4sz − 3s

= 4(a2 + 2ab + 2b2) − 3(a2 − 2b2)

= a2 + 8ab + 14b2

= (a + 4b)2 − 2b2.

Since a and p are odd, this implies that

(a + 4b) + b
√

2 = εt(u + v
√

2)p (6·14)

for certain u, v, t ∈ Z with |t | � (p − 1)/2. Let us define binary forms over Z via

Fp,t(U, V ) + G p,t(U, V )
√

2 = εt(U + V
√

2)p

and

Hp,t(U, V ) = (Fp,t(U, V ) − 4G p,t(U, V ))2 − 2G p,t(U, V )2.

Then (6·13) and (6·14) lead to

Hp,t(u, v) = s,

where |u2 − 2v2| = |x |. We have now reduced the solution of (2·1) for a fixed odd prime p
to the solution of the 2p Thue equations of degree 2p

Hp,t(U, V ) = s, U, V ∈ Z, t = 0, ±1, . . . , ± p − 1

2
, s ∈ {−1, 1}. (6·15)
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Table 1. (p, t, m) for which Hp,t(U, V ) ≡ 1 (mod m) has no solutions.

p t m

3 −1 7
3 1 32

5 −2, −1, 2 52

7 −3, −2, −1, 2, 3 72

7 1, 3 13
11 −4, −1, 1, 3, 5 112

11 −5, −4, −3, −2, −1, 2, 3, 4, 5 23
13 −6, −4, −3, 4, 5 79
13 −5, −2, −1, 2, 3, 6 313
17 −8, . . . ,−1, 2, . . . , 8 103

Taking into account information from the modular method, namely Lemma 4·5, we can
restrict to s = 1 when p � 5. If p = 3, then the three Thue equations in (6·15) corresponding
to s = −1 can readily be seen to have no solutions; for t = −1, 0, 1 there are no solutions
modulo 7, 9, 5 respectively. This means that for an odd prime p we only have to solve the p
Thue equations

Hp,t(U, V ) = 1, U, V ∈ Z, t = 0, ±1, . . . , ± p − 1

2
. (6·16)

If we define h p,t(x) = Hp,t(x, 1), let γ be a root of h p,t(x, 1) = 0 and set K = Q(γ ),
then we have that the discriminant of K is 2p(6p−2)−1 p2p and that K has precisely 2 real
embeddings and hence p fundamental units.

We note that Hp,0 is monic in U , so the equation Hp,0(U, V ) = 1 always has the solutions
U = ±1, V = 0. If these are the only solutions to Hp,0(U, V ) = 1 and the other p − 1 Thue
equations in system (6·16) have no solutions, then it readily follows that (x, y) = (1, ±1)

are the only integer solution to (2·1) for our fixed odd prime p.
We restrict our attention to 3 � p � 17. First of all, the Thue equation solver in PARI/GP

[15] can (unconditionally) solve

Hp,0(U, V ) = 1

for all these primes p rather quickly. The upshot of such a computation is that, apart from
(U, V ) = (±1, 0), there are no further solutions. Many of the other Thue equations in (6·16)
can also be solved using PARI/GP. However, for some of the larger values of p and some
values of t the computations appear to take a huge amount of time (and possibly memory).
Luckily many of the Thue equations involved have local obstructions to solutions (which is
something not automatically checked by PARI/GP when trying to solve the equations). In
fact, the only pairs (p, t) with 3 � p � 17 and 1 � |t | � (p − 1)/2 for which we cannot
find a local obstruction for Hp,t(U, V ) = 1 are given by

(p, t) ∈ {(5, 1), (13, 1), (17, 1)}.
For these pairs, we can in fact use the Thue equation solver in PARI/GP to show within
reasonable time that Hp,t(U, V ) = 1 has no integer solutions. For sake of completeness, for
all (p, t) under consideration for which we found a local obstruction, we provide in Table 1
at least one modulus m such that the congruence Hp,t(U, V ) ≡ 1 (mod m) has no solutions.
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Remark. It is not strictly necessary to invoke the modular method to deal with the odd primes
p � 17. Most of the Thue equations in (6·15) with s = −1 can easily be solved, just like in
the case when p = 3. In fact, for all odd primes p � 17 and all integers t with |t | � (p−1)/2
we can find a local obstruction for

Hp,t(U, V ) = −1 (6·17)

(although some of the moduli involved are much larger than those in Table 1), except when
(p, t) ∈ {(13, −4), (13, 5)}. In the latter case the Thue equation solver in PARI/GP can
show again that (6·17) has no solutions. For (p, t) = (13, −4) we were not immediately
able to solve (6·17). We did not pursue this however, but note instead that it seems possible
to use the method of Chabauty-Coleman to deal completely with (2·1) for p = 13 without
using the modular method; see below.

6·2·1. Alternative approach to handling small p

To solve (2·1) for a fixed odd prime p, without first reducing to Thue equations, we may
note that this equation defines a hyperelliptic curve C p of genus p − 1. Hence finding all
integer or rational points on Cp would suffice. For convenience, consider the model for Cp

in weighted projective space given by

Cp : 8y2 = x2p + 6x pz p + z2p.

We want to show that Cp(Q) = {(1 : ±1 : 1)}. We have the two (non-hyperelliptic) involu-
tions on Cp

ι±p : (x : y : z) �−→ (z : ±y : x),

and their corresponding quotients

D±
p := Cp/ι

±
p .

A priori, for p > 3, it suffices to determine either D+
p (Q) or D−

p (Q) since D+
p and D−

p are
(hyperelliptic) curves of genus (p − 1)/2 > 1. For p = 3 it would suffice of course to find
that at least one of D+

p (Q) or D−
p (Q) is finite.

To calculate explicit models for D+
p and D−

p , we find the binary forms F±
p over Z of

degree p such that

F±
p (xz, (x ± z)2) = x2p + 6x pz p + z2p.

Introducing the variables

X± := xz, Y ± := (x ± z)y, Z± := (x ± z)2,

we see that models for D+
p and D−

p in weighted projective space are given by

D±
p : 8Y ±2 = Z±F±

p (X±, Z±).

Furthermore, the rational points (1 : ±1 : 1) on Cp map under ι+p to (1 : ±2 : 4) on D+
p and

under ι−p to (1 : 0 : 0) on D−
p . We note that the point at infinity (1 : 0 : 0) is also a rational

point on D+
p . It readily follows that if we can show that

D+
p (Q) = {(1 : ±2 : 4), (1 : 0 : 0)} (6·18)

or

D−
p (Q) = {(1 : 0 : 0)}, (6·19)
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Table 2. Upper bounds for ranks of the Jacobian of D+
p and D−

p .

p 3 5 7 11 13 17

Upper bound for rank(Jac(D+
p )(Q)) 1 1 1 2 1 2

Upper bound for rank(Jac(D−
p )(Q)) 0 0 1 1 1 2

then Cp(Q) = {(1, ±1, 1)} and consequently (1, ±1) are the only integer solutions to (2·1)
for the odd prime p under consideration.

Using Magma’s implementation of 2-descent on hyperelliptic Jacobians we obtain upper
bounds for the Q-ranks of Jac(D±

p ) for several primes p; see Table 2. We see that the ranks
of Jac(D−

3 )(Q) and Jac(D−
5 )(Q) are both 0. It is also easy to check that they both have trivial

torsion. As a quick corollary we now obtain that (6·19) holds for p = 3 and p = 5. In fact
(the Jacobian of) D−

3 is the elliptic curve with Cremona Reference 1728 j1; for D+
3 , the

reference is 1728e1. We can also easily check, for all primes p in Table (2), that (two of)
the three obvious rational points on D+

p give rise to a non-torsion element on the Jacobian.
We conclude that the ranks of Jac(D+

7 )(Q) and Jac(D+
13)(Q) are both 1 and that for both of

them we have an explicit generator for a subgroup of finite index. This means that it should
be possible to use the method of Chabauty–Coleman to check that (6·18) holds for p = 7
and p = 13. Determining Cp(Q) for p = 11 or p � 17 seems much harder.

7. Frey Curves for shifted powers in more general Lucas sequences

In this section, we will indicate how our preceding arguments fit into a more general
framework. Let K be a real quadratic number field, OK its ring of integers and ε ∈ OK a
fundamental unit in K , with conjugate ε. Define the Lucas sequences, of the first and second
kinds, respectively,

Uk = εk − (ε)k

ε − ε
and Vk = εk + (ε)k , for k ∈ Z.

Let a, c ∈ Q with a � 0, and consider the problem of determining the shifted powers axn +c
in one of these sequences, i.e. determining all integers k, x and n with n � 2 such that we
have

Uk = axn + c (7·1)

or

Vk = axn + c. (7·2)

If e.g. ε = (1 + √
5)/2, this amounts to determining shifted powers in the Fibonacci (Uk) or

Lucas (Vk) sequences. If ε = 1 + √
2, (a, c) = (±1/4, ±3/4) and k is odd, equation (7·1)

corresponds to the main problem of this paper.
We will show that the arguments of this paper can potentially resolve such problems

corresponding to either:
(i) equation (7·1) with k odd and Norm(ε) = −1; or

(ii) equation (7·2) with either k even or Norm(ε) = 1.
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We proceed from the observation that

εk + ε−k ± 2 =
⎧⎨
⎩

(
εk/2 ± ε−k/2

)2
if k is even,

ε
(
ε

k−1
2 ± ε

−k−1
2

)2
if k is odd.

(7·3)

If k is odd and Norm(ε) = −1, we have (ε)k = −ε−k whereby(
ε + ε−1

)
Uk ± 2 = ε

(
ε

k−1
2 ± ε

−k−1
2

)2
.

It follows from equation (7·1) that

(ε + ε−1)axn + ((ε + ε−1)c ± 2) = εγ 2
k,±, (7·4)

where

γk,± := ε
k−1

2 ± ε
−k−1

2 ∈ OK ,

Similarly, if either k is even, or Norm(ε) = 1, we have

Vk = εk + ε−k,

and hence, from (7·3) and assuming that we have (7·2),

axn + (c ± 2) =
{

τ 2
k,± if k is even,

εγ 2
k,± if k is odd,

(7·5)

where

τk,± := εk/2 ± ε−k/2 ∈ OK .

To either three term relation (7·4) or (7·5), we can actually associate several Frey curves –
the most obvious are those corresponding to the generalized Fermat equations of signature
(n, n, 2) or signature (n, 3, 2). Both these Frey curves are defined over the totally real num-
ber field K and therefore amenable to a Hilbert modular approach. In this setting, we can in
fact generalize our choices of a, c ∈ Q to a, c ∈ K and x ∈ Z to x ∈ OK .

Remark. If we also want to study (7·1) for k even or Norm(ε) = 1, or equation (7·2) when
k is odd and Norm(ε) = −1, we can write down similar three term relations to those above,
but now over K (

√−1). The resulting Frey curves will therefore not a priori be defined over
a totally real number field.

8. Other applications

In [3], equation (1·1) is solved in the case where {uk} = {Fk}, the Fibonacci numbers
and c = ±1. In this situation, the problem actually reduces to that of determining (almost)
perfect powers in the Fibonacci and Lucas sequences (a program that is carried out in [5];
see also [4]), through a series of identities akin to

F4k + 1 = F2k−1L2k+1.

Here, {Lk} denotes the Lucas numbers, the companion sequence to the Fibonacci numbers.
This reduction in case c = ±1 depends crucially upon the fact that

F−1 = F1 = F2 = 1 and F−2 = −1,

and does not apparently extend to permit solution of the equation Fk = axn + c for even a
single fixed pair (a, c) with |c| > 1 (the case c = −2 is given as an open problem in [3]).
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As explained in the preceding section, the methods of this paper potentially permit solu-
tion of Fk = axn + c for any given pair (a, c) and odd values of the index k. For certain
choices of c, however, the elementary arguments of [3] allow one to handle the remaining
even index terms. By way of example, let us suppose that c = F2 j , for some integer j , so
that

|c| ∈ {1, 3, 8, 21, 55, 144, . . .}
whereby we are considering equations of the shape

Fk ± F2 j = axn, (8·1)

for given fixed a and j (here, k, x and n are variables). Then, appealing to the identity

Fi L j = Fi+ j + (−1) j Fi− j ,

we have that

F4k = F2k+ j L2k− j + (−1) j+1 F2 j

and

F4k = F2k− j L2k+ j + (−1) j+1 F−2 j = F2k− j L2k+ j + (−1) j F2 j .

Assuming that we have F4k = axn + c, if also j is even, say, it follows that

axn = F2k− j L2k+ j ,

whilst if j is odd,

axn = F2k+ j L2k− j .

Similarly, the identities

F4k+2 = F2k+ j+1 L2k− j+1 + (−1) j F2 j

and

F4k+2 = F2k− j+1L2k+ j+1 + (−1) j+1 F2 j ,

with F4k+2 = axn + c, imply that

axn = F2k+ j+1 L2k− j+1 or axn = F2k− j+1 L2k+ j+1.

In all cases, we are able to descend to a problem of (almost) perfect powers in the Fibonacci
or Lucas sequences, one that has proven to be computationally tractable (whereby the same
is potentially true for equation (8·1)).
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