
THE POLYNOMIAL-EXPONENTIAL EQUATION 1 + 2a + 6b = yq

MICHAEL A. BENNETT

Abstract. We solve the equation of the title for q = 3 and, partially, for

q = 2. These are the only prime values of q for which there exist integer

solutions. Our arguments are based upon off-diagonal Padé approximation to
the binomial function.

1. Introduction

Polynomial-exponential equation arise naturally (and, at times, somewhat un-
naturally) in a wide variety of mathematical settings. The rather curious equation
of the title has been considered by a variety of authors (see e.g [3], [6], [7], [12]) as
an example of perhaps the simplest class of polynomials-exponential Diophantine
equations whose solutions are in some sense classifiable via the Subspace Theorem
of Wolfgang Schmidt, but not, apparently, by simpler means. Recent work [4], [8]
solving equations of the shape

(1) 1 +Aa +Bb = yq

via local methods, appears unable to treat the equation of the title (indeed, the
techniques of [4] and [8] both require that A 6≡ B (mod 2)). As far as we are aware,
the title equation is the only case of (1) with max{A,B} ≤ 6 that remains unsolved.
Regrettably, this paper is unable to completely rectify this fault.

Strong partial results are already available in the literature. Indeed, a very
special case of a theorem of Corvaja and Zannier [5] (based upon the aforementioned
Subspace Theorem) implies that, for fixed exponent q, the title equation has at most
finitely many solutions. Further, work of the author with Bugeaud and Mignotte
(Theorem 3 of [3]) implies that the equation of the title has no solutions unless we
have q ∈ {2, 3, 6}. This latter result depends fundamentally upon bounds for linear
forms in 2-adic and complex logarithms. In the paper at hand, we will appeal to
explicit off-diagonal Padé approximations to the function (1 + z)1/q to (partially)
treat these remaining cases. We prove the following.

Theorem 1. The equation

(2) 1 + 2a + 6b = y2

has only the solutions (a, b, y) = (1, 1, 3) and (3, 3, 15) in nonnegative integers with
a ≤ b. The equation

(3) 1 + 2a + 6b = y3
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has only the solutions (a, b, y) = (0, 1, 2) and (9, 3, 9) in nonnegative integers.

This resolves a problem of Luca [9] (corresponding to the special case of equation
(2) with a = b). We note that the only other known solutions to equation (2) (in
the remaining case a > b) are with (a, b, y) = (1, 0, 2) and (9, 3, 27). We strongly
suspect that they are the only ones.

We will actually prove something somewhat stronger than Theorem 1 (in the
case of equation (2)).

Proposition 1.1. If there exist nonnegative integers a, b and y satisfying (2), then
either (a, b, y) = (1, 0, 2), (1, 1, 3) or (3, 3, 15), or a and b are positive and we have

a/b ∈ (1.349, 4.250) ∪ (6.166, 9.943).

Again, it is likely that this last condition can be replaced by (a, b, y) = (9, 3, 27).

2. The square case : Proposition 1.1

In this section, we will restrict our attention to (2). If b = 0 in this equation,
it is straightforward to show that a = 1, corresponding to (a, b, y) = (1, 0, 2).
Similarly, there are no solutions with a = 0. If b = 1, then we have a solution
(a, b, y) = (1, 1, 3) and, modulo 4, no others. For b ≥ 2, we find that, modulo
9, a ≡ 3 (mod 6), whereby, modulo 7, b is also odd. We will therefore suppose,
for the remainder of this section, that a and b are odd integers (with 3 | a) and
min{a, b} ≥ 3.

Our starting point will be some “off-the-shelf” results from explicit Diophantine
approximation (though we will have need of more specialized ones later). From
Corollary 1.7 of [1], we have, for a and b odd, that

(4)
∣∣y2 − 2a

∣∣ > 20.26a and
∣∣y2 − 6b

∣∣ > 60.27b,

unless, in the first case, (y, a) = (±3, 3) or (±181, 15). A short calculation thus
allows us to conclude that either (a, b) = (3, 3) or (9, 3), or that min{a, b} > 10,
whereby, from (4),

(5) b <
2

0.54

log (1 + 2a)

log 6
< 1.433 a and a <

2

0.52

log
(
1 + 6b

)
log 2

< 9.943 b.

We therefore have that

(6) a/b ∈ (0.697, 9.943) .

To sharpen this conclusion, we will begin by supposing that a ≤ b, whereby we
may write y = (−1)δ + k · 2a−1, for k an integer and δ ∈ {0, 1}. It follows that

(−1)δk + k2 · 2a−2 = 1 + 2b−a3b.

Since b < 1.433a and a > 10, we have that b− a < a− 2 and so

3b − k2 · 22a−b−2 = 3b − 2
(
k · 2a−

b+3
2

)2
=

(−1)δk − 1

2b−a

is an integer. We note that

k ≤ y + 1

2a−1
<

6b/2 + 2

2a−1
,

whence

(7)

∣∣∣∣3b − 2
(
k · 2a−

b+3
2

)2∣∣∣∣ < 6b/2 + 3

2b−1
< 3 · (3/2)b/2.
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If, on the other hand, we have a > b, then we may write

y = (−1)δ + k · 2b−1,
for k ∈ N and δ ∈ {0, 1}, and so

(8) (−1)δk + k2 · 2b−2 = 2a−b + 3b

and

(9) 3b − 2
(
k · 2

b−3
2

)2
= (−1)δk − 2a−b.

If we suppose further that 2a ≤ 6b/2, then y < 1 + 6b/2 and so

k ≤ y + 1

2b−1
<

2 + 6b/2

2b−1
,

whereby

(10)

∣∣∣∣3b − 2
(
k · 2

b−3
2

)2∣∣∣∣ < 2 + 6b/2

2b−1
+ (3/2)b/2 < 4 · (3/2)b/2.

Combining (7) and (10), it follows that, in all cases where 2a ≤ 6b/2, we have

(11)
∣∣3b − 2T 2

∣∣ < 4 · (3/2)b/2,

for T an integer (and b odd). If, however, 6b/2 < 2a < 6b, we have that y ≤
√

2 6b/2

and so, from (9) and the fact that b > 10,

(12)

∣∣∣∣3b − 2
(
k · 2

b−3
2

)2∣∣∣∣ < 3 · (3/2)b/2 + 2a−b.

Our immediate goal will be to show that inequality (11) is never satisfied, at
least provided b ≥ 8, and that inequality (12) cannot hold for “small” values of a.
We note that, from a result of Ridout [11], given ε > 0, we have, writing b = 2b0+1,
that ∣∣∣∣√3/2− T

3b0

∣∣∣∣�ε 3−(1+ε)b0

and hence there exists a constant c(ε) > 0 such that

(13)
∣∣3b − 2T 2

∣∣ > c(ε) 3(1−ε)b/2,

for b odd and T ∈ Z. In particular, there are at most finitely many solutions to
(11). For our purposes, however, we require an effective, explicit lower bound (of
necessity, somewhat weaker than (13)). We prove the following.

Proposition 2.1. If b and T are nonnegative integers, with b ≥ 7 odd, then∣∣3b − 2T 2
∣∣ > 1.274b.

Proof. To derive this result, let us begin by defining, for n1 and n2 nonnegative
integers, polynomials in Q[z]

(14) Pn1,n2
(z) =

n1∑
k=0

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
zk

and

(15) Qn1,n2
(z) =

n2∑
k=0

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)
zk.
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These are, up to scaling, the [n1, n2]-Padé approximants to (1 + z)1/2 and satisfy
the relation

(16) Pn1,n2
(z)− (1 + z)

1/2
Qn1,n2

(z) = zn1+n2+1En1,n2
(z),

where

En1,n2(z) =
(−1)n2 Γ(n2 + (q + 1)/q)

Γ(−n1 + 1/q)Γ(n1 + n2 + 2)
F (n1 + (q− 1)/q, n2 + 1, n1 +n2 + 2,−z),

and F is the hypergeometric function

F (a, b, c,−z) = 1− a · b
1 · c

z +
a · (a+ 1) · b · (b+ 1)

1 · 2 · c · (c+ 1)
z2 − · · · .

For our purposes, it is enough to note the following, combining Lemmata 3.1 and
4.1 of [1] :

Lemma 2.2. Suppose that z is a real number with |z| ≤ 1/2 and that n1 and n2
are positive integers and α ≥ 3/2 a real number satisfying

(17) 0 ≤ αn1 − n2 < 2(α− 1).

Define

r(α, z) = − 1

2z

(
(α+ 1) + (α− 1)z −

√
((α+ 1) + (α− 1)z)

2
+ 4z

)
and

Fα,z =
(1 + zr(α, z))

α

r(α, z) (1− r(α, z))α
.

Then we have

(18) |Pn1,n2
(z)| < 2(α+ 1) (Fα,z)

n1

and

(19)
∣∣∣Pn1,n2(z)− (1 + z)

1/2
Qn1,n2(z)

∣∣∣ < (α+ 1)2 |z|3−2α
(
|z|−(α+1) Fα,z

)−n1

.

Continuing with the proof of Proposition 2.1, let us write, given a nonzero integer
s, ν2(s) for the largest power of 2 dividing s. If s and t are nonzero integers, define
ν2(s/t) = ν2(s)−ν2(t). Then we have, given an integer n and a nonnegative integer
k,

(20) ν2

((
n± 1/2

k

))
= −k −

∞∑
j=1

[
k

2j

]
,

so that, in particular, 22k
(
n±1/2
k

)
is an integer. If we substitute z = −1/243 into

(16) (taking advantage of the identity 35 − 1 = 2 · 112) and suppose that n2 > n1,
then, multiplying by 22n2 · 35n2+2, the left hand side of (16) becomes

(21) Ω = 22(n2−n1)35(n2−n1)+2Pn1,n2
−
√

2

3
· 11 Qn1.n2

,

where

Pn1,n2
= 22n1 35n1 Pn1,n2

(
−1

243

)
and

Qn1.n2
= 22n2 35n2 Qn1,n2

(
−1

243

)
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are integers. Let us, for future use, define Gn1,n2
= gcd(Pn1,n2

, Qn1,n2
). It is

important for us (and somewhat nontrivial) that Gn1,n2 grows exponentially in the
parameters n1 and n2. Indeed, Gn1,n2 is divisible by all primes in certain intervals
with lengths exceeding a constant multiple of min{n1, n2} (see e.g. the proof of
Proposition 5.2 of [1]). By the Prime Number Theorem, this quantity is therefore
at least exponentially large in min{n1, n2}.

Next, suppose that b is an odd, positive integer, say b = 2b0 + 1, and that T is
an integer. Set

Υ =
√

2/3 T − 3b0 .

We will begin by assuming that b ≥ 307000. Choose positive integers n1 and n2
such that

n1 =

[
b

55

]
+ 1 and n2 =

[
13n1

2

]
,

where by [x] we mean the greatest integer not exceeding a real number x (so that,
in particular, n1 ≥ 5582). Then

5(n2 − n1) + 2 ≥ 55n1 − 1

2
≥ b

2

and hence 5(n2− n1) + 2 ≥ b0. We may also readily observe that n1 and n2 satisfy
(17) with α = 6.5. We thus have

(22) 11Qn1,n2Υ + TΩ = 3b0
(

22(n2−n1)35(n2−n1)+2−b0Pn1,n2T − 11Qn1,n2

)
.

The right hand side of this is an integer multiple of 3b0Gn1,n2 and is, in fact, nonzero.
To see this last point, observe that, from (20),

ν2

(
22n2

(
n1 − 1/2

k

))
= 2n2 − k −

∞∑
j=1

[
k

2j

]
,

for each 0 ≤ k ≤ n2, and, in particular, that

ν2

(
22n2

(
n1 − 1/2

k

))
≥ n2 + 1−

∞∑
j=1

[n2
2j

]
,

for each k with 0 ≤ k ≤ n2 − 1, while

ν2

(
22n2

(
n1 − 1/2

n2

))
= n2 −

∞∑
j=1

[n2
2j

]
.

It follows from (15) that

ν2(Qn1,n2) = n2 −
∞∑
j=1

[n2
2j

]
≤ log n2

log 2

and hence, since this is strictly smaller than 2(n2 − n1),

ν2 (11Qn1,n2
Υ + TΩ) = ν2(Qn1,n2

),

whereby 11Qn1,n2
Υ + TΩ 6= 0. We thus have

(23) |11Qn1,n2
Υ + TΩ| ≥ 3b0 Gn1,n2

.

On the other hand, if we suppose that∣∣3b − 2T 2
∣∣ ≤ 3b/2,
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say, then, 3b0 < T < 2 · 3b0 and so, from Lemma 2.2,

|T Ω| < 22n2−1 · 52 · 3b0+5n2+54−37.5n1 F−n1

6.5,−1/243,

whence, since n2 ≤ 13n1+1
2 ,

|T Ω| < 213n1 · 52 · 3b0+56.5−5n1 F−n1

6.5,−1/243.

From F6.5,−1/243 = 18.943966 . . ., it follows that

(24) |T Ω| < 52 · 3b0+56.5 1.779561n1 .

On the other hand, appealing to Proposition 5.2 of [1], we have that

Gn1,n2
≥ e−19.408 1.807n1

and so, since n1 ≥ 5582,

(25) |T Ω| < 1

2
3b0 Gn1,n2

.

We thus have, from (23), that

(26) |Qn1,n2Υ| ≥ 1

22
3b0 Gn1,n2 ≥

1

22
e−19.408 1.807n1 3b0 .

From (24) and the fact that T > 3b0 , we have

|Ω| < 52 · 356.5 1.779561n1

and so, since √
2

3
· 11 |Qn1.n2

| ≤ 22(n2−n1)35(n2−n1)+2 |Pn1,n2
|+ |Ω| ,

applying Lemma 2.2,

|Qn1.n2 | ≤ e63.1 · 1.779561n1 + 469 · e47.6573n1 < 470 · e47.6573n1 .

With (26), this implies that

|Υ| > e−28.7 e−47.066n1 3b0 .

Since n1 <
b
55 + 1, we thus have

|Υ| > e−76.32 1.35858−b.

Now we write ∣∣3b − 2T 2
∣∣ = 3|Υ|

(√
2/3 T + 3b0

)
,

so that ∣∣3b − 2T 2
∣∣ > (√3 +

√
2
)

3b/2 e−76.32 1.35858−b,

i.e. ∣∣3b − 2T 2
∣∣ > e−75.18 1.2748979b > 1.274b,

where the last inequality is a consequence of the fact that b ≥ 307000.
To check the desired inequality for odd values of b with 7 ≤ b < 307000 is a

routine matter; one can simply verify it by brute force for small values of b and
otherwise search for long strings of zeros or twos in the ternary expansion of

√
3/2

(the reader is directed to [1], in particular to Lemma 9.1 of [1] and the remarks
following it, for details of such a computation). The fact that we find none completes
the proof of Proposition 2.1. �
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Applying Proposition 2.1 to (10), it follows that b ≤ 35; we find no new solutions
to (2) with 10 < b ≤ 35 and 2a ≤ 6b/2. Assuming next that 6b/2 < 2a < 6b, if we
suppose further that a ≤ 1.349b, then, from Proposition 2.1 and inequality (7),

3 · (3/2)b/2 + 20.349b > 1.274b

and so b ≤ 94. Again, a short check confirms the absence of new solutions to (2)
and hence that a/b > 1.349. With (6), we thus have

(27) a/b ∈ (1.349, 9.943) .

To complete the proof of Proposition 1.1, it remains to show that there are no
solutions to equation (2) with a/b ∈ [4.250, 6.166] and min{a, b} > 10. Suppose

that we have such a solution. Then 2a > 1000 · 6b, whereby k < 1.1 · 2 a−2b
2 and we

have, from (8),∣∣2a−2b+2 − k2
∣∣ =

∣∣(−1)δk − 3b
∣∣

2b−2
< 9 ·max{2 a

2−2b, (3/2)b}.

If 2
a
2−2b > (3/2)b, then (4) implies that

9 · 2 a
2−2b > 20.26(a−2b+2),

whence

2 log 3 + 0.24 a log 2 > 0.52 log 2 + 1.48 b log 2,

i.e.

a >
37

6
b− 11.05.

We thus have a > 6.166b for all b ≥ 16575, a contradiction. Once again, smaller
values of b fail to lead to new solutions. If, on the other hand, 2

a
2−2b ≤ (3/2)b, then

(4) yields

9 · (3/2)b > 20.26(a−2b+2),

whereby

2 log 3 + b (log(3/2) + 0.52 log 2) > 0.52 log 2 + 0.26 a log 2,

and so

a < 4.2499b+ 1.84 ≤ 4.25b,

where the last inequality holds for b ≥ 18400. Another short calculation finishes
the proof of Proposition 1.1.

3. An ineffective approach to equation (2)

Before we proceed with our treatment of equation (3), we will indicate how
ineffective results from Diophantine approximation imply finiteness for equation (2)
(as mentioned earlier, this follows immediately from work of Corvaja and Zannier
[5]). Such results can be used to bound the number of solutions to (2), but not
their size. Specifically, we will show how such a conclusion follows from only the
one-dimensional version of Schmidt’s Subspace Theorem, which, in the strength we
require, dates back to Ridout [11]. Taking Proposition 1.1 as our starting point,
given a nonzero integer b0 and ε > 0, we have from [11] the inequality∣∣∣∣√6− k · 2b0

3b0

∣∣∣∣�ε 3−( log(3/2)
log 3 +ε)b0
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and hence, writing b = 2b0 + 1, the existence of a constant c(ε) > 0 such that∣∣3b − k2 · 2b−2∣∣ > c(ε) 3(1− log(3/2)
2 log 3 −ε)b.

From (8), it follows that∣∣2a−b − (−1)δk
∣∣ > c(ε) 3(1− log(3/2)

2 log 3 −ε)b.

Choosing ε suitably small, this implies, with Proposition 1.1, that there are at
most finitely many solutions to (2) with a < 2.29b. Assuming a ≥ 2b, then, we may
rewrite (8) as

3b − 2b−2
(
2a−2b+2 − k2

)
= (−1)δk.

Again appealing to Ridout [11], this time in the form considered by Mahler [10],
we have ∣∣ 3b − 2b−2

(
2a−2b+2 − k2

)∣∣�ε 2(1−ε)b.

Since k � 2
a
2−b, it follows that there are at most finitely many solutions to (2),

with, say, a < 3.9b.
Finally, for 3.9b ≤ a < 9.943b, we write, as in the preceding section,∣∣2a−2b+2 − k2

∣∣ =

∣∣(−1)δk − 3b
∣∣

2b−2
� max{2 a

2−2b, (3/2)b}

and compare this inequality to the lower bound∣∣2a−2b+2 − k2
∣∣�ε max 2(1−ε)(

a
2−b)

coming from [11]. Taking, say, ε = 1/4 implies the desired inequality, with at most
finitely many exceptions.

4. The cubic case

To complete the proof of Theorem 1, we must treat equation (3). Let us suppose
that there exist nonnegative integers a, b and y satisfying (3). If b = 0, then we
reach a contradiction, modulo 4. If b = 1, then, modulo 7, we necessarily have that
3 | a, say a = 3a0, whereby

y3 − 23a0 = 7,

and so (a, b, y) = (0, 1, 2). We may thus assume that b ≥ 2 so that, modulo 32 · 7,
3 | a (whence b is odd and 3 | y).

Suppose first that a > b, whereby

y = 1 + k · 2b,
for k an odd integer (with, necessarily, k ≡ 1 (mod 3)). It follows that

(28) 2a−b + 3b = 3k + 3k2 · 2b + k3 · 22b.
If k = 1, we thus have

2a−b + 3b = 3 + 3 · 2b + 22b

and hence, if additionally a ≤ 3b− 1, then

22b−1 + 3b ≥ 3 + 3 · 2b + 22b

and so
3b ≥ 3 + 3 · 2b + 22b−1,

an immediate contradiction. If a = 3b,

3b−1 = 1 + 2b



9

whence b ≤ 3 (so that (a, b) ∈ {(6, 2), (9, 3)}). The latter of these corresponds to
the solution (a, b, y) = (9, 3, 9). If k = 1, we may therefore suppose, since 3 | a, that
a ≥ 3b + 3. Otherwise, we have k ≥ 7 so that, from (28), it is again easy to show
that a ≥ 3b + 3. We may thus write a = 3b + 3t for a positive integer t, whence
(28) becomes

22b+3t + 3b = 3k + 3k2 · 2b + k3 · 22b,
i.e.

23t − k3 =
3k + 3k2 · 2b − 3b

22b
.

Since k is odd, the left-hand-side here is a nonzero integer and hence

3k2 − 3k + 1 ≤
∣∣23t − k3∣∣ ≤ 3k + 3k2 · 2b + 3b

22b
,

a contradiction unless k = 1 and b = 2 (in which case, a ≥ 8 contradicts (28)).
It follows that we may assume that a ≤ b. If a = b, then the fact that 3 | a leads

to an immediate contradiction. We thus have a < b, so that y = 1 + k · 2a for an
odd positive integer k and we may write

(29) 1 + 2b−a3b = 3k + 3k2 · 2a + k3 · 22a.

If b < 2a, then it follows that 2b−a | 3k − 1, so that, in particular, 3k − 1 ≥ 2b−a

and hence

2b−a3b >
1

27
23b−a, i.e. 3b+3 > 22b,

whereby b ≤ 11. Since a < b < 2a, a short check reveals no solutions in this case.
It follows that b ≥ 2a. We will proceed by appealing to Diophantine consequences

of explicit lower bounds for rational approximation to 3
√

6. In particular, we will
use Theorem 6.1 of [2] which implies the inequality

(30)
∣∣A3 − 6B3

∣∣ > max{|A|, |B|}0.65,

valid for all nonzero integers A and B, provided (A,B) 6= ±(467, 257). If b ≡ 0
(mod 3), say b = 3b0, then

1 + 2a = y3 − 6b ≥
(
6b0 + 1

)3 − 63b0 > 3 · 62b/3,

a contradiction. We thus have b ≡ ±1 (mod 3), say b = 3b0 + 1 or b = 3b0 + 2, for
b0 a nonnegative integer. In the first case, we apply (30) with A = y and B = 6b0

to conclude that

1 + 2a =
∣∣y3 − 6b

∣∣ > 60.65b0 = 60.65(b−1)/3,

while, in the latter case, we take A = 6b0+1 and B = y to find that

1 + 2a =
∣∣y3 − 6b

∣∣ > 1

6
60.65(b0+1) = 60.65(b+1)/3−1.

In either situation, we therefore have that

2b/2 ≥ 2a > 0.24 · 60.65b/3 − 1,

whereby b ≤ 34. Using that b ≥ 2a, we check quickly that no additional solutions
accrue. This concludes our proof.

It is perhaps worthwhile to observe that while inequality (30) is quite general
(and sufficient for our purposes), if we really wish to use the additional arithmetic
data that either A or B is a power of 6, then stronger inequalities may be obtained
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through arguments similar to those given in [1] in the quadratic case. In particular,
one may, for example, prove that∣∣y3 − 6b

∣∣ > 60.35b,

provided the quantity on the left-hand-side is nonzero.
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