
ACTA ARITHMETICA

122.4 (2006)

On the number of solutions of simultaneous Pell equations II

by

Michael A. Bennett (Vancouver), Mihai Cipu (Bucureşti),
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1. Introduction. In the study of Diophantine equations, there arise
situations where a given equation is known to have at most finitely many
solutions, but where a more quantitative result is not available. For example,
if we wish to deduce upper bounds for the number of integral points on a
curve defined by F (x, y) = 0 where F ∈ Z[x, y], in many cases of interest,
such as those corresponding to parametrized families of elliptic curves, the
dependence (or lack thereof) of the bound upon the coefficients of F is
unclear (though there are a number of conjectures of related interest).

In some cases, however, rather precise information is available. If a and b
are distinct positive integers, then one can show that the number of integral
solutions to the simultaneous Diophantine equations

(1) x2 − az2 = 1, y2 − bz2 = 1

is bounded independent of a and b. In fact, a result of the first author
(Theorem 1.1 of [4]) implies that there are at most three solutions in positive
integers (x, y, z); in special cases, even more precise information is available
(cf. e.g. [11] and [12]). We note that equations of this and similar forms arise
in a variety of contexts (see e.g. [2], [7] and [8]).

Relatively recently, Yuan [13] strengthened the main result of [4], proving

Theorem 1.1 (Yuan [13]). If a and b are distinct positive integers with

max{a, b} > 1.4 · 1057, then the system of equations (1) has at most two

solutions in positive integers (x, y, z).

The principal tool in this sharpening is an improved “gap principle” for
solutions to (1), arising from a careful study of properties of binary recur-
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rence sequences. In this paper, we will apply the arguments of [4] and [13],
in conjunction with a new gap principle from unpublished work of the fourth
author, to prove

Theorem 1.2. If a and b are distinct positive integers, then the system

of equations (1) has at most two solutions in positive integers (x, y, z).

As we shall see later, there exist infinitely many pairs (a, b) for which
(1) has precisely two such positive solutions, whereby the stated bound is
sharp. Further, let us note that this theorem supersedes the main result
of [5] (which itself depends upon hitherto unpublished work of Voutier).

The organization of this paper is as follows. We begin by stating a pair
of results which enable us to ensure that solutions to (1) are not too close
together (in height). In the remainder of the paper, we combine these with
lower bounds for linear forms in (three) complex logarithms, an inequality
derived from the hypergeometric method of Thue and Siegel, elementary
arguments, and a number of reasonably routine computations, to complete
the proof of Theorem 1.2.

This paper actually arose from independent work of Bennett and
Okazaki, and of Cipu and Mignotte; it is essentially the former. While the
details of these differ somewhat, we feel that they are similar enough to war-
rant joint publication. We will attempt to indicate, as we proceed, where the
proof of Cipu and Mignotte differs from that presented here; an expanded
version of this other proof can be found in [6].

Arguments similar to those given in this paper may be applied to sharpen
various related results (on other families of simultaneous quadratic equa-
tions), such as those in Yuan [14]. We will not undertake this here.

2. Gap principles. Let us assume, here and henceforth, that b > a
are positive nonsquare integers. We begin by noting that if (xi, yi, zi) is a
positive solution to (1), then we may write

(2) zi =
αji − α−ji

2
√

a
=

βki − β−ki

2
√

b

where α and β correspond to the fundamental solutions to the equations
x2 − az2 = 1 and y2 − bz2 = 1 respectively (i.e. the fundamental units in
Q(

√
a) or Q(

√
b), or small powers thereof) and ji and ki are positive integers.

As noted in [13], we may assume, without loss of generality, that a = m2−1
and b = n2 − 1 with n > m > 1 integers (and hence that α = m +

√
m2 − 1

and β = n +
√

n2 − 1). Let us suppose that (2) holds for 1 ≤ i ≤ 3 where
1 = j1 < j2 < j3 (since we assume a = m2 − 1, b = n2 − 1, we have z1 = 1).

In this section, we provide a pair of results which ensure that solutions
to (1) cannot lie too “close together”. The first of these follows immediately
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from Lemmata 2.2, 2.4 and the proofs of Lemmata 2.6 and 2.7 of [13]. We
note that these lemmata, while correct as stated in [13], have proofs which,
in a number of cases, are in need of serious repair. For details, we direct the
reader to [6].

Lemma 2.1 (Yuan [13]). Suppose that a and b are distinct , nonsquare

positive integers such that there exist three positive solutions (x1, y1, z1),
(x2, y2, z2) and (x3, y3, z3) to (1) with corresponding ji satisfying j1 < j2 < j3.

Then there exists a positive integer q such that either

(i) j3 = qj2 with q ≥ z2, or

(ii) j3 = 2qj2 ± 1, with q ≥











n/m if k2 = 2,
√

z2/n if k2 is odd ,
√

z2/n if k2 ≥ 4 is even.

Further , k2 6= 3.

To apply this result later, it will be helpful to note that

(3) z2 =
βk2 − β−k2

2
√

n2 − 1
≥ 2nβk2−2.

For certain “small” values of (j2, k2) we will eschew Lemma 2.1 in fa-
vor of the following result, which provides a more analytic gap principle,
reminiscent of Lemma 2.2 of [4]. Though it usually gives weaker bounds
than Lemma 2.1, it yields an improvement precisely in the few cases that
represent the majority of our computations.

Lemma 2.2. Suppose that a and b are distinct , nonsquare positive inte-

gers such that there exist three positive solutions (x1, y1, z1), (x2, y2, z2) and

(x3, y3, z3) to (1) with corresponding α, β, ji and ki satisfying j1 < j2 < j3

(whence k1 < k2 < k3). Then

j3 − j2 > 2j1k1 log(β)(α2j1 − 1).

Proof. From our suppositions, we have three points

(ti, ui) = (ji log(α), ki log(β)) (1 ≤ i ≤ 3)

on the curve

(4) sinh(u) =
√

b/a sinh(t).

Since b > a by assumption, we see that u > t and, taking logarithms,

u − t = log

(

1 − e−2t

1 − e−2u

)

+
1

2
log(b/a),

whereby, from calculus,

(5)
−1

e2t − 1
< u − t − 1

2
log(b/a) < 0.
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Since
u = sinh−1(

√

b/a sinh(t))

is an analytic solution to (4), we may implicitly differentiate (4) to find that

(6)
du

dt
cosh(u) =

√

b/a cosh(t),

whereby

(7)
du

dt
=

√

(b/a)(sinh2(t) + 1)

sinh2(u) + 1
=

√

sinh2(t) + 1

sinh2(t) + a/b
> 1.

Similarly, implicitly differentiating (6) yields

d2u

dt2
cosh(u) +

(

du

dt

)2

sinh(u) =
√

b/a sinh(t) = sinh(u)

and so

(8)
d2u

dt2
=

(

1 −
(

du

dt

)2)

tanh(u) < 0.

The Mean Value Theorem, together with inequalities (7) and (8), thus im-
plies that

0 <
u2 − u1

t2 − t1
− u3 − u2

t3 − t2
<

u2 − u1

t2 − t1
− 1.

On the other hand, from (5) and (7),

0 < −u2 + t2 +
1

2
log(b/a) < −u1 + t1 +

1

2
log(b/a) <

1

e2t1 − 1
,

whereby

0 < (u2 − u1) − (t2 − t1) <
1

e2t1 − 1

and so

0 <
u2 − u1

t2 − t1
− u3 − u2

t3 − t2
<

1

(t2 − t1) (e2t1 − 1)
.

It follows that

0 <
k2 − k1

j2 − j1
− k3 − k2

j3 − j2
<

1

(j2 − j1) log(β)(α2j1 − 1)
.

Writing

∆ =

∣

∣

∣

∣

∣

k2 − k1 k3 − k2

j2 − j1 j3 − j2

∣

∣

∣

∣

∣

,

we thus have
j3 − j2 > ∆(α2j1 − 1) log(β) > 0.

To complete the proof of Lemma 2.2, we need only show that ∆ ≥ 2j1k1.
Since the arguments of [4] (see page 193) imply that
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j3 ≡ j2 ≡ 0 (mod j1), k3 ≡ k2 ≡ 0 (mod k1),

it follows, upon expanding

x2 + (z2/z1)
√

az2
1 = (x1 +

√

az2
1)

j2/j1

by the binomial theorem and noting that x1 and az2
1 have opposite parities,

that
z2/z1 ≡ j2/j1 (mod 2).

Similarly, we may demonstrate the congruence

z2/z1 ≡ k2/k1 (mod 2)

and thus conclude that

(9) j2/j1 ≡ k2/k1 (mod 2).

Arguing in a like manner gives

j3/j1 ≡ k3/k1 (mod 2),

and hence

∆

j1k1
=

∣

∣

∣

∣

∣

∣

∣

∣

k2

k1
− 1

k3

k1
− k2

k1

j2

j1
− 1

j3

j1
− j2

j1

∣

∣

∣

∣

∣

∣

∣

∣

is a positive even integer. This completes the proof of Lemma 2.2.

3. Linear forms in logarithms. The final ingredient we require to
prove Theorem 1.2 is the following lower bound for linear forms in logarithms
of algebraic numbers, due to Matveev; here we have specialized Corollary 2.3
of [10] to the case where the algebraic numbers in question lie in a totally real
field. In what follows, h(γ) denotes the logarithmic Weil height of an alge-
braic number γ. We note that the approach of the second and third authors
differs from that given in this paper, by appealing to recent more refined es-
timates, specialized to the case of three logarithms. Had we employed these
sharpened bounds here, our later computations would have been reduced.

Proposition 3.1 (Matveev [10]). Suppose that K is a number field with

K ⊂ R and D = [K : Q]. Let bi ∈ Z, αi ∈ K∗ for 1 ≤ i ≤ n, and suppose that

[K(
√

α1, . . . ,
√

αn) : K] = 2n.

If we define

B = max{|b1|, . . . , |bn|}
and suppose that

Aj ≥ max{Dh(αj), |log(αj)|}
for 1 ≤ j ≤ n, then if

Λ = b1 log(α1) + · · · + bn log(αn) 6= 0,
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we have

log(|Λ|) > −C(n)D2A1 · · ·An log(eD) log(eB)

where

C(n) = min

{

e

2
30n+3n4.5, 26n+20

}

.

In our situation, we take

Λ = log(
√

b/a) + j3 log(α) − k3 log(β)

and hence (see displayed equation (6) of Yuan [13]) have

(10) log(Λ) < −2j3 log(α) + log

(

α2

α2 − 1

)

.

Applying Proposition 3.1, we may, via Lemma 2.5 of [13], assume that D = 4
and take

A1 = 2 log(n2 − 1) < 4 log(β), A2 = 2 log(β), B = j3.

We thus conclude that

log(Λ) > −8.5 · 1013 log(α) log2(β) log(ej3).

Combining this with (10) thus implies that

j3

log(ej3)
< 4.25 · 1013 log2(β) + 0.5 log

(

α2

α2 − 1

)

log(α)−1 log(ej3)
−1

and hence

(11)
j3

log(ej3)
< 4.26 · 1013 log2(β),

where the last inequality is a consequence of the fact that

β > α ≥ 2 +
√

3.

4. The case k2 = 2. We are now in a position to begin the proof of
Theorem 1.2. Let us first suppose that k2 = 2 (as mentioned previously,
we may assume that j1 = k1 = 1). From (9) we deduce the existence of an
integer l > 1 such that j2 = 2l. It follows, if a = m2 −1 and b = n2 −1, that

n = n(l, m) =
α2l − α−2l

4
√

m2 − 1
,

and hence, in these cases, that equations (1) have in fact two solutions,
given by

(x1, y1, z1) = (m, n(l, m), 1),

(x2, y2, z2) =

(

2n(l, m)m − n(l, m)

m
− n(l − 1, m)

m
, 2n(l, m)2 − 1, 2n(l, m)

)

.
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We note that m is readily seen to divide n(l, m) for all l, whence this second
solution is in fact integral.

If we have l = 2, then combining Lemma 2.2 with inequality (11) implies
that m < 1.168 · 108. For larger values of l, Lemma 2.1 and (11) together
yield the inequalities

(12)

l = 3 m ≤ 12583 l = 8 m ≤ 8

l = 4 m ≤ 398 l = 9 m ≤ 5

l = 5 m ≤ 72 l = 10 m ≤ 4

l = 6 m ≤ 26 l = 11 m ≤ 3

l = 7 m ≤ 13 12 ≤ l ≤ 15 m = 2

If l ≥ 16, we derive an immediate contradiction to the fact that m ≥ 2.
To deal with the remaining pairs (m, n), we note that, as in the argument

leading to the displayed equation (12) of [4], we have

(13) 0 <
ji+1 − ji

ki+1 − ki
− log(β)

log(α)
< (log(α)(ki+1 − ki)(α

2ji − 1))−1.

If k2 = 2, j2 = 4 and 2 ≤ m < 1.168 · 108, it follows from (11) that
j3 < 6.31 · 1018, whereby, from (13), k3 < 2.11 · 1018. It follows that

(α8 − 1) log(α) > 2 (k3 − 2),

at least provided m ≥ 87, and hence, for such values of m, j3−4
k3−2 is an (even-

indexed) convergent in the infinite simple continued fraction expansion to
log(β)
log(α) , say j3−4

k3−2 = pt

qt
. Combining (13) with the inequality

∣

∣

∣

∣

log(β)

log(α)
− pt

qt

∣

∣

∣

∣

>
1

(at+1 + 2)q2
t

(see e.g. [9]; here, at+1 denotes the (t+1)st partial quotient in the continued

fraction expansion to log(β)
log(α)), we deduce the existence of an integer t such

that

at+1 >
(α8 − 1)log(α)

2.11 · 1018
− 2,

while the corresponding convergent has qt < 2.11 ·1018. A (long) calculation
using Pari GP confirms that no such t exists, provided 197 < m < 1.168·108.
For smaller values of m, occasionally this inequality is satisfied; checking all

suitably small convergents to log(β)
log(α) for 87 ≤ m ≤ 197 leads to no further

solutions to (1) in these cases. Finally, if 2 ≤ m ≤ 86, we may argue as
in Baker and Davenport [3] (see also Anglin [1]). For fixed (a, b), it is pos-
sible to algorithmically solve equation (1), via a bound like that given by
Proposition 3.1, in conjunction with a result from computational Diophan-
tine approximation, due to Baker and Davenport (essentially a precursor
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to the L3 lattice basis reduction algorithm). Applying such arguments in a
standard way completes the proof of Theorem 1.2, in case k2 = 2 and j2 = 4.
The cases with k2 = 2 and 3 ≤ l ≤ 15, for m as in (12), are similar, though
the computations required are much easier.

5. The cases 4 ≤ k2 ≤ 8. We will provide details for k2 = 4 and
k2 = 5; the other values may be treated in a similar, computationally simpler
fashion. Let us suppose first that k2 = 4 and j2 = 6. In this case, Lemma
2.2 implies

(14) j3 ≥ 2 log(β)(α2 − 1) + 6.

Since we have, in general,

αj2−1 >
α2 − 1

α2
βk2−1,

if we assume that m > 107 (so that α > 1.99 · 107), then

α > 0.99β3/5

and so, from k2 = 4, j2 = 6 and (14),

j3 > 1.96β6/5 log(β).

Combining this with inequality (11) leads to the conclusion that β <
5.32 · 1013 and hence n < 2.67 · 1013. Since we have

8n3 − 4n = 32m5 − 32m3 + 6m,

it follows that m is necessarily even, say m = 2m1, whereby we may write

2n3 − n = 256m5
1 − 64m3

1 + 3m1.

If we define
θ = (128m5

1)
1/3,

we may rewrite this as

(θ − 24/53−1θ−1/5)3 −
(

n − 1

6n

)3

=
7m1

6
− 2

27m1
− 1

12n
+

1

216n3
.

We thus have θ > n and hence a careful application of the Mean Value
Theorem implies that

(15) {(128m5
1)

1/3} <
1

2m
1/3
1

,

where {x} denotes the fractional part of a real number x. Further, the upper
bound upon n implies that

(16) m1 < 4.31 · 107.

To deal with these remaining cases, for each positive integer m1 for which
both (15) and (16) hold (we note that the great majority of values m1 in the
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range (16) fail to satisfy (15)), we use Pari GP to verify that the polynomial

p(x) = 2x3 − x − 256m5
1 + 64m3

1 − 3m1

is irreducible over Q[x], thus ensuring that it has no integral roots. This
calculation, while tiresome, is not especially challenging.

Next, suppose that k2 = 4 and j2 ≥ 8 is even (as noted earlier, k2 and j2

have the same parity). We apply Lemma 2.1 and inequality (3) to conclude
that

j3 ≥ 2
√

2βj2 − 1.

Comparing this with (11) and using the inequality

m +
√

m2 − 1 = α < β3/(j2−1),

we thus conclude that 2 ≤ m ≤ m0, where:

j2 m0 j2 m0 j2 m0 j2 m0

8 10695892 20 215 32 19 44 ≤ j2 ≤ 46 6

10 232377 22 119 34 15 48 ≤ j2 ≤ 50 5

12 20558 24 73 36 12 52 ≤ j2 ≤ 54 4

14 3862 26 48 38 10 56 ≤ j2 ≤ 64 3

16 1138 28 34 40 9 66 ≤ j2 ≤ 84 2

18 448 30 25 42 7

If j2 > 84, we contradict m ≥ 2. To complete the case k2 = 4, we argue as
for j2 = 6; each choice of j2 leads to an equation of the form

8n3 − 4n = fj2(m)

where fj2 ∈ Z[x] has degree j2 − 1, and m ≤ m0. Routine calculations show
that no unexpected solutions to (1) accrue.

If k2 = 5, then working modulo 4, we necessarily have j2 ≡ 1 (mod 4)
and so j2 ≥ 9. If j2 = 9, then

16n4 − 12n2 + 1 = 256m8 − 448m6 + 240m4 − 40m2 + 1

and so
(128m4 − 112m2 + 11)2 − (32n2 − 12)2 = 96m2 − 23.

On the other hand,

(128m4 − 112m2 + 11)2 − (128m4 − 112m2 + 10)2 = 256m4 − 224m2 + 21.

Since
0 < 96m2 − 23 < 256m4 − 224m2 + 21

for every integer m > 1, we thus have

128m4 − 112m2 + 10 < 32n2 − 12 < 128m4 − 112m2 + 11,

a contradiction.
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If k2 = 5 and j2 ≥ 13, then from Lemma 2.1 we derive the inequality

j3 > 4
√

4n2 − 3 j2 − 1,

whereby, with (11) and α < β4/(j2−1), we find that m ≤ m0, for m0 as
follows:

j2 m0 j2 m0 j2 m0

13 187577 37 36 61 6

17 7579 41 23 65 5

21 1105 45 16 69 ≤ j2 ≤ 73 4

25 306 49 12 77 ≤ j2 ≤ 85 3

29 122 53 9 89 ≤ j2 ≤ 117 2

33 61 57 7

Again, if j2 > 117, we conclude that m < 2, a contradiction. Calculations as
in the case k2 = 4 complete the proof of Theorem 1.2 when k2 = 5. Similar,
computationally less intensive arguments apply for 6 ≤ k2 ≤ 8.

6. The cases k2 ≥ 9. To treat the remaining values of k2, we will appeal
to a result of the first author (Corollary 3.3 of [4]). In our situation, this
implies the inequality

k3 <

(

7k2
2 + 17k2 − 32

k2
2 − 9k2 + 8

)

k2 ≤ 86k2,

whereby, since k2 ≥ 9,

(17)
k3 − k2

k2 − 1
< 85 +

85

k2 − 1
< 97.

On the other hand, k2 ≥ 9 implies

z2 ≥ 256n8 − 448n6 + 240n4 − 40n2 + 1,

whence, from the fact that n ≥ 3, Lemma 2.1 ensures the inequality

j3 > 780j2 − 1

and so

(18)
j3 − j2

j2 − 1
> 779.

From (13) with i = 1 and i = 2, we have
∣

∣

∣

∣

j3 − j2

k3 − k2
− j2 − 1

k2 − 1

∣

∣

∣

∣

< (log(α)(k2 − 1)(α2 − 1))−1

and so
∣

∣

∣

∣

j3 − j2

j2 − 1
− k3 − k2

k2 − 1

∣

∣

∣

∣

< (log(α)(j2 − 1)(α2 − 1))−1

(

k3 − k2

k2 − 1

)

.
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This inequality, together with (17) and (18), leads to a contradiction, com-
pleting the proof of Theorem 1.2.
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