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PERFECT POWERS WITH THREE DIGITS

MICHAEL A. BENNETT AND YANN BUGEAUD

Abstract. We solve the equation xa
+ xb

+ 1= yq in positive integers
x, y, a, b and q with a > b and q > 2 coprime to φ(x). This requires a combination
of a variety of techniques from effective Diophantine approximation, including lower
bounds for linear forms in complex and p-adic logarithms, the hypergeometric
method of Thue and Siegel applied p-adically, local methods, and the algorithmic
resolution of Thue equations.

§1. Introduction. The problem of digital representations of integers from
special sequences is, in many cases, one of considerable subtlety. By way of
example, the classification of perfect powers with precisely two binary digits
was solved in antiquity, whilst the analogous solution for three digits is of a much
more recent vintage (see Szalay [15]), that for four such digits is incomplete (but
partially understood; see [2, 10]), and, for five or more digits, even finiteness
results for the problem are unavailable. In a pair of recent papers [2, 3], the
authors, with Mignotte, have derived a number of results on equations of the
shape

xa
1 + xb

2 + 1= yq and xa
1 + xb

2 + xc
3 + 1= yq ,

where x1, x2 and x3 are positive integers with the property that gcd(x1, x2) >

1 or gcd(x1, x2, x3) > 1, respectively. Such equations are shown to have,
effectively, no solutions in exponents a, b and c and integers y and q > q0 =

q0(xi ). In the particular case where x1 = x2 = x , the first equation is proven to
have no solutions whatsoever, provided q exceeds some effectively computable
absolute constant, at least under the assumption that gcd(q, φ(x))= 1. In the
paper at hand, we will sharpen this last result, proving the following theorem.

THEOREM 1. Let x be a positive integer and suppose that there exist non-
negative integers a, b, y and q > 2 such that

xa
+ xb

+ 1= yq , a > b > 0 with gcd(q, φ(x))= 1. (1)

Then

(x, a, b, yq) = (2, 5, 4, 72), (2, 9, 4, 232), (3, 7, 2, 133) or

(2, 2t, t + 1, (2t
+ 1)2),

for some integer t > 2.
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The case x = q = 2 is the main result (Theorem 1) of Szalay [15], whilst the
more general situation with x ∈ {2, 3} is a consequence of the following.

THEOREM 2 (Bennett et al [3, Theorem 1]). If there exist integers a > b >
0 and q > 2 for which

xa
+ xb

+ 1= yq with x ∈ {2, 3},

then (x, a, b, yq) is one of (2, 5, 4, 72), (2, 9, 4, 232) or (3, 7, 2, 133), or
(x, a, b, yq)= (2, 2t, t + 1, (2t

+ 1)2), for some integer t > 2.

Theorem 1 is, in fact, a special case of our next result, in conjunction with
Theorem 2.

THEOREM 3. Let x be a positive integer and suppose that there exist positive
integers a, b, y and an odd prime q such that

xa
+ xb

+ 1= yq , a > b > 0. (2)

If we write x = x0 · x1, where x0 is comprised solely of prime factors p of x for
which y ≡ 1 (mod p), then either (x, a, b, yq)= (3, 7, 2, 133) or x0 < x3

1 .

We remark here that we can in fact prove a like result to this theorem with
the inequality x0 < x3

1 replaced by x0 < x t
1, for any

t > min
26m6q

m∈Z

{
m2
− m + 2q

2mq − m2 + m − 2q

}
,

provided we have xb suitably large (depending, effectively, upon t and q). In
particular, as a simple exercise in calculus, we have such a result for any t >
√

2/q + 4/q . To prove this requires appeal to multi-point Padé approximations
to (1− z)i/q for 0 6 i 6 m − 1 and introduces an assortment of technical
difficulties. We restrict our attention to the case t = 3 for simplicity and to make
our conclusions as explicit as possible.

To see how Theorem 1 follows from Theorem 3, in case q has an odd prime
factor, observe that the condition gcd(q, φ(x))= 1 implies, with equation (2),
that y ≡ 1 (mod x), and hence that x0 = x and x1 = 1, whereby (x, a, b, yq)=

(3, 7, 2, 133).
It follows from Theorem 1 that every solution (x, a, b, yq) with x > 4 and q

prime to equation (2) satisfies x > 2q + 1.
In case q = 2, it is possible to somewhat generalize the aforementioned result

of Szalay (classifying solutions to (1) with x = q = 2).

THEOREM 4. Let x be a positive integer and suppose that there exist positive
integers a, b and y such that

xa
+ xb

+ 1= y2, a > b > 0. (3)

If we write x = x0 · x1, where x1 is the largest odd divisor of x, then either

(x, a, b, y)= (2, 5, 4, 7), (2, 9, 4, 23) or (2, 2t, t + 1, 2t
+ 1) for t > 2,

or we have x0 < x4
1 .
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Luca [12] (see also Scott [14]) proved that equation (3) has no solutions with
x = p an odd prime. In this case, if a solution existed, one would necessarily
have either gcd(x, y − 1)= 1 or gcd(x, y + 1)= 1. One way to generalize this
result is thus the following theorem.

THEOREM 5. Let x be an odd positive integer and suppose that there exist
positive integers a, b and y such that

xa
+ xb

+ 1= y2, a > b > 0.

Then
min{gcd(x, y − 1), gcd(x, y + 1)}> x1/6.

Here, the exponent 1/6 may be replaced by any number smaller than 1/4, for
sufficiently large x ; again, our statement is as given to ensure that it is as clean as
possible. We observe that our proof of this theorem, being based on techniques
from Diophantine approximation, is of an entirely different flavour to that given
in [12] (which relies upon the arithmetic of quadratic fields).

It is worth noting that Theorem 1 is directly analogous to a result of Bugeaud
et al [6], classifying solutions to the Nagell–Ljunggren equation

xn
− 1

x − 1
= yq

under the constraint that every prime divisor of x divides y − 1.
The techniques of this paper may be applied somewhat more generally than

just to equations of the shape xa
+ xb

+ 1= yq . Indeed, one may complement
[1, Theorem 2] (where the first author studied perfect powers with few ternary
digits), combining lower bounds for linear forms in two or three Archimedean
logarithms with estimates for linear forms in two 3-adic logarithms to compute
an integer q0 with the property that no qth power with q > q0 has at most three
ternary digits. Applying then a result of Corvaja and Zannier [9] leads to the
conclusion that, beside the integers of the form (3t

+ 1)2 = 32t
+ 2 · 3t

+ 1,
there exist only finitely many perfect powers with at most three ternary digits.

Whilst the techniques of [2, 3] are based almost entirely upon the theory
of lower bounds for linear forms in logarithms (p-adic and complex), here we
will proceed by combining bounds for non-Archimedean logarithms with the
hypergeometric method of Thue and Siegel, applied p-adically. Such arguments
have been used previously in, for example, work of Beukers [4] and Corvaja and
Zannier [10].

The outline of this paper is as follows. In §2, we begin by appealing to
results from linear forms in non-Archimedean logarithms to prove Theorem 3 for
suitably large prime exponent q . The quality of our bounds in this section will
prove to be of importance later. In §3, we will introduce Padé approximants to
the binomial function. Applying these p-adically will enable us to derive upper
bounds for x in Theorem 3, essentially reducing the proof to a finite computation.
Section 4 continues and sharpens this argument, leaving us with a (feasible) finite
computation, the details of which are discussed in §5. Finally, in §6, we treat the
cases with exponent q = 2 (i.e. Theorems 4 and 5).

68 M. A. BENNETT AND Y. BUGEAUD



§2. Linear forms in two logarithms. In this section, we will begin the proof
of Theorem 3 by applying estimates for linear forms in two non-Archimedean
logarithms to deduce explicit upper bounds for q in equation (2), under the given
constraints on x0.

The assumptions of the theorem we will use (a special case of [5, Theorem 3])
appear rather restrictive, but are satisfied in our situation. If an integer m > 1 has
the factorization m = p j1

1 · · · p jk
k , where the pi are distinct primes and ji ∈ N,

we define, for a non-zero integer x ,

νm(x)= min
16i6k

[
νpi (x)

ji

]
,

where νp(x) is defined to be the largest integer k such that pk
|x .

THEOREM 6. Let α1 and α2 be positive rational numbers with α1 6= 1, b1
and b2 be positive integers and set

3= α
b2
2 − α

b1
1 .

For any set of distinct primes p1, . . . , pk and positive integers j1, . . . , jk , we
let m = p j1

1 · · · p jk
k and suppose that there exists a positive integer g such that

for each i , we have either

νpi (α
g
1 − 1)> ji and νpi (α

g
2 − 1)> 1 if pi > 2,

or
νpi (α

g
1 − 1)> 2 and νpi (α

g
2 − 1)> 2 if pi = 2.

Then, if m, b1 and b2 are relatively prime, and α1 and α2 are multiplicatively
independent, we may conclude that

νm(3)6
53.6g

(log m)4
(max{log b′ + log(log m)+ 0.64, 4 log m})2 log A1 log A2,

where

b′ =
b1

log A2
+

b2

log A1
and log Ai > max{h(αi ), log m}.

For the remainder of this section, we will suppose that we have a solution to
the Diophantine equation (2), where x = x0x1 with x0 > x3

1 . Let p be a prime
divisor of x such that p divides y − 1 and define u to be the largest integer such
that pu divides xb. If p 6= q , then pu divides y − 1. Otherwise, max{p, pu−1

}

divides y − 1.
We apply Theorem 6 with α1 = y, α2 = xb

+ 1, b1 = q, b2 = 1 and m =
xb

0 q−δ , where δ = 1, if q divides x0 (whereby, necessarily, q2 divides xb
0 ), and

δ = 0 otherwise. We therefore have y ≡ 1 (mod m) and may take g = 2 if b = 1
and x is even but not divisible by 4. Otherwise, g = 1. Clearly, α1 and α2 are
multiplicatively independent.
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Put A2 = xb
+ 1 and A1 = y. Since y ≡ 1 (mod m), we deduce that A1 >

max{y, m}. We then have

νm(3) 6
53.6g

(log m)4
(max{log b′ + log(log m)+ 0.64, 4 log m})2

× log A1 log A2, (4)

where

b′ =
b1

log A2
+

b2

log A1
and log Ai > max{h(αi ), log m}.

In the other direction, note that

νm(3)> ba/bc> (a/b)− 1 >
q log y

b log x
−

log 2
b log x

− 1.

Let us assume first that the maximum in inequality (4) is equal to 4 log m.
Then

νm(3)6
857.6g

(log m)2
(log(xb

+ 1))(log y)

and

q 6
857.6g

(log m)2
(log xb) log(xb

+ 1)+
log 2
log y

+
b log x

log y
.

From x0 > x3
1 , we deduce that x4

0 > x3
0 x3

1 = x3.
When q does not divide x0, set ν = 0. Otherwise, define ν by q = (xb)ν . We

therefore have both 0 6 ν 6 1/2 and

q 6
857.6g

(3/4− ν)2
·

log(xb
+ 1)

log xb +
log 2
log y

+
b log x

log y
.

Very roughly,

y > m > xb/2
0 > x3b/8, (5)

and so

q 6
857.6g

(3/4− ν)2
·

log(xb
+ 1)

log xb +
11
3
. (6)

From Theorem 2, we may suppose that xb > 5 (and, more generally, that xb

is not a power of 2 or of 3). If xb 6 1500 and q > 1500, then ν = 0 and we infer
from (6) that

q 6 1524.7
log(xb

+ 1)
log xb g +

11
3
< 1702g.

If xb > 1500, then (6) implies that

q 6
857.7

(3/4− ν)2
g +

11
3
. (7)
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All these bounds are under the assumption that the maximum in (4) is equal
to 4 log m. If this condition is not fulfilled, then we obtain

νm(3)6
53.6g

(log m)4
(log b′ + log(log m)+ 0.64)2(log(xb

+ 1))(log y).

Since, by (5),
log b′ + log(log m)6 log(q + 8/3),

we therefore have

q log y

b log x
6

log 2
b log x

+ 1+
53.6g

(log m)4
(log(q + 8/3)+ 0.64)2(log(xb

+ 1))(log y).

Consequently,

q 6
53.6g

(3/4− ν)4(log xb)2
(log(q + 8/3)+ 0.64)2 ·

log(xb
+ 1)

log xb +
11
3
. (8)

If g = 1, xb 6 1500 and q > 1500, then ν = 0 and we infer from (8) that

q 6 170
log(xb

+ 1)
log xb

(
log(q + 8/3)+ 0.64

log xb

)2

+
11
3
.

For xb
= 5, 6, 7, 10, 11, 12, 13, 14 and 15, we obtain the bounds 6500, 4800,

3800, 2400, 2120, 1915, 1755, 1625 and 1520, respectively.
Assume now that g = 1, xb > 1500 and q > 1500. If δ = 1, then xb > q2 >

15002 and, since ν 6 1/2, (8) implies that

q 6 7.2g(log(q + 8/3)+ 0.64)2 + 11
3 . (9)

If δ = 0, then ν = 0 and we get from (8) that

q 6 3.2g(log(q + 8/3)+ 0.64)2 + 11
3 . (10)

To summarize, in the case g = 1, we may conclude that q 6 q0, where

xb q0 xb q0 xb q0

5 6500 11 2120 15 6 xb 6 29 1577
6 4800 12 1915 30 6 xb 6 1500 1543

7 3800 13 1755 xb > 1500
857.7

(3/4− ν)2
+

11
3

10 2400 14 1625

(11)

For g = 2 (which can occur only if b = 1, x is even and not divisible by 4),
we essentially have to replace the values of q0 in (11) by 2q0. In the worst case,
when q|x and g = 2, we therefore have q 6 27449, while q|x and g = 1 implies
q 6 13723. If q fails to divide x and xb > 1500, we have q 6 1523 or q 6 3049,
if g = 1 or 2, respectively.
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§3. Applications of Padé approximants to hypergeometric functions. Our goal
in the next few sections will be to derive an absolute bound for x satisfying
(2) with the additional assumption that x0 > x3

1 . To do this, we will appeal
to the theory of Padé approximants to binomial functions. Such an approach
is reasonably common in a variety of number theoretic contexts, see e.g.
[10, 11, 13].

Let us define Padé approximants to (1+ z)1/q , for q > 2 prime. If n1 and n2
are non-negative integers, we set

Pn1,n2(z)=
n1∑

k=0

(
n2 + 1/q

k

)(
n1 + n2 − k

n2

)
zk

and

Qn1,n2(z)=
n2∑

k=0

(
n1 − 1/q

k

)(
n1 + n2 − k

n1

)
zk . (12)

Then (see e.g. [7]), we have that

Pn1,n2(z)− (1+ z)1/q Qn1,n2(z)= zn1+n2+1 En1,n2(z), (13)

where

En1,n2(z) =
(−1)n20(n2 + (q + 1)/q)

0(−n1 + 1/q)0(n1 + n2 + 2)
× F(n1 + (q − 1)/q, n2 + 1, n1 + n2 + 2,−z), (14)

for F the hypergeometric function given by

F(a, b, c,−z)= 1−
a · b

1 · c
z +

a · (a + 1) · b · (b + 1)
1 · 2 · c · (c + 1)

z2
− · · · .

Appealing twice to (13) and (14) with, in the second instance, n2 replaced
by n2 + 1, and eliminating (1+ z)1/q , we find that Pn1,n2+1(z)Qn1,n2(z)−
Pn1,n2(z)Qn1,n2+1(z) is a polynomial of degree n1 + n2 + 1 with a zero at z = 0
of order n1 + n2 + 1 (and hence monomial). It follows that we may write

Pn1,n2+1(z)Qn1,n2(z)− Pn1,n2(z)Qn1,n2+1(z)= czn1+n2+1, (15)

with, as a short calculation reveals, c 6= 0.
We will consider (13) with z = xb and choose non-negative integers n1 and

n2 such that n1 > n2. Let us write x = x0 · x1, where x0 is comprised of the
primes p dividing x for which y ≡ 1 (mod p), and x1 consists of the largest
factor of x coprime to x0. It is useful for us to observe (see e.g. Lemma 3.1 of
Chudnovsky [8]) that (

n ± 1
q

k

)
q[qk/(q−1)]

∈ Z,

so that, in particular, since n1 > n2, defining Cn1,n2 by

Cn1,n2 = gcd
{

numerator
((

n2 + 1/q
k

)(
n1 + n2 − k

n2

))
, k = 0, . . . , n1

}
,
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we have
qκC−1

n1,n2
Pn1,n2(x

b) and qκC−1
n1,n2

Qn1,n2(x
b) ∈ Z,

where

κ =


[

qn1

q − 1

]
if gcd(x, q)= 1,

0 if q|x and max{νq(x), b}> 1.

Note that we cannot have νq(x)= b = 1, since yq
≡ 1 (mod q) implies that

yq
≡ 1 (mod q2).
We suppose that p is a prime divisor of x . Setting η = (1+ xb)1/q , since (1+

xbz)1/q , qκ Pn1,n2(z) and qκQn1,n2(z) each have p-adic integral coefficients, the
same is necessarily true of qκEn1,n2(z) and so, via equation (13),

|qκC−1
n1,n2

Pn1,n2(x
b)− ηqκC−1

n1,n2
Qn1,n2(x

b)|p 6 p−νp(x)b(n1+n2+1).

On the other hand, since ηq
≡ yq (mod pνp(x)a), if we assume that y ≡

1 (mod p) (i.e. that p|x0), we may conclude, if p|x and (p, q) 6= (2, 2), that

η ≡ y (mod pνp(x)a−δ) for δ =
{

1 if p = q,
0 if p 6= q.

If x is even and q = 2, we have

η ≡±y (mod 2ν2(x)a−1)

for some choice of sign. It follows, in case p|x and (p, q) 6= (2, 2), that

|qκC−1
n1,n2

Pn1,n2(x
b)− yqκC−1

n1,n2
Qn1,n2(x

b)|p

6 p−min{νp(x)a−δ,νp(x)b(n1+n2+1)}. (16)

Defining

κ1 =


[

qn1

q − 1

]
if gcd(x, q)= 1,

0 if gcd(x, q)= q,

if
Pn1,n2(x

b) 6= yQn1,n2(x
b)

we may therefore conclude, assuming q > 3 and n1 + n2 + 1 > a/b, that

3n1,n2 := |q
κ1C−1

n1,n2
Pn1,n2(x

b)− yqκ1C−1
n1,n2

Qn1,n2(x
b)|> xa

0 . (17)

We choose

n1 =

⌈
(q + 1)a

2qb

⌉
and n2 =

⌈
(q − 1)a

2qb

⌉
− δ

for δ ∈ {0, 1}, where dxe denotes the smallest integer > x , so that, in particular,
we have the desired inequality (n1 + n2 + 1)b > a. Equation (15) readily im-
plies that for at least one of δ ∈ {0, 1}, we must have Pn1,n2(x

b) 6= y Qn1,n2(x
b)

and hence inequality (17).
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Let us assume for the remainder of this section that xb > 106. Before we
proceed further, we will make use of a pair of (preliminary) lower bounds upon
a/b. Note that y − 1 is divisible by q−δ xb

0 , where δ = 1 if q|x0 and 0 otherwise.
Further, if δ = 1, then necessarily q2

|xb
0 . Since we have assumed x0 > x3

1 , we
have x0 > x3/4. Using only that a > 3, q > 3 and x > 5, we find that

y < 1.06502xa/q , (18)

and so
xa/q > q−δ1.06502−1x3b/4,

whence we have the inequality

a >

(
3q

4
−

q log(1.06502q)

log(xb)

)
b. (19)

We next consider 31,0, which divides |q + xb
− qy|. We begin by showing

that 31,0 6= 0, which is obviously true if q fails to divide x . If q|x , say
x = qνq (x) · z, then if 31,0 = 0, necessarily

y = 1+ qbνq (x)−1
· zb,

and hence the equation xa
+ xb

+ 1= yq becomes

qaνq (x)za
= q(bνq (x)−1)q zqb

+ · · · +

(
q

2

)
q(bνq (x)−1)2z2b. (20)

If we have q = 3 and bνq(x)= 2, then

3aνq (x)−3za−2b
= zb
+ 1,

whence
3a−3za−4

= a2
+ 1 or 32a−3za−2

= z + 1.

In either case, we easily obtain a contradiction. Otherwise, from (20), aνq(x)=
2bνq(x)− 1, so that νq(x)= 1 (whereby b > 2) and a = 2b − 1. Comparing
terms in (20), we find that

q2b−1z2b−1 > q(b−1)q zqb > q3b−3z3b,

contradicting b > 2. We conclude, as desired, that 31,0 6= 0.
Since a > 2b (which follows, with care, from (19)), we thus have

min{νp(x)a, νp(x)b(n1 + n2 + 1)} =min{νp(x)a, 2νp(x)b}> 2b,

for each prime divisor p of x , whereby, from (16),

31,0 > x2b
0 > x3b/2.

We therefore have qy > x3b/2, and so

xa/q > (1.06502q)−1x3b/2, (21)
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i.e.

a >

(
3q

2
−

q log(1.06502q)

log(xb)

)
b. (22)

We are now ready to proceed. Inequality (17) provides us with a strong lower
bound upon 3n1,n2 . On the other hand, following Saradha and Shorey [13] (see
the proof of Lemma 18), we have

|Pn1,n2(x
b)| <

(
n1 + n2

2
+ 1

)
2n1+n2−1

(
1+

xb

2

)n1

6

(
a

2b
+ 2

)
2a/b+1

(
1+

xb

2

)(q+1)a/(2qb)+1

. (23)

Let us suppose first that 17 6 q 6 27449. Combining (19), (23) and the fact
that xb > 106, it follows, after a little work, that

|Pn1,n2(x
b)|< 0.66 · 22a/3bx (q+1)a/(2q)+b.

Similarly,

|Qn1,n2(x
b)|< 2n1+n2−1

(
1+

xb

2

)n2

< 0.13 · 22a/3bx (q−1)a/(2q)+b

and so, from (18),

|qκ1 Pn1,n2(x
b)− yqκ1 Qn1,n2(x

b)|< qκ122a/3bx (q+1)a/(2q)+b.

Since
qκ1 6 q(q+1)a/(2(q−1)b)+q/(q−1)

and Cn1,n2 > 1, we thus may conclude from (17) that

xb
0 < 22/3q(q+1)/(2(q−1))+bq/a(q−1)xb(q+1)/(2q)+b2/a,

i.e., since x0 > x3/4, that

xb < (22/3q(q+1)/(2(q−1))+bq/a(q−1))(1/4−1/(2q)−b/a)−1
.

This, with inequality (22), contradicts the assumption that xb > 106 for 17 6
q 6 317 and, for 331 6 q 6 27449, implies, in each case, that xb < 1062q3/2.

§4. Sharper lower bounds for a/b. To derive absolute upper bounds upon
xb, for the remaining values of q , i.e. 3 6 q 6 13, we require rather stronger
lower bounds for a/b. We assume, as we may, that x is divisible by a prime
exceeding 3. Note that 32,0 divides∣∣∣∣q2

+ qxb
−

(
q − 1

2

)
x2b
− q2 y

∣∣∣∣.
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Since y > 3 and xb > 1, this quantity is necessarily non-zero and so, since
a > qb > 3b,

x9b/4 6 x3b
0 <

(
q − 1

2

)
x2b
+ q2 y.

For q 6 13, this, together with the assumption that xb > 106, implies that
q2 y > 0.8 x9b/4 and so

xa/q > (4q2/3)−1x9b/4,

i.e.

a >

(
9q

4
−

q log(4q2/3)
log(xb)

)
b for 3 6 q 6 13. (24)

Inequality (24) is sufficiently strong for what we have in mind, provided q ∈
{11, 13}. Indeed, arguing as in the preceding section contradicts xb > 106 in
either case. For 3 6 q 6 7, (24) and xb > 106 implies that

a > 6.21b if q = 3,

a > 9.98b if q = 5,

a > 13.63b if q = 7.

We next observe that 33,1 divides |81+ 81xb
+ 9x2b

− x3b
− 81y −

54xb y|, if q = 3, and

2−α|2q3
+

1
2 (3q2(q + 1))xb

+
1
2 (q(q + 1))x2b

−
1
12 (q

2
− 1)x3b

− 2q3 y − 1
2 (3q3

− q2)xb y|,

otherwise, where α = 0, if q = 5, or α = 1, if q = 7. Again, in each case, the
quantity inside the absolute value is negative, whence, appealing to the preceding
lower bounds upon a/b, we arrive at the inequalities

x15b/4 6 x5b
0 < x3b

+ 81y + 54xb y if q = 3,

or

x15b/4 6 x5b
0 < 2−α

(
q2
− 1

12
x3b
+ 2q3 y +

3q3
− q2

2
xb y

)
if q > 3.

Our assumption that xb > 106 thus implies inequalities of the shape
a > 7.37b if q = 3,

a > 11.85b if q = 5,

a > 16.43b if q = 7.

In case q = 7, we consider n1 = 5 and n2 = 3, to find that 35,3 divides
|P − yQ|, where

P = 470596+ 924385 xb
+ 565950 x2b

+ 107800 x3b
+ 1540x4b

− 66x5b
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and
Q = 470596+ 857157 xb

+ 472311 x2b
+ 74970 x3b.

Our lower bound upon xb implies that P − yQ is negative and so, since a >
16.43b > 9b, we find that

x27b/4 6 x9b
0 < 66x5b

+ y(470596+ 857157 xb
+ 472311 x2b

+ 74970 x3b),

which, with xb > 106, yields y > 74971−1x15b/4. Arguing as previously, we
conclude that a > 20.53b, if q = 7. Feeding this inequality back into the
arguments of the preceding section leads to the conclusion that xb < 2× 106.

In case q = 5, we also consider n1 = 5 and n2 = 3, to find that 35,3 divides
|P − yQ|, where

P = 109375+ 218750 xb
+ 137500 x2b

+ 27500 x3b
+ 550x4b

− 22x5b

and
Q = 109375+ 196875 xb

+ 106875 x2b
+ 16625 x3b.

Again, P − yQ is negative and so, since a > 11.85b > 9b, we find that

x27b/4 6 x9b
0 < 22x5b

+ y(109375+ 196875 xb
+ 106875 x2b

+ 16625 x3b),

which yields y > 16626−1x15b/4 and so a > 15.20b. We next consider 310,4.
As before, the leading coefficient of P10,4(z) is negative, so that we are led to an
inequality of the shape

x45b/4 6 x15b
0 < 456x10b

+ 58 yQ,

where

Q = 8125+ 22750 xb
+ 23100 x2b

+ 10010 x3b
+ 1547x4b.

After a little work, we conclude that a > 28.90b. We finally consider 314,6
(where again the leading coefficient of P14,6(z) is negative), which leads to the
inequality

x63b/4 6 x21b
0 < 290377 x14b

+ 59 yQ,

where Q < 5.3× 107x6b. With xb > 106, we conclude that a > 37.04b and
hence, as in the previous section, after some work, that again xb < 2× 106.

The case q = 3 is necessarily more involved, since we require a much larger
lower bound upon a/b. In the following table, we use two shorthands to indicate
why 3n1,n2 6= 0. If we write (1), it indicates that the sign of zn1 in Pn1,n2(z) is
negative. If, instead, we write (2), it means that y is known to be suitably larger
than x (n1−n2)b. In either case, appealing to our assumed lower bound for xb, the
term inside the absolute value in the definition of 3n1,n2 is negative and hence
non-zero.

To implement our arguments, at each stage we require a > (n1 + n2 + 1)b
(note that this is the reverse of the inequality we had for our choices of n1 and n2
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in §3) and suppose throughout that xb > 2× 107.

(n1, n2) 3n1,n2 6= 0 Cn1,n2 y > a/b >

(4, 2) (1) 1 1
1200 x13b/4 8

(5, 2) (2) 7 1
892 x4b 10

(6, 3) (2) 7 1
15148 x9b/2 11

(7, 3) (1) 20 1
28918 x21b/4 14

(8, 4) (1) 5 1
665100 x23b/4 15

(9, 5) (1) 26 1
5986000 x25b/4 16

(10, 5) (2) 13 1
74395200 x7b 18

(11, 5) (1) 208 1
26257200 x31b/4 20

(13, 6) (2) 532 (1.03× 109)−1x9b 23
(15, 7) (1) 3344 (1.65× 1010)−1x41b/4 26
(17, 8) (2) 5225 (3.57× 1011)−1x23b/2 29
(20, 8) (1) 55 (4.44× 1016)−1x55b/4 35

We carry on in this vein, with results as follows (details are available from
the authors upon request); in all cases, we use (1) to conclude that 3n1,n2 6= 0.

(n1, n2) a/b> (n1, n2) a/b> (n1, n2) a/b> (n1, n2) a/b> (n1, n2) a/b>

(23, 9) 40 (49, 19) 81 (101, 39) 164 (211, 81) 340 (419, 163) 671

(27, 11) 44 (57, 23) 93 (117, 45) 190 (243, 95) 389 (482, 188) 770

(30, 12) 50 (65, 25) 106 (136, 52) 221 (279, 109) 446 (553, 215) 883

(35, 13) 59 (75, 29) 123 (158, 62) 253 (320, 124) 514 (635, 247) 1016

(41, 15) 69 (88, 34) 142 (182, 70) 293 (367, 143) 586 (730, 284) 1167

In conclusion, we have that

a > 1167b if q = 3 and xb > 2× 107. (25)

Inequality (23) now implies that

|Pn1,n2(x
b)|< 0.01 · 20.67a/bx2a/3+b

and we also have that

|Qn1,n2(x
b)|< 0.07 · 20.67a/bxa/3+b.

From (18),

|qκ1 Pn1,n2(x
b)− yqκ1 Qn1,n2(x

b)|< qκ120.67a/bx2a/3+b,

whereby, from (17),

xb
0 < 20.6731+3b/2a x2b/3+b2/a, (26)

i.e., since x0 > x3/4, that

xb < (20.6731+3b/2a)(1/12−b/a)−1
. (27)

Appealing to (25), we conclude that xb < 2× 108.
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§5. A finite computation. Collecting our results from the previous two
sections, it remains to treat the values xb with

2× 107 6 xb < 2× 108 if q = 3 and (26) is satisfied,
xb < 2× 107 if q = 3,
xb < 2× 106 if q = 5 or 7,
xb < 106 if 11 6 q 6 317,
x ∈ {2q2, 6q2

} if 331 6 q 6 27449,
x < 373q3/2, b = 1 if 331 6 q 6 3049, q-x, x ≡ 2 (mod 4),
xb < 276 q3/2 if 331 6 q 6 1523, q-x, xb

6≡ 2 (mod 4).

In the first case, we write x0 = xθ , where 3/4< θ 6 1 (so that x1 = x1−θ ).
Inequality (26) thus becomes

xb < (20.6731+3b/2a)(θ−2/3−b/a)−1
. (28)

Since xb > 2× 107 and a > 1167b, it follows that 3/4< θ < 0.761 (so that
x0.239 < x1 < x0.25). Since the smallest positive integer x which can be factored
as x = x0 · x1 with x1 odd, coprime to x0 and satisfying x0.239 < x1 < x0.25, is
x = 84, it follows from xb < 2× 108 that b 6 4. More precisely, we have, from
(26), that either b = 1, or x1 = 3, b = 4, x ∈ {84, 87, 93, 96}.

If b = 1, we necessarily have 59 6 x1 6 113, for x1 odd, x1 6≡ ±3 (mod 9). In
total, we find that there are precisely 2467984 pairs (x, b) for which x = x0 · x1
with x0 > x3

1 , gcd(x0, x1)= 1, ν3(xb) 6= 1, x1 odd, 2× 107 6 xb < 2× 108,
satisfying (26) with q = 3.

For the other cases remaining, we begin by observing that there are 20004842
pairs (x, b) with x > 5 and xb < 2× 107, 2001586 pairs (x, b) with x > 5
and xb < 2× 106, and 1001132 pairs (x, b) with x > 5 and xb < 106. There
are rather more triples (x, b, q) corresponding to, for instance, the cases with
xb < 373q3/2 and 331 6 q 6 3049, but, all told, we are left with fewer than 1010

triples to treat. More careful analysis of our various inequalities reduces this
number by roughly half.

To handle the remaining triples (x, b, q), we begin by noting that this is
indeed a finite computation since we may consider equation (1) as a special case
of the family of Thue equations

yq
− xδzq

= xb
+ 1, δ ∈ {1, 2, . . . , q − 1}. (29)

We will, in fact, typically solve the remaining equations of the shape (1) by much
more elementary methods; our computations, whilst somewhat laborious, took
only a few weeks on the first author’s laptop.

5.1. A local sieve. For each remaining triple (x, b, q), we begin by
searching for an integer N such that the congruence

xa
+ xb

+ 1≡ yq (mod N )

has no solution in integers a and y. This is rather simpler than the sieve
employed in [3], where an analogous problem is treated with only the value x
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predetermined, though we have many more cases to consider. As in [3], we
consider primes pi ≡ 1 (mod q) for which ordx (pi )= mq with m a “suitably
small” integer. By ordl(pi ), we mean the smallest positive integer k for which
lk
≡ 1 (mod pi ). Fixing M ∈ N, for each such pi with m|M , we let the

exponent a range over integers from 1 to Mq and store the a for which either
xa
+ xb

+ 1≡ 0 (mod pi ) or

(xa
+ xb

+ 1)(pi−1)/q
≡ 1 (mod pi ).

Denoting by Si the set of values of a corresponding to a prime pi , then our goal
is to find primes p1, p2, . . . , pk with ordx (pi )/q dividing M and

k⋂
i=1

Si = ∅. (30)

Checking that we have such sets of primes (with M reasonably small) for most
triples (x, b, q) is a reasonably straightforward, if time-consuming computation.
Full details are available from the authors upon request. Indeed, we are able
to achieve this, with certain exceptions. These exceptions correspond to two
particular families of values of x and b, namely

x = tq
− 2, b = 1 where t > 2,

and
x = (tq

− 1)/2, b = 1 where t > 2 is odd,

and to the triples

(x, b, q)= (18, 1, 3), (18, 2, 3) and (11, 2, 5).

The above local argument fails for the two families here because xδ + x + 1= tq

with δ = 0 or δ = 1, respectively, whilst the other three triples arise from the
identities

182
+ 18+ 1= 73 and 112

+ 112
+ 1= 35.

We can still rule out a number of these cases locally, however, by considering
the corresponding equations

(tq
− 2)a + tq

− 1= yq (31)

and
((tq
− 1)/2)a + (tq

− 1)/2+ 1= yq , (32)

modulo q2, appealing to the fact that a > 2. Indeed, if we suppose that t ≡
2 (mod q), then equation (31) implies that

yq
≡ (2q

− 2)a + 2q
− 1≡ 2q

− 1 (mod q2).

It follows that yq
≡ 1 (mod q) and hence yq

≡ 1 (mod q2), so that

2q−1
≡ 1 (mod q2),
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a contradiction for the primes q under consideration except q = 1093 and
q = 3511 (where our upper bounds upon xb are exceeded). Similarly, if t ≡
3 (mod q), then (31) implies

yq
≡ (3q

− 2)a + 3q
− 1 (mod q2).

Since the right-hand side of this congruence is 3 (mod q), writing 3q
= Aq + 3,

we have

Aq + 3= 3q
≡ (Aq + 1)a + Aq + 2≡ 3+ (a + 1)Aq (mod q2)

and hence a A ≡ 0 (mod q), so that either

3q−1
≡ 1 (mod q2),

a contradiction for 3 6 q < 106, q 6= 11, or q|a. In the latter case, (31) implies,
writing a = qa0,

tq
− 1 = yq

− (tq
− 2)qa0 > ((tq

− 2)a0 + 1)q − (tq
− 2)qa0

> (tq
− 1)q − (tq

− 2)q > (2q − 1)tq(q−1),

contradicting q > 3.
All told, after employing local arguments and appealing to our upper bounds

upon xb, we are left to solve equation (1) for

(x, b, q) = (797161, 1, 13), (88573, 1, 11), (177145, 1, 11), (1093, 1, 7),
(16382, 1, 7), (39062, 1, 7), (78123, 1, 7), (279934, 1, 7),
(411771, 1, 7), (823541, 1, 7), (11, 2, 5), (121, 1, 5),
(1022, 1, 5), (1562, 1, 5), (3123, 1, 5), (7774, 1, 5), (8403, 1, 5),
(29524, 1, 5), (59047, 1, 5), (80525, 1, 5), (99998, 1, 5),
(161049, 1, 5), (185646, 1, 5), (379687, 1, 5), (537822, 1, 5),
(709928, 1, 5), (759373, 1, 5), (1048574, 1, 5), (1238049, 1, 5),
(18, 2, 3), (18, 1, 3), (27k3

+ 27k2
+ 9k − 1, 1, 3) and

(4k3
+ 6k2

+ 3k, 1, 3).

In the last two cases, k is an integer with, respectively, 1 6 k 6 90 and 1 6
k 6 170. In the first case with (x, b, q)= (797161, 1, 13), we rework the
arguments of §3, using the fact that 797161 is prime (so that we may assume
x0 = 797161, x1 = 1), to obtain a contradiction. For the remaining triples, we
use the computational package Pari to solve the corresponding Thue equations
(29) (where now the degrees of the corresponding number fields are small
enough to make this computation feasible). In each case only trivial solutions
occur. This completes the proof of Theorem 3.

§6. The case q = 2: Theorems 4 and 5. Let us begin by proving Theorem 5.
Suppose that we have gcd(x, y + 1)6 x1/6, say, so that gcd(x, y − 1)> x5/6.
The case with gcd(x, y − 1)6 x1/6 proceeds in a similar fashion, with y
replaced by −y. Arguing as in §3, we find, if n1 + n2 + 1 > a/b, setting

3n1,n2 := |4
n1C−1

n1,n2
Pn1,n2(x

b)− y4n1C−1
n1,n2

Qn1,n2(x
b)|, (33)
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that either 3n1,n2 = 0 or 3n1,n2 > x5a/6, where

|Pn1,n2(x
b)|<

(
n1 + n2

2
+ 1

)
2n1+n2−1

(
1+

xb

2

)n1

and

|Qn1,n2(x
b)|< 2n1+n2−1

(
1+

xb

2

)n2

.

We choose

n1 =

⌈
3a

4b

⌉
and n2 =

⌈
a

4b

⌉
−δ (34)

for δ ∈ {0, 1}, so that (n1 + n2 + 1)b > a. Equation (15) again implies that
for at least one of δ ∈ {0, 1}, we must have Pn1,n2(x

b) 6= yQn1,n2(x
b) and so

3n1,n2 6= 0. We have

3n1,n2 6 43a/4b+12a/b+1
(
(a/2b + 2)

(
1+

xb

2

)3a/4b+1

+ y

(
1+

xb

2

)a/4b+1)
.

We can solve xa
+ xb

+ 1= y2 locally for x = 5 and 6. Let us therefore
assume that x > 7 and, say, xb > 106. After a little work, if we assume that
a > 156b (whereby y < 1.01xa/2), we find that

x5a/6 < 4.8a/bx3a/4+b,

i.e.
xb < 4.813 < 7.2× 108. (35)

To see that the supposition a > 156b is without loss of generality, let us note
first that the assumption that gcd(x, y − 1) := x0 > x5/6 implies that y > x5b/6

and so
xa
+ xb

+ 1> x5b/3,

whereby a > 3b/2. If a < 2b, noting that 31,0 = |2+ xb
− 2y| is non-zero

(since x is odd), we find that

x5a/6 < |2+ xb
− 2y|<max{xb, 2y}.

It follows that y > 1
2 x5a/6, contradicting y < 1.01 xa/2. We may thus suppose

that a > 2b and so

x2b
0 < |2+ xb

− 2y|<max{xb, 2y},

whereby y > 1
2 x2b

0 > 1
2 x5b/3 and so, after a little work, a > 3b.

We proceed in a similar fashion. From 32,0, we find that

min{x5b/2, x5a/6
}6 min{x3b

0 , x5a/6
}6 |8+ 4xb

− x2b
− 8y|< x2b

+ 8y

and so y > 1
8 (x

5b/2
− x2b), whereby a > 4.9b. From considering 33,0, we find

that
x10b/3 6 x4b

0 6 |16+ 8xb
− 2x2b

+ x3b
− 16y|< 16y,

82 M. A. BENNETT AND Y. BUGEAUD



whence a > 6.6b. Continuing along these lines, with

(n1, n2) = (4, 0), (6, 1), (8, 1), (10, 2), (12, 3), (15, 3), (18, 5),
(21, 5), (26, 6), (30, 9), (35, 10),
(40, 13), (46, 14), (53, 16), (60, 19), (68, 21),
(77, 25), (86, 27), (97, 31), (113, 32),

we eventually conclude that a > 156b, as desired.
It remains to handle the pairs (x, b) satisfying (35). As before, our local

sieve serves, after lengthy computations to eliminate all pairs except for those
corresponding to equations of the shape (31) with q = 2 and t odd. Considering
the latter equations modulo 4, we find that necessarily a is even, say a = 2a0,
whereby

t2
− 1 = y2

− (t2
− 2)2a0 > ((t2

− 2)a0 + 1)2 − (t2
− 2)2a0

> (t2
− 1)2 − (t2

− 2)2 > 2t2,

a contradiction.
To prove Theorem 4, we suppose that x = x0 · x1 with x0 = 2ν2(x), x1 ≡

1 (mod 2) and x1 < x1/4
0 . Then, arguing as before (16), we may choose δ1 ∈

{0, 1} such that

|C−1
n1,n2

Pn1,n2(x
b)+ (−1)δ1 yC−1

n1,n2
Qn1,n2(x

b)|2

6 2−min{ν2(x)a−1,ν2(x)b(n1+n2+1)}. (36)

For n1 and n2 as in (34), and some corresponding choice of δ ∈ {0, 1}, it follows
that

|C−1
n1,n2

Pn1,n2(x
b)+ (−1)δ1 yC−1

n1,n2
Qn1,n2(x

b)|> 1
2 xa

0 , (37)

and so

x4a/5 6 xa
0 6 2a/b+2

(
(a/2b + 2)

(
1+

xb

2

)3a/4b+1

+ y

(
1+

xb

2

)a/4b+1)
.

Assuming that a > 40b, we have, after some work, that

xb < 1.740 < 1.7× 109.

Since we suppose x0 > x4/5, it follows, if 230 < xb < 1.7× 109, then 225
|xb,

whence xb
= 225k for 33 6 k 6 50. Similarly, if 451452826 6 xb 6 230, then

224
|xb, so that xb

= 224k for 27 6 k 6 64.

§7. Concluding remarks. The Diophantine equation we have studied in this
paper,

xa
+ xb

+ 1= yq , a > b > 0,

likely has only the solutions

(x, a, b, yq) = (2, 5, 4, 72), (2, 9, 4, 232), (3, 7, 2, 133),

(18, 2, 1, 73), (72, 3, 1, 6112)

POWERS WITH THREE DIGITS 83



or (2, 2t, t + 1, (2t
+ 1)2), t > 2, in positive integers x, y and q > 2. We are,

however, unaware of techniques that would enable one to prove this, without
additional assumptions. As a rough indication of the level of difficulty involved,
one might observe that for this equation, only with b = 0, it is still unknown
whether the number of solutions in integers x, y, a, q with a, q > 2 is finite.
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