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POWERS IN RECURRENCE SEQUENCES: PELL EQUATIONS

MICHAEL A. BENNETT

Abstract. In this paper, we present a new technique for determining all
perfect powers in so-called Pell sequences. To be precise, given a positive
nonsquare integer D, we show how to (practically) solve Diophantine equations
of the form

x2 − Dy2n = 1

in integers x, y and n ≥ 2. Our method relies upon Frey curves and corre-
sponding Galois representations and eschews lower bounds for linear forms
in logarithms. Along the way, we sharpen and generalize work of Cao, Af
Ekenstam, Ljunggren and Tartakowsky on these and related questions.

1. Introduction

Many problems in number theory may be reduced to finding the intersection of
two sequences of positive integers, the philosophy being, barring local obstructions,
that the finiteness of this intersection should depend solely upon how quickly the
two sequences grow. In several situations, such statements may be made more
precise, often by appealing to results from the theory of Diophantine approximation.
For example, if we choose the two sequences to be a nondegenerate binary linear
recurrence sequence and the sequence of perfect powers of integers, then we have
the following

Theorem 1.1 (Pethő [18], Shorey and Stewart [21]). Let h be a nonzero integer
and let un be the nth term of a nondegenerate binary recurrence sequence. If

hxq = un,

for integers x and q larger than one, then the maximum of x, q and n is less than
an effective constant (depending only upon h and the recurrence sequence).

This result rests upon lower bounds for linear forms in logarithms of algebraic
numbers (i.e. Baker’s method).

To quantify this statement for a given recurrence can be rather difficult. For
example, if we consider the Fibonacci sequence

F = {0, 1, 1, 2, 3, 5, 8, 13, · · ·}
and write

P = {1, 4, 8, 9, 16, 25, 27, · · ·}
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for the sequence of positive perfect powers, then the only terms in common are 1, 8
and 144. Surprisingly, this result was only recently proven (see [7]; the proof is
along similar lines to the work outlined here, only with additional highly nontrivial
complications).

In this paper, we will consider a related problem, specifically that of determining
the perfect powers that arise in so-called Pell sequences. Despite being, it must be
confessed, of apparently rather specialized interest, one encounters a surprisingly
rich literature on the subject. An early result along these lines is one of Ljunggren
[14] which states that the Diophantine equation

(1.1) x2 − Dy2n = 1

has, for n and D fixed integers with n ≥ 2, at most two solutions in positive integers
x and y, at least provided we do not have D = m2 − 1 for some m ∈ N. To be
somewhat more precise, one has

Theorem 1.2 (Ljunggren [14]). If D is a nonsquare positive integer such that
D �= m2 − 1 for any integer m, and n ≥ 2 is an integer, then the Diophantine
equation (1.1) has at most two solutions in positive integers x and y. If there are
two solutions, these correspond to the fundamental solution and its square or fourth
power.1

In fact, Ljunggren proved a stronger result if n ∈ {2, 3} (extending the above
conclusion to include D of the form D = m2−1). The state of the art in case n = 2
is a theorem of Walsh [28]. Before we state this, we define some quantities of which
we will have later need. Suppose that D is a positive nonsquare integer and let u1

and v1 be the smallest positive integers such that

(1.2) u2
1 − Dv2

1 = 1.

We call (u1, v1) the fundamental solution to the equation u2 − Dv2 = 1. Further
define sequences of integers {uk} and {vk} by

uk + vk

√
D =

(
u1 + v1

√
D

)k

.

We have

Theorem 1.3 (Walsh [28]). Let D be a positive nonsquare integer. Then there are
at most two pairs of positive integers (x, y) such that

(1.3) x2 − Dy4 = 1.

If there are two such solutions, say (x1, y1) and (x2, y2) with y1 < y2, then y2
1 = v1

and y2
2 = v2, except if D = 1785 or D = 16 · 1785, in which case y2

1 = v1 and
y2
2 = v4.
If only one solution in positive integers (x, y) exists to equation (1.3), then y2 =

vm where v1 = mv2 for m a squarefree integer with either m = 1 or m prime.

This result provides an efficient algorithm for solving (1.1) in case n = 2. The
computational difficulty, should one arise, lies in the calculation of the fundamental
unit of Q(

√
D) and in factoring v1. As we have nothing of consequence to add

to this situation, we will restrict our attention to (1.1) with n ≥ 3. We begin by
sharpening Theorem 1.2:

1It will be evident later in this section what is meant here.
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Theorem 1.4. If n and D are fixed positive integers with n ≥ 3 and D nonsquare,
then (1.1) has at most two solutions in positive integers x and y. If there are two
solutions (x1, y1) and (x2, y2) with y2 > y1, then, if u1 and v1 are the smallest
positive integers with u2

1 − Dv2
1 = 1, we have

(x1, y
n
1 ) = (u1, v1) and (x2, y

n
2 ) = (2u2

1 − 1, 2u1v1).

Our main interest in this paper, however, is when n ≥ 2 is also treated as a
variable. Earlier work in the special case when D = 2 is due to Pethő [19] (see also
Cohn [9]):

Theorem 1.5 (Pethő [19], Cohn [9]). The Diophantine equation

x2 − 2y2n = ±1

has only the solutions (x, y, n) = (1, 1, n) and (239, 13, 2) in positive integers x, y
and n ≥ 2.

We prove the following result, which provides an explicit bound upon (prime)
exponents of Pell powers, for arbitrary D:

Theorem 1.6. Let D be a positive nonsquare integer and write R for the radical
of D, i.e.

R =
∏
p|D

p.

If there exist positive integers x and y with y > 1 and prime n, satisfying (1.1),
then either

D = 22n−2a2n − 1 and y = 2a,

for some integer a, or
n < (2eR)2R3

.

We note that the upper bound for n in Theorem 1.6 is, for a given D, typically
inferior to comparable results in the literature based upon lower bounds for linear
forms in logarithms of algebraic numbers. To be precise, if we apply a theorem of
Mignotte [16], after reducing the problem to consideration of suitable Thue equa-
tions (see Section 2 of this paper), we obtain an upper bound for n in (1.1) of order
log D. Similarly, a general result for powers in recurrence sequences due to Pethő
[20] yields a bound for n in terms of the fundamental unit in Q(

√
D). What is

(debatably!) interesting about our result, then, is that our bound on n depends
solely on R, the radical of D (see also Theorem 1 of [27]), and that our proof does
not use linear forms in logarithms, but rather relies upon results from the theory
of Frey curves and modular forms. Further, as we shall observe in Sections 6 and
7, for many values of D, we are able to deduce much sharper estimates for n.

Combining Theorems 1.4 and 1.6, we have

Corollary 1.7. Let D be a positive nonsquare integer. Then the number of so-
lutions to (1.1) in positive integers x, y and n with y, n ≥ 2 is bounded effectively
solely in terms of R, the radical of D.

It is unclear whether this dependence upon the radical of D is intrinsic or merely
an artifice of our method. It may be that the number of powers in a Pell sequence
is absolutely bounded, independent of D.

This paper is organized as follows. In Section 2, we translate the problem to
consideration of binomial Thue inequalities and state a basic bound for the number
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of solutions to such equations. In Section 3, we derive a precise and explicit result
for solutions to equations of the shape

22ta2n − Db2n = 1,

sharpening and generalizing Af Ekenstam [11], Ljunggren [14] and Tartakowsky
[25]. Our Proposition 3.2 strengthens the main result of Cao [8]. Section 4 is
devoted to the proof of Theorem 1.4. In Section 5, we turn our attention to Frey
curves and related Galois representations, corresponding to solutions of (1.1). These
techniques enable us to prove Theorem 1.6. Section 6 contains some corollaries of
these results which permit an easy solution of (1.1) for many values of D. Finally,
in Section 7, we apply our method to completely solve (1.1) for all D ≤ 100.

2. The Diophantine inequality |Aan − Bbn| ≤ 2

If we rewrite equation (1.1) as

(x − 1)(x + 1) = Dy2n,

then we immediately obtain solutions to a Diophantine inequality of the form

(2.1) |Aan − Bbn| ≤ 2,

for suitable positive integers A and B. An easy consequence of classical work of
Thue [26] and Siegel [22], in conjunction with lower bounds for linear forms in two
logarithms, is that the more general inequality

|Aan − Bbn| ≤ C,

where A, B and C are fixed nonzero integers and n ≥ 3, has at most one solution
in positive integers a and b, except for finitely many exceptional triples (A, B, n).
This set of exceptions is effectively computable and has cardinality depending only
upon C. Unfortunately, current estimates make it very difficult to explicitly find
these exceptional triples, given C. In the case of interest C = 2, however, this is a
recent theorem of the author’s, shamelessly reproduced here:

Theorem 2.1 ([3]). If A, B and n are integers with AB �= 0 and n ≥ 3, then
inequality (2.1) has at most one solution in positive integers (a, b).

The proof of this theorem follows similar lines to that of the analogous statement
in [1], with the additional twist that equations of the shape an−3bn = 2 are handled
via the theory of Frey curves and modular forms.

3. The Diophantine equation |Aan − Bbn| = 1

The main result of the preceding section provides precise information on the
number of solutions in integers to the given Diophantine inequality, without an-
swering the question of where such a solution should occur, if one does indeed
exist. In the case where n is even, with certain restrictions upon A and B, we can
in fact be rather more concrete:

Theorem 3.1. Let t, n and D be integers with n ≥ 2, D positive and nonsquare,
and (t, n, D) �= (0, 2, 7140). If there exist positive integers a and b such that

(3.1) 22ta2n − Db2n = 1,

then
u1 = 2tan and v1 = bn,
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where u1 and v1 are the smallest positive integers such that u2
1 − Dv2

1 = 1. If
(t, n, D) = (0, 2, 7140), then (3.1) has precisely one solution in positive integers,
corresponding to

u2 = 2392 and v2 = 262.

In case t = 0, this is an extension of a result of Tartakowsky [25] (actually, he
only provides a proof of a weaker version of this in case n = 2; full details for larger
n are available in the thesis of Af Ekenstam [11]). If t = n−1, this is noted without
proof by Ljunggren (as Theorem II of [14]).

Proof. If n = 2 and t = 0, then, via Tartakowsky [25], we may assume that a2 = ui

and b2 = vi, for i = 1 or i = 2. In the latter case, it follows that a2 = 2u2
1 − 1

and b2 = 2u1v1. The second of these equations implies the existence of integers m
and n for which either u1 = 2m2, v1 = n2 or u1 = m2, v1 = 2n2. The first of these,
together with a2 = 2u2

1 − 1 is a contradiction modulo 4. The second implies the
equation a2 − 2m4 = −1. A result of Ljunggren [13] thus leads to the conclusion
that (a, m) = (1, 1) or (239, 13). Since u1 > 1, we are necessarily in the second
case, whence

4 D n4 = 1692 − 1 = 24 · 3 · 5 · 7 · 17.

It follows that n = 1, v1 = 2 and D = 7140, as claimed. If, however, n = 2 and
t = 1, Theorem 3.1 is an immediate consequence of Corollary 1.3 of Bennett and
Walsh [6].

For larger values of n, we begin with an observation. If ε = u + v
√

D, where
u and v are positive integers for which u2 − Dv2 = 1, then if p is an odd positive
integer and we write

Ek =
εk − ε−k

ε − ε−1
,

it is readily verified that(
E p+1

2
− E p−1

2

)(
E p+1

2
+ E p−1

2

)
= Ep,(3.2)

(u + 1)
(
E p+1

2
− E p−1

2

)2

− (u − 1)
(
E p+1

2
+ E p−1

2

)2

= 2,(3.3)

(u + 1)
(
E p+1

2
− E p−1

2

)2

+ (u − 1)
(
E p+1

2
+ E p−1

2

)2

= εp + ε−p.(3.4)

Supposing that there exist positive integers a and b with 22ta2n −Db2n = 1, we
thus have, for u1 and v1 as in (1.2),

(3.5) 2tan + bn
√

D = (u1 + v1

√
D)m

for some positive integer m. Let us assume first that there exists an odd prime p
dividing m. Define

ε = a1 + b1

√
D = (u1 + v1

√
D)m/p.

Then

(3.6) 2tan + bn
√

D = (a1 + b1

√
D)p.

Expanding via the binomial theorem and equating coefficients, we have that

2tan = a1 · a2, bn = b1 · b2,

where a2 and b2 are odd integers with

gcd(a1, a2), gcd(b1, b2) ∈ {1, p}
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and neither a2 nor b2 divisible by p2. Further, if p | a1, then p2 � a2 and similarly
for b1, b2. It follows that either b1 = sn or

(3.7) a1 = 2trn and b1 = pn−1sn,

for r and s positive integers. In the first of these cases, Ep = (b/s)n and so, from
(3.2) and since the two factors on the left-hand side of (3.2) are coprime,

E p+1
2

− E p−1
2

= Pn and E p+1
2

+ E p−1
2

= Qn,

for some positive integers P and Q. Equation (3.3) thus yields

(a1 + 1)P 2n − (a1 − 1)Q2n = 2

and so, via Theorem 2.1, P = Q = 1, contradicting p > 1. In case (3.7), we have
Ep = pyn

0 for some positive integer y0 and so (3.2) implies that

E p+1
2

± E p−1
2

= pPn and E p+1
2

∓ E p−1
2

= Qn,

for P and Q positive integers. Applying (3.3) and (3.4), we thus have either

(a1 + 1) p2P 2n − (a1 − 1)Q2n = 2, (a1 + 1) p2P 2n + (a1 − 1)Q2n = 2t+1an

or

(a1 + 1)Q2n − (a1 − 1) p2P 2n = 2, (a1 + 1)Q2n + (a1 − 1) p2P 2n = 2t+1an.

It follows that

2(a1 ± 1)Q2n ∓ 2 = 2t+1an

and so, since a1 = 2trn,
∣∣(2trn ± 1)Q2n − 2tan

∣∣ = 1.

Applying Theorem 2.1, we have Q = 1, a = r, again a contradiction.
We are thus left to treat (3.5) with m = 2α for α a nonnegative integer. The

desired result will follow directly, if we can show that α = 0. If α > 0, then m
and hence b are necessarily even, whereby t = 0. To derive a contradiction, we will
appeal to the following

Proposition 3.2. If D is a positive nonsquare integer and n ≥ 3, then the equation
xn = u2k, where x and k are positive integers, implies that

D = 6083, n = 3, k = 1, x = 23.

Proof of Proposition 3.2. If we have xn = u2k = 2u2
k − 1, then it follows from

Proposition 8.1 of [4] and the fact that u1 > 1, that uk = 78. Since Dv2
k = u2

k − 1
for a positive integer vk, we thus have D = 6083, n = 3, k = 1 and x = 23, as
claimed. �

It follows, then, that α = 1, m = 2, D = 6083 and n = 3. Since 156 is not a
cube, this contradicts (3.5), completing the proof of Theorem 3.1. �
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4. Sharpening Ljunggren

We will now proceed with the proof of Theorem 1.4. If we have a solution in
positive integers (x, y) to (1.1), we may write

(4.1) x + yn
√

D = uk + vk

√
D =

(
u1 + v1

√
D

)k

for k ∈ N. We begin by showing that, given n and D, there is at most a single odd
value of k for which (4.1) holds. Suppose the contrary, i.e. that there exist positive
integers xi, yi and ki with

(4.2) xi + yn
i

√
D =

(
u1 + v1

√
D

)ki

, i ∈ {1, 2},

and k1 < k2 odd. We may further suppose that k1 is the smallest odd positive
integer such that a relation of the form (4.1) holds with k = k1. Then, a standard
argument (see e.g. Ljunggren [14]) implies that k1 divides k2. Writing k2 = pk1,
where p is an odd integer, and setting ε = uk1 + vk1

√
D, we thus have

Ep = (y2/y1)
n

.

It follows from (3.2) that there exist positive integers a and b with

E(p+1)/2 + E(p−1)/2 = bn and E(p+1)/2 − E(p−1)/2 = an,

whereby, from (3.3),
(x1 + 1)a2n − (x1 − 1)b2n = 2.

Applying Theorem 2.1, we conclude that a = b = 1 and so p = 1, contradicting
k2 > k1.

Next, let us consider solutions to (4.1) in even integers k. We have the following,
completing the proof of Theorem 1.4. Note that much of our argument is essentially
available in Ljunggren [14].

Proposition 4.1. If D is a positive nonsquare integer and n ≥ 3, then the equation
yn = v2j, where y and j are positive integers, implies that j = 1.

Proof of Proposition 4.1. If yn = v2j for a positive integer j, then

yn = 2ujvj ,

whereby there exist positive integers a and b such that either

uj = 2n−1an, vj = bn

or
uj = an, vj = 2n−1bn.

In the first case, we have
22n−2a2n − Db2n = 1,

while, in the second,
a2n − 22n−2Db2n = 1.

Applying Theorem 3.1 immediately implies Proposition 4.1 in the first case. In the
second, we have that

an = u+
1 and bn = v+

1 ,

for u+
1 and v+

1 the smallest positive integers satisfying

(u+
1 )2 − 22n−2D(v+

1 )2 = 1.
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Since
u+

1 + v+
1 2n−1

√
D = (u1 + v1

√
D)2

s

for some nonzero integer s, it follows that either s = 0 (completing the proof of
Proposition 4.1) or s ≥ 1. In the latter case, j must be even and hence there exists
a positive integer m with

yn = v4m = 4umvm(2u2
m − 1).

It follows that

(4.3) 4um(2u2
m − 1) = An

for some A ∈ N and hence 2u2
m−1 = Bn for an integer B > 1. Once again applying

Proposition 8.1 of [4], um = 78. Since 312 is not a perfect nth power for any n > 1,
this contradicts (4.3). �

5. From Pell powers to Galois representations

We now proceed with the main preoccupation of this paper – to find, given
D alone, all powers in the associated Pell sequence; i.e., integers x, y and n ≥ 2
satisfying (1.1). While we have previously appealed to results from the theory
of Galois representations and modular forms implicitly (e.g. in the application of
Theorem 2.1), here we will do so in an explicit manner.

If we view a solution to (1.1) as a special case of the ternary equation

(5.1) x2 − Dy2n = zn

with z = 1, then the techniques of [4] (building upon those of [10]) allow us to treat
such equations for certain D and suitably large prime n. In general, we cannot
expect to solve (5.1) for arbitrary D, without additional arithmetic information.
In the context of Pell powers, this is provided by classical work of Størmer [24] on
primitive divisors of recurrence sequences.

Let us suppose that we have x2 − Dy2n = 1 with, say, n ≥ 7 prime, and x, y
integers with y > 1. Note that if D is even and not divisible by 8, then y is
necessarily even. It follows that we are, without loss of generality, in one of the
following situations:

(i) D and y are odd;
(ii) ν2(D) ∈ {3, 4, 5} and y is odd;
(iii) either ν2(D) ≥ 6 or y is even, and x ≡ 1 (mod 4).

Here (and subsequently), we denote by νp(x) the largest nonnegative integer k such
that pk divides an integer x.

As in [4], we consider the (Frey) elliptic curves

Y 2 = X3 + 2xX2 + Dy2nX,(5.2)

Y 2 = X3 + xX2 +
Dy2n

4
X(5.3)

and

(5.4) Y 2 + XY = X3 +
(x − 1)

4
X2 +

Dy2n

64
X,

in cases (i), (ii) and (iii), respectively. For E one of these curves, we associate a
Galois representation

ρE
n : Gal(Q/Q) → GL2(Fn)



POWERS IN RECURRENCE SEQUENCES: PELL EQUATIONS 1683

on the n-torsion points E[n] of E. Via Lemma 3.3 of [4], this representation arises
from a weight 2 cuspidal newform

f = fE =
∞∑

n=1

cnqn

of trivial character. The level N = Nf of this form is (see Lemmata 2.1 and 3.3 of
[4]) one of R∗, 2R∗, 8R∗ or 32R∗, where

R∗ =
{

R if R is odd,
R/2 if R is even.

Define, for a given nonsquare positive integer D, positive integers D1 and R by

D1 =
∏
p|D

pδp and R = Rad(D) =
∏
p|D

p,

where

δp =
{

1 if νp(D) is odd,
2 if νp(D) is positive and even.

In this way, D1 differs from D by a square factor. We note that D1 < R2. Now,
let ε1 be a unit in Q(

√
D1), corresponding to the minimal solution to the equation

(5.5) u2 − D1v
2 = 1

(i.e. ε1 = u∗
1 + v∗1

√
D1 where u∗

1 and v∗1 are the smallest positive integers satisfying
(5.5)). As usual, we will define u∗

k and v∗k by

u∗
k + v∗k

√
D1 =

(
u∗

1 + v∗1
√

D1

)k

.

We consider two cases separately. Either there exists a prime p with p | v∗1 and p
coprime to 2D1, or there is no such prime. In the first case, from standard bounds
on fundamental units in real quadratic fields (say due to Hua [12]), we have

(5.6) p <
ε1
2

<
1
2

(
4e2D1

)√D1
<

1
2

(2eR)2R
.

Since p divides v∗1 and is coprime to 2D1 (and hence to 2D), it follows that p is
coprime to the conductor N of the newform f corresponding to our induced Frey
curve E and that p divides y. We thus have

trace ρE
n (Frobp) = ±(1 + p)

and hence, via Proposition 4.3 of [4],

(5.7) NormKf /Q (cp ± (p + 1)) ≡ 0 (mod n),

where cp is the pth Fourier coefficient of f . Here, Kf is the field of definition for
the Fourier coefficients of f . Since, for each embedding σ of Kf in R, we have

|σ(cp)| ≤ 2
√

p

(so that, in particular, the above norm is nonzero), it follows that

n ≤ (p + 1 + 2
√

p)[Kf :Q] = (
√

p + 1)2 [Kf :Q]
.

Now the degree of the extension Kf over Q is bounded above by g+
0 (N), the di-

mension of the space of weight 2, level N cuspidal newforms Snew
2 (N), of trivial
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character, as a C-vector space. Since R∗ is odd and squarefree, it follows from, e.g.,
work of Martin [15] that

g+
0 (N) ≤ g+

0 (32R∗) = φ(R∗) < R∗ ≤ R,

where φ denotes the Euler phi-function. Combining this with (5.6), we thus have

n ≤ (p + 1 + 2
√

p)R
< (2eR)2R2

.

Let us next suppose that v∗1 has no prime divisor, coprime to 2D. Then one of
the following occurs:

(i) v∗1 = 1;
(ii) v∗1 is even;
(iii) v∗1 is composed entirely of odd prime divisors of D.

We treat these cases in turn. In the first of them, we have D1 = m2 − 1 for some
integer m > 1 and hence D = d2(m2 − 1) with d a positive integer. If d = 1, we
may apply Theorem 1.4 to reach the desired conclusion. Since, by construction,
D1 is cube-free (and hence m is even) and since every prime divisor of D divides
D1, d is odd. If d > 1 and q is a prime divisor of d, then v∗q divides Dy2n and
so, via a classic result of Størmer [24] on primitive divisors of terms in recurrence
sequences, there is an odd prime p dividing v∗q and hence y, coprime to D. Arguing
as previously, since

p ≤ v∗q <
1
2

εq
1 <

1
2

(2eR)2qR
<

1
2

(2eR)2R2

,

where the last inequality is a consequence of the fact that q | D (and hence q ≤ R),
we have

n < (2eR)2R3
.

Next suppose that v∗1 is even. If we further assume that n > RR2
, then, from

the upper bound for ε1 in (5.6), ν2(v∗1) < n. It follows that v∗2 necessarily divides
dy2n, where D = d2D1. Since v∗2 = 2u∗

1v
∗
1 and from (u∗

1)
2 − D1 (v∗1)2 = 1, we have

that u∗
1 and hence y is divisible by a prime p, coprime to 2D. We thus have

p <
1
2

(2eR)4R

where, again, our corresponding Frey curve has multiplicative reduction at p (and
hence congruence (5.7) is satisfied by the related modular form). Arguing as before,
we obtain a bound of the shape

n < (2eR)4R2

.

Finally, let us suppose that every prime divisor of v1 > 1 is an odd prime divisor
of D. Let q be an odd prime dividing gcd(v∗1 , D). Assuming n > RR2

guarantees
that νq(v∗1) < n and, from

νq(v∗q ) = νq(v∗1) + 1,

and properties of recurrence sequences, we have that y is divisible by every prime
dividing v∗q . By the aforementioned theorem of Størmer, v∗m is divisible by a prime
coprime to D1 for all m > 1 and so there exists a prime p dividing v∗q and y, coprime
to 2D1 and hence to N . We have

p ≤ v∗q <
1
2

(2eR)2qR ≤ 1
2

(2eR)2R2

.
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Arguing as previously, we conclude that

n ≤ (p + 1 + 2
√

p)g+
0 (32R)

< (2eR)2R3

,

as desired. This completes the proof of Theorem 1.6.

6. Some useful propositions

Given D, actual application of the techniques of the preceding sections to com-
pletely solve (1.1) often turns out to be a routine matter. In practice, the upper
bound for n in Theorem 1.6 is usually wildly pessimistic. As we shall see in this
section, the situation is particularly nice if gcd(v1, 6) > 1. We begin with an easy
corollary of Proposition 4.1:

Proposition 6.1. If D is a positive nonsquare integer and x, y and n are positive
integers satisfying (1.1), with y even and n ≥ 3, then one of the following cases
occurs:

(i) v1 is even, whereby

ν2(v1) ≤ n ν2(y) ≤ ν2(v1) + 1.

If n ν2(y) = ν2(v1) + 1, then there exist positive integers a and b such that

u1 = an, v1 = 2n−1bn and y = 2ab.

(ii) v1 is odd, in which case there exist positive integers a and b such that

u1 = 2n−1an, v1 = bn and y = 2ab.

Proof. Suppose, first, that v1 is even. The inequality ν2(v1) ≤ n ν2(y) is a trivial
consequence of the fact that v1 divides yn. If we have that n ν2(y) ≥ ν2(v1) + 1,
then, writing yn = vj for some integer j, it follows that j is even and hence,
from Proposition 4.1, equal to 2. This implies that 2u1v1 = yn whence n ν2(y) =
ν2(v1) + 1 and the rest of part (i) of our claim follows immediately.

Next, suppose that v1 is odd while y is even. Then yn = v2k for k a positive
integer whereby, again from Proposition 4.1, k = 1. The stated equalities for u1

and v1 thus follow from yn = 2u1v1 and the fact that v1 is odd. �

Analogous to Proposition 4.1, in case we are interested in solutions to (1.1) with
yn = vj for j divisible by 3 rather than 2, is the following:

Proposition 6.2. If D is a positive nonsquare integer and n ≥ 3, then the equation
yn = v3k has no solutions in positive integers y and k.

Proof. Suppose that we have

yn = v3k = vk

(
4u2

k − 1
)
.

Since

gcd
(
vk, 4u2

k − 1
)

=
{

3 if 3 | vk,
1 otherwise,

it follows that 4u2
k−1 = 3δan for some integer a, where δ ∈ {0, 1}. If δ = 0, we have

that both 2uk + 1 and 2uk − 1 are perfect nth powers, an immediate contradiction.
If, however, δ = 1, the equality (2uk − 1) (2uk + 1) = 3an implies the existence of
positive integers b and c for which bn − 3cn = ±2. Theorem 2.1 yields b = c = 1
and so uk = 1, contradicting u2

k − Dv2
k = 1 with D and vk positive. �
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From this result, we quickly obtain

Proposition 6.3. If D is a positive nonsquare integer and x, y and n ≥ 3 are
positive integers satisfying (1.1), with 3 | y, then one of the following two cases
occurs:

(i) 3 | v1, whence n ν3(y) = ν3(v1).
(ii) 3 | u1 and y is even (whereby the conclusions of Proposition 6.1 obtain).

Proof. If we have x2 − Dy2n = 1 with n ≥ max{ν3(v1) + 1, 3}, where 3 | v1, it
follows that yn = vj with 3n dividing vj . We thus have j = 3k for some integer k,
whereby the result is immediate from Proposition 6.2. If 3 divides y, but not v1,
then yn = vk where k is even (if 3 | u1) or divisible by 3 (if 3 fails to divide u1).
In the first case, it follows that y is even. In the second, as before, we obtain a
contradiction via Proposition 6.2. �

Notice, from u2
1 − Dv2

1 = 1, that v1 is necessarily even for all

D ≡ 1, 2, 4, 5, 6 (mod 8),

while v1 is guaranteed to be divisible by 3 if D ≡ 1 (mod 3). We may thus apply
at least one of Proposition 6.1 or 6.3 for at least 3/4 of all values of D. In these
situations, complete determination of solutions to (1.1) is usually a trivial matter.

7. Computations

We now attempt to demonstrate that the techniques of the previous sections
provide a practical method for determining all Pell powers in a given sequence.
Specifically, we will prove the following

Theorem 7.1. If 1 ≤ D ≤ 100, then the only solutions to (1.1) in positive integers
x, y and n with y, n ≥ 2 are with (x, y, n, D) in the following list:

(7, 2, 2, 3), (9, 2, 2, 5), (15, 2, 2, 14), (31, 2, 3, 15), (33, 2, 3, 17),
(17, 2, 2, 18), (161, 6, 2, 20), (23, 2, 2, 33), (25, 2, 2, 39), (31, 2, 2, 60),

(63, 2, 3, 62), (127, 2, 4, 63), (127, 4, 2, 63), (129, 2, 4, 65), (129, 4, 2, 65),
(65, 2, 3, 66), (33, 2, 2, 68), (80, 3, 2, 79), (82, 3, 2, 83), (39, 2, 2, 95).

Proof. We begin by tabulating the values of v1 for D < 100 in Table 1. First
consider the case n = 2. In this situation, we may appeal to Theorem 1.3; a number
of elementary results are also applicable, at least for many D (see, for example,
Theorem 8, Chapter 28 of Mordell [17]). From the above table, we encounter
solutions with v1 > 1 square for

D ∈ {5, 14, 18, 33, 39, 60, 65, 68, 79, 83, 95} .

The only such solutions for which y2 �= v1 are with D = 3, 20 and 63. In each case,
we have y2 = v2.

Let us now turn our attention to (1.1) with n ≥ 3 prime. In these cases, we
will rely heavily upon Propositions 6.1 and 6.3. Applying the second of these for
those D with 3 | v1, we obtain immediate contradictions unless 27 | v1 (i.e unless
D ∈ {67, 85}, whence ν3(v1) = 3 and n = 3). If (D, n) = (67, 3) and y is even,
then part (ii) of Proposition 6.1 provides a contradiction. If, however, y is odd, the
relation x2 − 67y6 = 1 implies the existence of positive integers a and b for which

a6 − 67b6 = ±2,
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Table 1.

D v1 D v1 D v1 D v1 D v1

2 2 23 5 43 531 62 8 82 18
3 1 24 1 44 30 63 1 83 9
5 4 26 10 45 24 65 16 84 6
6 2 27 5 46 3588 66 8 85 30996
7 3 28 24 47 7 67 5967 86 1122
8 1 29 1820 48 1 68 4 87 3
10 6 30 2 50 14 69 936 88 21
11 3 31 273 51 7 70 30 89 53000
12 2 32 3 52 90 71 413 90 2
13 180 33 4 53 9100 72 2 91 165
14 4 34 6 54 66 73 267000 92 120
15 1 35 1 55 12 74 430 93 1260
17 8 37 12 56 2 75 3 94 221064
18 4 38 6 57 20 76 6630 95 4
19 39 39 4 58 2574 77 40 96 5
20 2 40 3 59 69 78 6 97 6377352
21 12 41 320 60 4 79 9 98 10
22 42 42 2 61 226153980 80 1 99 1

a contradiction modulo 7. If, however, (D, n) = (85, 3), then ν2(v1) = 2 and part
(i) of Proposition 6.1 implies that 7749 is a perfect cube, again a contradiction.
This completes the proof of Theorem 7.1 in case 3 divides v1.

Next, we will treat those remaining values of D with even v1. From Proposition
6.1, we may assume that ν2(v1) ≥ 2. If ν2(v1) = 2, then part (i) of Proposition 6.1
implies the existence of integers a and b such that u1 = a3 and v1 = 4b3, in each
case a contradiction. If ν2(v1) = 3 (and hence n = 3 and ν2(y) = 1), we have

D ∈ {17, 62, 66, 77, 89}.
For the first three of these values, we have solutions to x2 −Dy6 = 1 with y3 = v1.
If there are additional solutions for these D, Theorem 1.4 thus implies that the
corresponding u1 = 4a3 for some integer a, contradicting the parity of v1. If
D = 77, the equation x2 − 77y6 = 1 with ν2(y) = 1 implies, after factoring, the
existence of odd positive integers a and b with

(7.1) Aa6 − Bb6 = ±1,

where
(A, B) ∈ {(1, 1232), (7, 176), (11, 112), (16, 77)} .

Modulo 7 or 9, we can discount all equations except

a6 − 1232b6 = 1,

which, via Theorem 3.1, has no positive integral solutions.
The remaining D with v1 even are D = 65 (for which ν2(v1) = 4) and D = 41

(with ν2(v1) = 6). In the first of these cases, Proposition 6.1 implies that n = 5 and
that u1 is a fifth power, contradicting u1 = 129. If D = 41, the same proposition
leads to the conclusion that either n = 7 and v1 = 64a7 for some integer a (contrary
to v1 = 320), or that n = 3, ν2(y) = 2. In the latter situation, factoring the equation
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x2 − 41y6 = 1 leads to a solution in positive integers a and b to an equation of the
form (7.1) with

(A, B) ∈
{
(1, 210 · 41), (41, 210)

}
.

Modulo 9, we are left with the equation

a6 − 210 · 41y6 = 1,

again contradicting Theorem 3.1. This completes the proof of Theorem 7.1, in case
gcd(v1, 6) > 1.

It remains, then, to consider

D ∈ {23, 27, 47, 51, 71, 96}.
Note that, for these cases, we may assume gcd(y, 6) = 1. Otherwise, part (ii) of
Proposition 6.1 and part (ii) of Proposition 6.3 together imply that v1 is an odd
perfect power. We will begin with D ∈ {27, 96}. Considering the Frey curves
corresponding to a solution of (1.1) with n ≥ 7 prime (see Section 5), we find, from
the fact that y is odd, that in each case N = 96. Since v1 = 5, we have that 5 | y
and hence

NormKf Q (c5 ± 6) ≡ 0 (mod n),
for a weight 2, level 96 cuspidal newform with trivial character. From Stein’s
Modular Forms Database [23], we have c5 = 2 for all such forms, contradicting
n ≥ 7. We are left to deal with n ∈ {3, 5}. In these cases, if D = 27, factoring
x2 − 27y2n = 1 and using the fact that y is odd implies that

a2n − 27b2n = ±2

for some integers a and b, a contradiction modulo 9 and 11, for n = 3 and n = 5,
respectively. If D = 96, we similarly have either

a2n − 24b2n = ±1 or 3a2n − 8b2n = ±1

with a and b odd integers. Modulo 8, we may suppose that

a2n − 24b2n = 1

which, via Theorem 3.1, has no solutions with n ≥ 2.
Next, we consider D = 23. From the fact that y is odd, we are led to a weight 2

cuspidal newform of level N = 736. Stein’s Database thus tells us that

c3 c5 F (θ)
θ ±θ − 1 θ2 ± 2θ − 1
θ ±θ + 1 θ2 − 3
θ −θ2 ± 3θ θ3 ∓ 4θ2 + θ ± 4
θ ± 1

2θ3 ∓ 7
2θ θ4 ∓ 2θ3 − 9θ2 ± 12θ + 16

where c3 ≡ 0,±2 (mod ν) (since 3 fails to divide y) and c5 ≡ ±6 (mod ν) (since
5 | y), for some prime ν above n. Here, we list Fourier coefficients cp for p = 3
and 5 for each cuspidal newform at level 736, together with minimal polynomials
F such that F (θ) = 0. Congruence (5.7) leads to a contradiction for all prime
n ≥ 7, except for n = 23 (where n | N , the level of our newform). We may thus
suppose that n ∈ {3, 5, 23}. The equation x2 − 23y2n = 1 with y odd leads to
a2n − 23b2n = ±2, with a and b odd integers. Modulo 8, we may discount the
minus sign. If we consider the equation a2n − 23b2n = 2 modulo 7, 11 and 47, we
deduce a series of contradictions for n = 3, 5 and 23, respectively.
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If D = 47, then N = 1504 and we have v1 = 7. In each case we have c3 = θ,
where F (θ) = 0 for one of the following polynomials:

F (θ)
θ4 ± 2θ3 − 3θ2 ∓ 4θ + 1
θ5 − 11θ3 + 23θ ∓ 12

θ6 ± 4θ5 − 3θ4 ∓ 20θ3 + 3θ2 ± 24θ − 8
θ8 ± 2θ7 − 19θ6 ∓ 32θ5 + 105θ4 ± 124θ3 − 184θ2 ∓ 96θ + 64

From c3 ≡ 0,±2 (mod ν) and the fact that n ≥ 7 is prime, if F (θ) = θ4 ± 2θ3 −
3θ2 ∓ 4θ + 1, we have that n = 13. Similarly, if F (θ) = θ5 − 11θ3 + 23θ ∓ 12,
n = 11, while in all other cases, we derive a contradiction for all prime n ≥ 7.
This leaves us to deal with n ∈ {3, 5, 11, 13, 47}. Here, considering the equation
a2n − 47b2n = ±2 modulo 8, we may discard the minus sign, whereby we obtain a
contradiction modulo 13, 11, 23, 53 and 283 for n = 3, 5, 11, 13 and 47, respectively.

If D = 51, then N = 1632 and v1 = 7. Here from [23], we find that c7 ∈ {0,±2}
except for forms with c7 as follows (where, as previously, F (θ) = 0):

c7 F (θ)
±(2θ + 4) θ2 + 3θ − 2

±(θ2 − 3θ − 2) θ3 − 3θ2 − 4θ + 4

Since we have, from the fact that v1 = 7 divides y,

NormKf /Q(c7 ± 8) ≡ 0 (mod n),

we contradict n ≥ 7 prime in all cases except for those forms with F (θ) = θ3−3θ2−
4θ+4, where we have n = 17 or n = 31. It remains to eliminate the possible values
n ∈ {3, 5, 7, 17, 31}. Arguing as previously, we deduce the existence of integers a
and b, coprime to 6, with either

a2n − 51b2n = ±2 or 3a2n − 17b2n = ±2.

Modulo 8 and 17, we may thus suppose that

a2n − 51b2n = −2.

Working modulo 9, 11, 29, 103 and 311, we again arrive, in each case, at a contra-
diction.

Finally, let us suppose that D = 71. Then N = 2272 and we have v1 = 413. In
each case we either have c3 = ±1,±3, or c3 = θ where F (θ) = 0 for F as follows:

F (θ)
θ6 − 9θ4 ∓ 2θ3 + 22θ2 ± 6θ − 13

θ8 ± 4θ7 − 8θ6 ∓ 40θ5 + 13θ4 ± 112θ3 + 9θ2 ∓ 56θ + 9
θ9 ± 8θ8 + 12θ7 ∓ 48θ6 − 135θ5 ± 20θ4 + 265θ3 ± 92θ2 − 127θ ∓ 52

θ10 ± 2θ9 − 20θ8 ∓ 36θ7 + 133θ6 ± 204θ5 − 323θ4 ∓ 383θ3 + 159θ2 ± 116θ − 16

In any case, the fact that c3 ≡ 0,±2 (mod ν) leads, after some routine computation,
to the conclusion that

n ∈ {3, 5, 7, 13, 19, 59, 71, 397}.
As before, considerations modulo 8 imply that

a2n − 71b2n = 2
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for integers a and b, a contradiction modulo 7, 11, 29, 53, 191, 709, 569 and 2383, for
n = 3, 5, 7, 13, 19, 59, 71 and 397, respectively. This completes the proof of Theorem
7.1. �
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