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ABSTRACT 

We sharpen work of  Bugeaud to show that the equation of the title has, for t = 1 or 2, no solutions in 
positive integers x, y, z and k with z > 1 and k > 3. The proof utilizes a variety of techniques, including 
the hypergeometric method of  Thue and Siegel, as well as an assortment of  gap principles. 

1. INTRODUCTION 

The problem of  understanding the distribution of  integer "points" on surfaces is 
currently in its relative infancy, at least in comparison to analogous questions for 
curves. In few cases can we say anything definitive and, in many situations, even 
conjectural information is lacking. For certain surfaces, however, the techniques of  
Diophantine approximation enable one to deduce fairly complete answers to such 
questions; we will consider such a pair of  surfaces here. 

The Diophantine equations 

(1.1) (x 2 - 1)(y 2 - l) = (Z 2 - 1) 

and 

(1.2) (x 2 - 1)(y 2 - 1) = (z 2 - 1) 2 
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provide accessible examples of  equations possessing infinitely many (nontfivial) 
solutions in integers, arising in a somewhat interesting manner. In the first case, all 
solutions may be derived from the trivial solution (1, n, 1), via a construction that 
is analogous to that used to deduce the "tree" of  solutions to the Markoff equation 

x 2 + y2 + z 2 = 3xyz.  

In the case of  equation (1.2), it is still an open question to find all integral points 
on the corresponding surface. If  we assume 2 ~< x < y, then one infinite family is 
given by taking 

(x, y, z) = (P2/,, P2k+2, e 2 k + l ) ,  k ~> 1, 

where the sequence Pj is defined by 

Po = P1 = 1, Pn+2 = 2Pn+l + Pn, for n >/O. 

Three solutions outside this family are 

(x, y, z) ~ {(2, 97, 13), (4, 31, 11), (155,48049, 2729)}. 

A number of  generalizations of  equations (1.1) and (1.2) have been considered in 
the literature. Solving equation (1.1), for instance, is equivalent to the problem of 
determining positive integers a and b such that {1, a, b} is a Diophantine triple. 

Recall that we call a set of  positive integers {al, a2 . . . . .  am} a Diophantine m-tuple 

if aiaj + 1 is a square for each 1 ~< i < j ~< m. Similarly, equation (1.2) may be 
restated as the question of  finding positive integers a, b and c such that each of  
ab 2 + 1, ac 2 + 1 and abc + 1 is a perfect square. The reader is directed to [14] for 
more background and the current state-of-affairs for these problems. 

From such a perspective, in a recent paper, Bugeaud [9] considered the problem 
of finding positive integers a and b such that one of  the sets {a + 1, b + 1, ab + 1} 
or {a + 1,ab + 1,ab 2 + 1} is comprised entirely of  perfect kth powers, for k/> 3. 
These correspond, respectively, to the Diophantine equations 

(1.3) (x k -  1)(y k -  1 ) = ( z  k -  1) 

and 

(1.4) (x k -  1)(y I ' -  1 ) =  (z k -  1) 2, 

where, in the latter case, Bugeaud made the additional assumption that the smaller 
o f x  k - 1 or yk _ 1 divides z k - 1. He showed (Theorem 1 of  [9]) that there are no 
solutions to (1.3) with z 7> 2, provided k/> 75, or i fk ~> 5 and the smaller o fx  and y 
is sufficiently large. He further obtained somewhat weaker results for equation (1.4) 
(see Theorem 2 of  [9]). 

In this paper, we will prove the following pair of  theorems 
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Theorem 1.1. The equation 

(x k -  1)(y k -  1 ) =  (z k -  1) 

has only the solutions 

(x, y, z, k) = ( -1 ,4 ,  - 5 ,  3) and (4, -1 ,  - 5 ,  3) 

in integers x, y, z and k with Izl ~ 2 and k >1 3. 

Theorem 1.2. The equation 

(x ~ -  1)(y k -  1 ) =  (z k -  1) 2 

has no solutions in integers x, y, z and k with x ~ + y, Iz}/> 2 and k >~ 4. 

Note that we have not assumed, as was done in [9], that the variables x, y and z 
are positive integers. In light of  our earlier remarks about equations (1.1) and (1.2), 
Theorem 1.1 is best possible, while Theorem 1.2 is nearly so. We are, however, 
unable to treat equation (1.4) in case k = 3. 

The main reason for the sharpness of  Theorems 1.1 and 1.2, relative to those 
of  [9], is somewhat surprising. The results of  [9] are proved by combining 
lower bounds for linear forms in the complex logarithms of  algebraic numbers, 
with explicit irrationality measures for algebraic numbers, stemming from the 
"hypergeometric method" of  Thue and Siegel. In what follows, a key observation is 
that the first of  these techniques is not only unnecessary (in all but a single case), at 
least in this context, but even leads to weaker results. To treat small values ofk  (such 
as k = 3 and k = 4 in equation (1.3), where Bugeaud's techniques fail), we further 
introduce some new "gap principles" (to guarantee that Ix - y l is not too small). In 
one case, switching from consideration of  positive integers to the more general case 
makes life much more difficult for us. Specifically, to handle the situation where, 
say, x = - 1  in Theorem 1.1, requires the solution of  a family of  Thne equations of  
arbitrarily high degree. We accomplish this by sharpening earlier work of  the author 
on rational approximation to algebraic numbers via the hypergeometric method of  
Thue and Siegel, together with a method for binomial Thue equations based upon 
the theory of  Frey curves and associated Galois representations. 

2. P R O O F S  

Our arguments begin by following similar lines to those of  [9]. From a putative 
solution to one of  (1.3) or (1.4), we will deduce the existence of  a good rational 
approximation to a particular algebraic number of  degree k. Since this algebraic 
number takes the form ~ 1, classical work of  Thue, with a few modern "bells 
and whistles", enables us to derive a contradiction, as long as Ix - Yl is much larger 
than min{Ixl, lYl}- 
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We begin by noting that proving Theorem 1.1 reduces to consideration of either 
equation (1.3) with k = 4 or k an odd prime, or to one of the equations 

(2.1) (x k + 1)(y k + 1 ) =  (z/~- 1), 

o r  

(2.2) (x k 4- 1)(y k -  1 ) = ( z  k 4- 1), 

where k is an odd prime, and, in all cases, x, y and z may be taken to be positive 
integers. Similarly, equation (1.4) in arbitrary integers may be reduced to one 
of (1.4) (with k = 4, k = 6, or k ~> 5 prime), 

(2.3) (x k - 1)(y k - 1) : (z k -4- 1) 2, 

(2.4) (x k 4- 1)(y k 4- 1 ) =  (z k -  1) 2, 

o r  

(2.5) (x ~ + 1)(y k + 1 )=  (z k + 1) 2. 

In each of these last three cases, k/> 5 is taken to be prime, while, in all four cases, 
we assume that x, y and z are positive integers. 

We begin by discussing in detail how to treat equation (1.3), for positive integers 
x, y, z. Afterwards, we will indicate where changes need to be made to our proof to 
handle the remaining equations (1.4), (2.1), (2.2), (2.3), (2.4) and (2.5). 

Let us suppose, then, for the next few sections, that we have a solution to 
equation (1.3) in positive integers x, y, z and k with z >/2 and k /> 3. We may 
suppose, without loss of generality, that 

y ~ x > l  

and, as mentioned previously, that either k = 4 or that k/> 3 is prime. We begin 
by deriving a result that guarantees that y must be, in fact, much larger than x 
(sharpening Lemma 1 of [9]). Let us write 

(2.6) a + l = x  k, b +  1 =yk ,  ab+ 1 = z  k. 

It follows that z = xy - t for t a positive integer, that is 

((ab + 1) l/k + t)/~ = (a + 1)(b + 1). 

Expanding this, we have 

k)  1)(k_2)/kt2 1)l/ktk_ 1 k(ab+l)(k-1) /k t+ 2 (ab+ + . . . + k ( a b +  +t  k = a + b .  
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We claim that a < (ab + 1) (k-2)/k. If  k/> 4, this is immediate from the inequality 
b/> a. I f k  = 3 and a >1 (ab + 1) 1/3, then b < a 2, contradicting 

3(ab) 2/3 < 3(ab + 1) 2/3 < a + b ~< 2b. 

It therefore follows, in all cases, that we have 

and so 

k(ab)(k-1)/kt < k(ab + 1)(k-1)/kt < b 

(2.7) b > kka~-ltk.  

Next note that from (2.6), we have 

( f f ) k  a + l  a 2 - 1  a 

a a(ab + 1) z k' 

whence 

(2.8) 1 + - - < 
a kz k" 

To deduce a lower bound which will contradict (2.8), we appeal to an old result 
of  the author (Theorem 1.3 of  [4]). This is, as stated, reasonably easy to derive from 
Thue's original work [23]. Defining 

I~n = I-I  pl/(p-1), 
pin 

we have 

Theorem 2.1 ([4]). 

(2.9) 

then 

f f  k and a are positive integers with k >>. 3 and 

( 'q~ -'[- a'~/-a~i) 2(k-2) > (kUk) k 

f11r I + - _ _ > ( 8 k # k a ) - l q  -x  
a q 

with 

log(k/zk(vra + a~/7-4-]-) 2) 

log(k-~-k (~fa + ~/a + 1)2) . 
(2.10) X = 1 + 

From the fact that a = x k - 1, it is easy to show that (2.9) is satisfied except for 

(2.11) (x, k) ~ [(2, 3), (3, 3), (2, 4), (2, 5)}. 
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For the time being, we will suppose that (x, k) is outside this set (so that )~ < k). 

Then combining (2.8) with Theorem 2.1 yields 

(2.12) z k-z < 8tzka 2 

and hence, 

(2.13) b k-x < 8klz~a k+x. 

I fk/> 7 is prime, then/zk = k 1/~k-1). Since a = x ~ - 1, from equation (2.10), it is 

not hard to see that L is monotone decreasing in x >/2 and k/> 7, whereby Z < 3.15. 
Hence (2.13) implies that b < 80a z'7, contradicting (2.7). Similarly, if  k = 5 and 

x/> 3, then ~ < 2.8, and so b < 282 a 3"6. Again, this contradicts (2.7). If, however, 

k = 5 and a = 31, then we have 

(2.14) 31y 5 - z 5 = 30 

and hence 

~ , ~ _  z [ 30 l/5 

y 5y 5 • 

On the other hand, from Corollary 1.2 of  [4], 

~ / ~ _  z 0.01 
-y > y2.8---~" 

We thus have 

y2.17 < 20 .301 /5  

and so y < 6. Since (2.14) implies that y is coprime to 30, it follows that y = 1, a 

contradiction. 

3. THE CASE k=4 

Let us now suppose that k = 4. We begin by introducing a "gap principle" that 

sharpens inequality (2.7) in this case. It is worth noting that, in the next section 
(where we treat k = 3) yet another, even stronger gap principle is produced which 

may, in fact, be adapted to the case k = 4. 
After a little work, from (2.7), we reach the inequality 

(3.1) y > 3x3t. 

Our initial goal is to show that 

(3.2) b > 16a 4. 
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From z = x y  - t ,  we have 

(X 4 - 1 ) ( y  4 - 1 ) : ( x y - t )  4 - 1  

and so 

(3.3) 4x3 y3 t q- 4xy t  3 -b 2 = x 4 -1- y4 q_ 6x2y2t 2 d- t 4 

and hence 

(3.4) 4xyt3 + 2 - x 4  +6x2y2t2 +t4  (mody3). 

We will use these relations to show that t > x/2.  I f  we have 

4xyt 3 + 2 = x 4 + 6x2y2t 2 + t 4, 

then (3.3) implies that y = 4x3t and hence that x 4 divides t 4 - 2 (so that t > x). 

Otherwise, we have from (3.4) that either 

4xyt 3 + 2 ~ x 4 + 6x2y2t 2 + t 4 + y3 

or 

4xy t  3 + 2 + y3 ~ x 4 _[_ 6x2y2t 2 + t 4. 

In the first case, 4xyt 3 > y3 and hence, from (3.1), t > 9x5/4. The second 
inequality, together with (3.1), implies that y3 < 6x2y2t 2 and hence that y < 6x2t 2. 

Combining this with (3.1) implies that t > x/2,  as claimed. We may thus conclude, 
from (2.7), that 

b > 44a3t 4 > 16a3x 4 > 16a 4, 

as desired. 
I f x / >  3, combining (2.13) and (3.2), we find that 

a 12-5;~ < 16 ~, 

contradicting (2.10) provided x >~ 35 (i.e. a >~ 1500624). 
For 2 ~< x ~< 34, we argue somewhat more carefully. I f x  = 2 (so that a = 15), we 

have 

15y 4 - z 4 ~-- 14 

and so 

_ Z [ 141/4 

y 4 y  4 • 
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On the other hand, Corollary 1.2 of [4] implies that 

x4~ Y 0.03 
- -  ~ y--'~'ff.27 ~ 

and so it follows that y ~< 45 and hence, from (3.1), t = 1, contradicting t > x /2 .  

For 3 ~< x ~< 34, the inequality z 4-z < 16a 2 implies, in each case, that z < 108. 
From 

( X  4 - -  1)y 4 - -  Z 4 • X  4 - -  2, 

it follows that 

~/x 4 -- 1 _ _yZ < (x 4 4Y 4 -  2) 1/4 

and so, from (3.1) and the inequality t > x /2 ,  we have that z / y  is a convergent in 
the continued fraction expansion to ~ - 1, say z / y  = p j / q j  where, additionally, 
since 

z / y  < ~ x  4 - 1, 

j is even. Here and henceforth, we write 

= [ao, al ,a2 . . . .  ] and pi /qi  ~ [ao . . . . .  ai], 

where the ai denote the partial quotients in the infinite simple continued fraction 
expansion to ~ and the P i / q i  the corresponding convergents. Since, from the 
classical theory of continued fractions (see e.g. [18], Theorem 9.6), 

1 
~/X 4 -  1 -- P---LJ > 2' 

qj (aj+l .-[- 2 )q j  

we have that 

9x 8 < 4y 2 < (aj+l h-2)(x 4 - 2 )  1/4 

and hence 

(3.5) aj+l > 9x 7 - 2 >~ 19681. 

We calculate that, in each case, p13 > 108, while inequality (3.5) is never satisfied, 
for even j < 20. This completes the proof of Theorem 1.1, in case k = 4. 

4. T H E  C A S E  k = 3  

It remains to treat equation (1.3) when k = 3. We begin by introducing a new method 
for sharpening inequality (2.7). This has its genesis in the arguments at the end of 
the preceding section. From the equation 

ay 3 - -  z 3 ~-. a - 1 
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it follows that 

(4.1) ~ / - a - ~  < (a-1)l/33y 3 

Since (2.7) implies that y3 > b > 27a 2, whence y > 3a 2/3, z / y  is necessarily a 

convergent in the continued fraction expansion to ~/S, say z / y  = p j / q j  with, since 

z / y  < ~/-d, j even. Moreover, from the inequality 

~/-d - ~jj 1 PJ > 

( a j + l + 2 ) q ]  

we have that 

3a 2/3 < y < (aj+l + 2 ) ( a  - 1) 1/3 

and hence, since a = x 3 - 1, 

(4.2) aj+l > 3x - 2 >1 4. 

Let us now carefully consider the simple continued fraction expansion to ~/S = 

~ - 3  _ 1. As a routine exercise in calculus, we have, provided x /> 3, partial quotients 

ai given by 

ao = x -- 1, al = 1, a2 = 3x 2 -- 2, 

a4----x -- 2 and a5 = 1. 

a 3 = l ,  

From (4.2) and the fact that j is even, it follows, for x ~> 3, that j / >  6. 
For x ~ 2, 3, 5, 7, we further have 

/ (9x2 - 4) /2  i f x  = 0 (mod2),  
a6 / (9x 2 -  3) /2  if  x -  1 (mod2),  

¢ 
,J 1 i f x - O  (mod2),  

a7 / 2 i f x  = 1 (mod2) 
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anct 

a8 = 

(4x - 10)/5 i f x  = 0 (mod 10), 

(x - 6) /5  i f x  = 1 (mod 10), 

(4x - 8) /5  i f x  = 2 (mod 10), 

(x - 3) /5  i f x  = 3 (rood 10), 

(4x - 6) /5  i f x  = 4 (mod 10), 

(x - 5) /5  i f x  = 5 (mod 10), 

(4x - 9) /5  i f x  = 6 (mod 10), 

(x - 7) /5  i f x  = 7 (rood 10), 

(4x - 7) /5  i f x  = 8 (mod 10), 

(x - 4 ) /5  i f x  = 9 (mod 10). 

From inequal i ty  (4.2), we conclude (except,  possibly, for x 6 {2, 3, 5, 7}) that z /y  = 
p j /q j  with j / >  8. We calculate that 

(108x 6 - 135x 5 - 9 0 x  3 + 7 5 x  2 + 10)/10 i f x  - 0  (modlO) ,  

(54x 6 - 189x 5 - 45x 3 + 105x 2 + 5) /10  i f x  --- 1 (mod 10), 

(108x 6 - 81x 5 - 90x 3 + 45x 2 + 10)/10 i f x  = 2 (mod 10), 

(54x 6 - 27x 5 - 45x 3 + 15x 2 + 5) /10  i f x  - 3 (mod 10), 

(108x 6 - 27x 5 - 90x 3 + 15x 2 + 10)/10 i f x  = 4 (mod 10), 
q8 = 

(54x 6 - 135x 5 - 4 5 x  3 + 7 5 x  2 + 5 ) / 1 0  i f x  = 5  (mod 10), 

(54x 6 - 54x 5 - 45x 3 + 30x 2 + 5) /5  i f x  = 6 (mod 10), 

(54x 6 - 243x 5 - 45x 3 + 135x 2 + 5) /10  i f x  - 7 (mod 10), 

(54x 6 -- 27x 5 -- 45x 3 + 15x 2 + 5) /5  i f x  --  8 (mod 10), 

(54x 6 -- 81x 5 -- 45x 3 + 45x 2 + 5) /10  i f x  = 9 (mod 10), 

and so 

Y ~> q8 > 5x 6, 

except,  possibly, for 

x 6 { 2 , 3 , 5 , 7 , 9 ,  11, 15, 17, 1 9 , 2 1 , 2 5 , 2 7 , 3 1 , 3 7 , 4 1 , 4 7 , 5 7 } .  

For the values in this set with x / >  9, direct  computat ion gives that a9 ~ 10 (with 

equal i ty  for those x - 3 (mod 10)) and hence the first inequali ty in (4.2) ensures 

that 

y ~> ql0 > 5x 6. 
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For x e {2, 3, 5, 7}, computing the continued fraction expansions to ~/~x 3 - 1, we 
find that the corresponding convergents pj/qj with qj <~ 5x 6 and j even all satisfy 

j ~< 6. A short calculation reveals that 

3 3 divides x 3 - 2  ( x 3 - 1 ) . q j - p j  

only for x = 2 and j = 0 (whereby z = y, an immediate contradiction). 

It follows, then, for all x />  2, we may assume that y > 5x 6 and so 

(4.3) b > 125a 6. 

Combining this inequality with (2.13), we find, for x />  4, that 

a 15-7~- < 29 . 33/2 . 59-3~-, 

with 

) ~ = 1 +  
log(3~//3(q~ + v / a - ~ )  2) 

log(~-~(.J-d + ~/a + 1)2) . 

Since a = x 3 - 1, this inequality is a contradiction as soon as x />  7973. 

It remains to treat 2 ~< x ~< 7972. I f 4  ~< x <~ 7972, we have 

Z < (8w/3a2)  1/(3-x) < 1032. 

For each o f  these values o f  x, we again compute the initial terms in the infinite 

simple continued fraction expansions to ~ - 1, verifying that for each convergent 
3 3 fails to divide x 3 - 2. pj/qj with pj < 1032 and qj :> 1, (x 3 - 1) • qj - pj 

For the remaining values x E {2, 3}, we appeal to Corollary 1.2 o f  [3], where we 
find that 

p 0 .08  ~ p 0 .03  
~ - f f - -  q > q2.7o '  and . - v -  -q > q2.5~'  

valid for all positive integers p and q. Combining these with (4.1), we find that 
y ~< 852 (if  x = 2) and y ~< 1646 (if  x = 3). A short check reveals that no such 
choices o f  y > 1 satisfy (1.3). This completes the proof  o f  Theorem 1.1, in case 
x, y and z are positive integers. 

5. THE CASES WHERE x = - I  IN THEOREMS 1.1 AND 1.2 

Before we proceed with the remainder o f  our proof  (corresponding to having 
min{x, y, z} negative in Theorems 1.1, and to Theorem 1.2), we note that the case 

where, say, x = - 1  is a special one. In particular, it is the only situation where we 
cannot ensure that each of  x k - 1, yk _ 1 and z ~ - 1 grows (in absolute value, at 

least) exponentially in k. As may be noted from the preceding sections, this is used 
crucially in our application o f  techniques from Diophantine approximation. 
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The case where one o fx  or y is equal to - 1  in Theorem 1.2 (say x = - 1 )  is, in 
fact, easily treated. If  such a solution exists, then there necessarily exists an integer 
m such that 

yk + 1 = 2m 2. 

Since k/> 5, a result of  the author with Chris Skinner (Proposition 8.1 of  [7]) implies 
that y = 1 (contradicting y # +x). 

We now proceed with the proof of  Theorem 1.1 with x = - 1. Taking x = - 1 in 
equation (1.3) (assuming that k is odd), we find that necessarily z k - 2y k = 3. This 
is a binomial Thue equation. A straightforward application of  lower bounds for 
linear forms in two (complex) logarithms of  algebraic numbers to, given the more 
general situation of finding all solutions with IX Y[ > 1 to an equation of  the form 
AX k - BY  k = C, explicitly bounds k, solely in terms of  A, B and C. The tricky part 
of  solving such equations, then, lies in handling "small" (but not too small) values 
ofk. Generally, i fA + B # C, we may treat such equations via Frey curves (see e.g. 
[6]). 

For our purposes, we will appeal to the following 

Proposition 5.1. The only solutions to the Diophantine inequality 

(5.1) IX k -2Y~I .< 100 

in coprime, positive integers X, Y and k >1 3 satisfy y i  < 1000 or 

(X, Y, k) 6 { (14, 11, 3), (29, 23, 3), (34, 27, 3), (63, 50, 3), (6, 5, 4) }. 

In particular, the only solutions to the equation 

(5.2) X k -  2Y k =3  

in integers X, Y and k ~ 3 are given by (X, Y, k ) = ( 1 , - 1 , k ) f o r  k odd, and by 
(X, Y, k) = ( -5 ,  - 4 ,  3). 

Proof. There are many different ways to attack such binomial Thue equations 
of  arbitrary degree, based upon, for instance, a reasonably flexible version of  the 
hypergeometric method of  Thue and Siegel [5], or upon Frey curves ~ la Wiles, 
perhaps in conjunction with lower bounds for linear forms in logarithms (see e.g. 
[6]). We will employ both of these approaches in our proof. 

Let us note that the desired result is essentially a sharpening of  work of  Gy6ry 
and Pint6r (Theorem 4 of[16]), who solved equation (5.2) for all values of  k except 

(5.3) k c {19,23,29,31,37,41,43,47,73}. 

Arguing as in that paper, a routine application of  lower bounds for linear forms in 
two complex logarithms (such as those leading to [ 19]), together with computation 
of  initial convergents in the continued fraction expansions to ~ for k <~ 600 or 
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so, provides the conclusion that, if there are additional solutions to inequality (5.1), 

necessarily k ~< 350. We may assume, without loss of generality, that k is an odd 

prime, or that k = 4. 

We begin by supposing k -- 3. In this situation, we will use the inequality 

Ix 3 - 2y31 ~ ~/-x, 

valid for positive integers X and Y (see [3]). This implies that integers (X, Y) 
satisfying inequality (5.1) necessarily have IX[ <~ 104. A quick search reveals the 

stated solutions. 
For k = 4 or 5 ~< k < 350 prime, we search for local obstructions to the equation 

(5.4) X k - 2Y k = m, 

where Iml ~< 100. I fk  = 4, for instance, we consider this equation modulo 5, 13, 16 
and 17 to conclude that 

m 6  { - 9 7 , - 8 2 , - 7 9 , - 4 9 , - 3 1 , - 2 , - 1 , 1 , 1 4 , 4 6 , 4 9 , 7 9 , 9 4 } .  

Explicitly solving these remaining Thue equations via Pari uncovers only "small" 
solutions as noted in the statement of Proposition 5.1. The algorithm in Pail to solve 

such equations relies upon lower bounds for linear forms in complex logarithms, 
together with the Lenstra-Lenstra-Lovacz lattice basis reduction algorithm. For 
k > 4, we appeal to work of Darmon and Merel [13] and Ribet [21] to conclude 

that (5.4) has no solutions with max{lXI, IYI} > 1, provided Im[ ~< 2. 
For odd values of k, it is no loss of generality to assume that m is positive (and 

not divisible by 4) in equation (5.4). In case k = 5 or k = 7, we argue similarly to 
the case k = 4, dealing with equation (5.4) for 

m = O, +1, ±2, +3 (rood 11), m ~ 0  (mod4) 

and 

m 6 {3, 7, 14, 15, 19, 22-25, 29, 34, 35, 39, 43, 46, 51,54-57, 61, 62, 73, 75, 

81-94, 97, 99}, 

respectively, again via Pail. 

For 11 ~< k < 350 prime, we will split our argument into two parts, depending on 
whether m = 3 or m > 3. 
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5.1. The case m > 3 

If  m > 3, then local arguments (considering equation (5.4) modulo q for various q, 
typically primes q = 1 (modk)) eliminate all cases of(5.4), except for 

k = l l :  

k = 13: 

k = 17: 

k = 19: 

m E {21,22,66,67,70}, 

m E {23,25,45,46,55,69,78}, 

m = 55, 

m e  {37,53,71,79,94,95,97}, 

and k = 23, m = 45. The largest prime we need consider to find a local obstruction 

is q = 951 l, for k = 317 and m E {19, 43, 45, 98}. For these remaining cases of (5.4) 

with m > 3, we will use arguments that depend crucially on the modularity of  Galois 

representations associated to certain elliptic curves; as far as the author is aware, 

these were first applied in the setting of  binomial Thue equations in [6]. Specifically, 
supposing we have an integral solution to (5.4), we consider one of  the following 

(Frey or Frey-Hellegouarch) curves: 

El" y2 = x(x + m)(x - 2Yk), i fm -- 1 (rood4), 

E2:y2 _- x(x - m)(x + 2Yk), i fm --- - 1  (rood4), 

E3:y2 = x(x + m/2)(x  + Xk/2), i fm - 2 (mod8), 

and 

E4:y2 = x(x - m/2)(x  - Xk/2), i fm -- - 2  (rood8). 

Let us define, for l a prime of  good reduction of  Ei, 

al(Ei) -~ l + 1 - [E(F )I 

and 

2 rad(m) 

N I = N 2 =  32rad(m) 

N3 = N4 = rad(m), 

if Y is even, 

if Y is odd, 

where rad(m) denotes the product of the distinct primes dividing m. By now- 
standard arguments (see e.g. [8,10,17]), there exists a weight 2 cuspidal newform 

of  level Ni, 

O0 

f = E cjqJ' Cj E F 
j=l 
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and a prime ideal k of  F, lying above k, such that, for each prime 1 coprime to 2km, 

we have either 

(5.5) al(Ei) -- cl (modk) 

o r  

(5.6) 4-(l 4- 1) ~ cl (modk), 

depending on whether Ei has good or multiplicative reduction at I. As noted in [ 10] 

(see Lemma 2.1), we may be rather more precise in the case where F = Q. 

As it transpires, these congruences suffice to eliminate each newform at the levels 

Ni under consideration, for the Frey curves corresponding to the remaining 21 

equations of  the shape (5.4). We will describe our argument in full for the equation 

( 5 . 7 )  X 17 - 2Y 17 = 55, 

which exhibits all features of interest; we suppress the details for the other 
equations. We note that computation of  the newforms in question may be carried 
out via Magma or one may consult William Stein's Modular Forms Database. 

From the preceding discussion, a solution in integers (X, Y) to (5.7) corresponds 
via the curve E2 to a newform of level N2 = 110 or 1760, depending as Y is even 

or odd. For each newform of  level 110, both (5.5) or (5.6) lead to contradictions for 

l = 3. At level 1760, we reach like conclusions using one o f / =  3, 7 or 13, for every 
newform except a pair of  one-dimensional forms (i.e. with F = Q) corresponding 

to the elliptic curves over Q given as 1760fand 1760j in Cremona's tables: 

y2 = x 3 _ 37x 4- 84 and y2 = x 3 _ 37x - 84. 

Noting that, from (5.7), we necessarily have 

y17 = - 1  (mod307) 

and so 

a307 (E2) = - 12. 

Since the curves 1760f and 1760j have Fourier coefficient C307 = 4-4, this contra- 
dicts (5.5). 

As a final comment in the case m > 3, let us note the interesting example 

X 19 - 2Y 19 = 37, 

with Y even. Here we are led to consider weight 2 newforms at level 74, where there 

lurks a form f for which (5.6) is satisfied for every large prime I ( f  is congruent 

modulo 19 to an Eisenstein series). To eliminate the possibility of  this form "giving 

rise" to our Frey curve (El in this case), we may either appeal to the arguments 

leading to Lemma 7.1 o f [ 10], or note that a 191 ( E 1 ) = 16, contradicting (5.6). 
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5 . 2 .  T h e  c a s e  m = 3 

To complete the proof of Proposition 5.1, it remains to handle equation (5.4) with 
m = 3. As noted earlier, we may suppose k satisfies (5.3). For 19 ~< k ~< 31, we, as 
previously, solve (5.4) via Pail. These are substantial calculations, since we wish to 
avoid dependence upon the generalized Riemann hypothesis to obtain unconditional 
results. At the present time, these are not far from as large a Thue solving problem 
as one might reasonably tackle via Pari. 

For the remaining values of  k, we will turn to a result derived from the 
hypergeometric method of Thue and Siegel: 

Theorem 5.2. Let b > a be positive, relatively prime integers, suppose that 

37~<n~<73 isprime, m = I - ~ ] ,  

and define c(n) via 

n c(n) n c(n) 

37 21.2 59 38.5 

41 25.2 61 39 

43 26 67 44 

47 30 71 48 

53 34 73 52 

I f  we have 

( ~ /b -  ~/-d)mec(n) < 1, 

then, i f  p and q > 0 are integers, we may conclude that 

( b )  1/n -qP>(sx1075(~/b+~/-d)m)-lq -L, 

where 

L = (m - 1 ) { 1  - log(( ~/b + ~/-d)mec(n)+l/20)} 
log(( ~/b - ~/-d)me c(n)) 

This result is a small sharpening of  certain cases of Theorem 7.1 of [5], to 
enable us, upon choosing a = 2, b = 1, to deduce explicit improvements upon 
Liouville's Theorem for ~ for 37 ~< k ~< 73 prime. These new estimates arise 
from a straightforward appeal to recent computations of Rubinstein, who found 
the 100,000 smallest zeros of each Dirichlet L-function with conductor p < 50 and 
the first 10,000 zeros for each Dirichlet L-function with conductor p < 100, greatly 
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improving the corresponding results in [5]. For details of  how this information may 
be applied to deduce results like Theorem 5.2, we direct the reader to [5] and [20]. 

Since the equality Ix k - 2ykl  = 3 implies the inequality 

y i f 2 -  < klYl  ~, 

we have, applying Theorem 5.2, for prime k with 37 ~< k <~ 73, that lYl < 103600. 
The usual continued fraction search up to this bound, reveals no solutions with 

lYl > 1. [] 

6. SOME N E C E S S A R Y  M O D I F I C A T I O N S  

To complete the proofs of  Theorems 1.1 and 1.2, we need to treat equations (1.4), 
(2.1), (2.2), (2.3), (2.4) and (2.5), in positive integers x, y, z and k/> 3 prime. Our 
argument is much as in the preceding sections; solutions to these equations imply 
the existence of  positive integers a, b and c for which 

(6.1) a - l = x  k, b - l = y  ~, a b + l = z  ~, 

(6.2) a - 1 = x ~, b + 1 = yk ,  a b  - 1 = z k, 

(6.3) a b  2 + 1 = x k, a c  2 + 1 = yk ,  a b c  + 1 = z k, 

(6.4) a b  2 + 1 = x k, ac  2 + 1 = yk ,  a b c  - 1 = z k, 

(6.5) a b  2 -  1 = x k, ac  2 -  1 = yk ,  a b c  + 1 = z k 

o r  

(6.6) a b  2 - 1 = x k, ac  2 - 1 = yk,  a b c  - 1 = z k, 

respectively. In the first case, we may assume that b > a. In the second, we need 
treat the cases a < b and a > b separately. For the final four cases, we may suppose 
that c > b. 

6.1. Gap principles 

For cases (6.1) and (6.2), the modifications to our earlier work are rather minor. For 
(6.3), (6.4), (6.5) and (6.6), they are less so; we illustrate this in case (6.3). 

From (6.3), we may suppose that x y  = z 2 + t for t 6 N and so, assuming c > b, 
in analogy to (2.7), 

(6.7) c > ( k t ) k /2a (k -2 ) /2bk -1 .  

Again appealing to (6.3), 

( 1 ) { x y ~  k 2 a 2 b 3 c - a 2 b 4 W 2 a b c + l  

1 + - ~  - ~  f f  ] = a3b4c2_k_2a2b3c + a b  2 
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Thus 

1 x y  2.1 
O< 1 + ab---- 2 z 2 < kabc 

Our previous arguments, together with the gap principle (6.7) lead to a contradic- 

tion, provided k/> 5. We notice that this inequality, in the case k = 3, does not imply 

that x y / z  2 is even a convergent in the continued fraction expansion to ~/1 + ab 2 ' 
let alone an exceedingly "good" one (information which underlies our proofs in the 
other cases). It is for this reason that we are unable to extend Theorem 1.2 to include 

k = 3 .  

6.2. k = 4 in Theorem 1.2 

The final case in our proofs to treat is that o fk  = 4 in Theorem 1.2, which we must, 

by necessity, handle somewhat differently. If  we have 

( X 4 - - 1 ) ( y 4 - - 1 ) = ( Z 4 - - 1 )  2, 

then we may write X 4 - -  1 = ab 2 and y4 _ 1 = ac 2, where b and c are distinct 

positive integers (so, in particular, a is a nonsquare positive integer). It follows 
from a theorem of  Cohn [11] that x = 13 and y = 239. Since 9653280 is not of  the 
form z 4 - 1, we conclude as stated. 

7. THE EQUATION (x 3 - 1)(y 3 - 1) = (z 3 - 1) 2 

As noted earlier, we are unable to say anything of  substance regarding equation 

(1.4) in case k = 3. In point of fact, the more general equation 

( x 3 - 1 ) ( y 3 - 1 ) = u  2 

quite likely has only finitely many solutions in integers (x, y, u) with u positive and 
x # y. Noam Elkies, at the instigation of  Gary Walsh, ran a short computation to 
unearth the solutions 

( x , y , u )  = ( - 2 0 , - 3 6 2 , 6 1 6 0 7 7 ) , ( - 6 , - 2 6 , 1 9 5 3 ) , ( - 1 , - 2 3 , 1 5 6 ) , ( 0 , - 2 , 3 ) ,  

(2 ,4 ,21) , (2 ,22,273) , (3 ,313,28236) , (4 ,22,819) .  

Perhaps there are no others. 
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