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ABSTRACT. A well-known result of Beukers [3] on the
generalized Ramanujan-Nagell equation has, at its heart, a
lower bound on the quantity |x2 − 2n|. In this paper, we

derive an inequality of the shape |x3 − 2n| ≥ x4/3, valid
provided x3 6= 2n and (x, n) 6= (5, 7), and then discuss its
implications for a variety of Diophantine problems.

1. Introduction. Surfing the internet one day, the second author
came across a conversation on a physics forum [10], in which a Dio-
phantine problem was proposed. The proposer wished to find a proof
of his conjecture, to the effect that the Diophantine equation

(1) x3 − x+ 8 = 2k

has no solutions in integers x > 8. Since it indeed has solutions with

x ∈ {−2,−1, 0, 1, 3, 5, 8},

such a result would be, in some sense, best possible.

That equations such as (1) have at most finitely many solutions is an
immediate consequence of a classical result of Siegel [12], and, in fact,
if we denote by P (m) the greatest prime factor of a nonzero integer m,
one may show (see e.g. [7]) that

(2) P (f(x)) ≥ c1 · log log max{|x|, 3}.

Here c1 = c1(f) > 0 and f is, say, an irreducible polynomial with
integer coefficients and degree at least two. Even more, if F (x, y) is
an irreducible binary form (i.e. homogeneous polynomial) with integer
coefficients and degree at least 3, work of Mahler [8], as extended by
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Shorey et al [11], implies that

(3) P (F (x, y)) ≥ c2 · log log max{|x|, |y|, 3},

with c2 = c2(F ) > 0, so that, given primes p1, p2, . . . , pn, the Thue-
Mahler equation

(4) F (x, y) = pα1
1 pα2

2 · · · pαn
n

has at most finitely many solutions in coprime integers x and y, and
nonnegative integers α1, . . . , αn. In particular, the equation

x3 − xy2 + 8y3 = 2k

can be satisfied by at most finitely many coprime integers x and y,
and nonnegative k – those with y = 1 provide the solutions to (1).
Statements (2) and (3) can both be made effective; the interested reader
is directed to [13] for details.

The motivation for studying such an equation in [10] was, ap-
parently, to find a cubic analog of the Ramanujan-Nagell equation
x2 + 7 = 2k, which is known (see e.g. [9]) to have precisely the integer
solutions corresponding to |x| = 1, 3, 5, 11 and 181. This is extremal in
the sense that there exists no monic quadratic f(x) for which f(x) = 2k

has more than ten solutions in integers x, via the following theorem of
Beukers [3].

Theorem 1. (Beukers) If D is an odd integer, then the equation

x2 +D = 2n

has at most 5 solutions in positive integers x.

The only monic irreducible cubics f we know for which the equation
f(x) = 2k has more solutions than the seven to (1) are those corre-
sponding to the polynomial f(x) = x3 − 13x + 20 and its translates,
each with 8 solutions. The results of this paper make it a routine mat-
ter to solve such an equation for any monic cubic (and the machinery
we employ readily generalizes to certain non-monic cases, though we
omit the details in the interest of keeping our exposition reasonably
simple). An example of what we prove is the following.
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Proposition 2. Let b and c be integers, and suppose that x and k are
integers for which

(5)
∣∣x3 + bx+ c

∣∣ = 2k.

Then either b = c = 0, or x = −c/b, or (x, b, c, k) = (5, 0, 3, 7),
(−5, 0,−3, 7), or we have

(6) |x| ≤ max
{
|2b|3 , |2c|3/4

}
.

Applying this to equation (1) implies that its solutions satisfy |x| ≤
8, whereby a routine check leads to the desired conclusion.

Our real motivation in writing this paper is to emphasize the unnat-
urally large influence a single numerical “fluke” can have upon certain
results in explicit Diophantine approximation. Underlying Theorem 1
of Beukers is an inequality of the shape |x2 − 2n| � 20.1n, valid for
odd n and derived through Padé approximation, through appeal to the
identity 1812 + 7 = 215 (which implies that

∣∣√2− 181
27

∣∣ is “small”).
Proposition 2 follows from a rather similar approach and depends fun-
damentally upon the relation 53 +3 = 27 (which implies that

∣∣ 3
√

2− 5
22

∣∣
is also “small”). The fact that we are able to prove an effective inequal-
ity of the shape ∣∣∣ 3

√
2r − p

2k

∣∣∣� 2−λk,

for r ∈ {1, 2} and, crucially, λ < 2, is what enables us to derive results
like Proposition 2. It is worth observing that techniques based upon
lower bounds for linear forms in logarithms lead to upper bounds for
the heights of solutions to much more general equations than (5), but
have the disadvantage of these bounds being significantly worse than
exponential in the coefficients b and c.

The outline of this paper is as follows. In Section 2, we begin
by stating our results, expressed both in terms of explicit rational
approximation to certain algebraic numbers by rational with restricted
denominators, and also as results about corresponding Diophantine
equations. In Sections 3 and 4, we collect the necessary technical
lemmata about Padé approximation to binomial functions (at least in
terms of Archimedean valuations). Section 5 contains the proof of our
main result, Theorem 3, modulo an arithmetic result on the coefficients
of our Padé approximants, which we provide in Section 6. Sections 7,
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8 and 9 consist of the proofs of Corollary 4, Theorem 5 and Theorem
6, respectively. Finally, in Section 10, we make a few remarks about
more general Thue-Mahler equations.

2. Statements of our results. Our results are of two closely
related types. First, we have an explicit lower bound for approximation
to 3
√

2 or 3
√

4 by rational numbers with denominators restricted to being
essentially a power of 2. From this, with what are basically elementary
arguments, we are able to derive a number of results on both the heights
and the number of solutions of equations of the shape F (x) = 2n, for
monic cubic polynomial F ∈ Z. We start with the following :

Theorem 3. Suppose that r, p, s and k are integers with r ∈ {1, 2},
s ∈ {1, 3} and k > 12. Then we have

(7)
∣∣∣2r/3 − p

s2k

∣∣∣ > 2−1.62k.

As noted earlier, this “restricted irrationality measure” to 3
√

2 and
3
√

4 has a number of straightforward consequences for certain Diophan-
tine equations. We will begin by stating an almost immediate corollary
that will prove a useful form for later applications to Diophantine equa-
tions.

Corollary 4. If x and n are integers with x3 6= 27 · 2n, then either

x ∈ {4, 5, 8, 15, 19, 38, 121}

or we have

(8)
∣∣x3 − 27 · 2n

∣∣ ≥ 35/3 · x4/3.

From the standpoint of explicit solution of Diophantine equations,
our main result is the following (from which Proposition 2 is an
immediate corollary, taking a = 0).

Theorem 5. Let a, b and c be integers, and suppose that x and n are
integers for which we have

(9)
∣∣x3 + ax2 + bx+ c

∣∣ = 2n.
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Then either

• (a, b, c) = (3t, 3t2, t3) for some integer t, or

• (a, b, c, x, n) = (3t, 3t2, t3+3, 5−t, 7) or (3t, 3t2, t3−3,−5−t, 7),
for some integer t, or

• x = a3−27c
27b−9a2 ,

or we have
(10)

|x| ≤ max
{

8
∣∣b− a2/3

∣∣3 + |a/3|,
∣∣4a3/27 + 2c− 2ab/3

∣∣3/4 + |a/3|
}
.

Finally, as an analog of Theorem 1, we have

Theorem 6. Let D be an odd integer. Then the number of solutions
to the equation

(11) x3 +D = 2n

in pairs of integers (x, n) is at most three.

This last result is sharp as equation (11) with D = 3 has precisely
three solutions (x, n) = (−1, 1), (1, 2) and (5, 7). In fairness, we should
point out that this is not an analog of comparable generality to Theorem
1, in that the latter provides an upper bound for the number of solutions
to the equation f(x) = 2n, for all monic quadratic polynomials f , while
the same is not true of Theorem 6 for monic cubics.

3. Padé approximants to (1 − x)ν . All our results in this paper
have, at their heart, Padé approximation to the algebraic function
(1− x)ν , where ν ∈ Q/Z. Recall that an [n1/n2]-Padé approximant to
a function f(x) is a rational function p(x)/q(x), where the numerator
and denominator are polynomials with, say, integer coefficients, of
degrees n1 and n2, respectively, such that f(x) and p(x)/q(x) have
the same MacLaurin series expansion up to degree n1 + n2, i.e. such
that p(x)/q(x) is a good approximation to f(x) in a neighbourhood of
x = 0.
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Since the function p(x)/q(x) is a rational function with rational
coefficients, it takes rational values for rational choices of its argument.
In this way, we will be able to take a single suitably good approximation
to, in our case, a particular algebraic number, and generate an infinite
sequence of “good” approximations to the same number. In order
to obtain sharp estimates for the quality of the approximations that
are generated with these functions, we will use representations coming
from contour integrals, as well as explicit descriptions of the Padé
approximants as polynomials. Define

In1,n2
(x) =

1

2πi

∫
γ

(1− zx)n2(1− zx)ν

zn1+1(1− z)n2+1
dz

where n1 and n2 are positive integers, γ is a closed, positively oriented
contour enclosing z = 0 and z = 1, and |x| < 1. A straightforward
application of Cauchy’s theorem yields that

(12) In1,n2
(x) = Pn1,n2

(x)− (1− x)
ν
Qn1,n2

(x)

where Pn1,n2
(x) and Qn1,n2

(x) are polynomials with rational coeffi-
cients of degrees n1 and n2, respectively. In fact, examining the relevant
residues, it is possible to show that

(13) Pn1,n2
(x) =

n1∑
k=0

(
n2 + ν

k

)(
n1 + n2 − k

n2

)
(−x)k

and

(14) Qn1,n2
(x) =

n2∑
k=0

(
n1 − ν
k

)(
n1 + n2 − k

n1

)
(−x)k.

In particular, if we choose ν ∈ {1/3, 2/3}, we have that Pn1,n2(x), Qn1,n2(x) ∈
Z[1/3][x].

Our goal in the following sections will be twofold. First, we will
derive estimates for the size of |In1,n2

(x)| and |Pn1,n2
(x)| using contour

integral representations. Secondly, we will find lower bounds for the size
of the greatest common divisor of the coefficients involved in |Pn1,n2(x)|
and |Qn1,n2

(x)|.

4. Bounding our approximants. Here and henceforth, given a
positive integer n1, let us set n2 = 4n1− δ, where δ ∈ {0, 1}, and write
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ν = r/3 where r ∈ {1, 2}. Define

Pn1,δ = Pn1,4n1−δ(3/128), Qn1,δ = Qn1,4n1−δ(3/128) and In1,δ = In1,4n1−δ(3/128),

so that, from (12),

(15) In1,δ = Pn1,δ −
(

5

27/3

)r
Qn1,δ.

We further define F (z) by

(16) F (z) =
(1− 3z/128)4

z(1− z)4
.

It is easy to show, via calculus, that F (z) attains its minimum for
z ∈ (0, 1) at the value

(17) τ =
1

6

(
631− 5

√
15865

)
= 0.20304 . . . ,

where we have

F := F (τ) =
243

(
75−

√
15865

)4
34359738368

(
631− 5

√
15865

) (
125−

√
15865

)4 = 11.97804 . . .

Our argument will require upper bounds upon |Pn1,δ|, |Qn1,δ| and
|In1,δ|; from (15) it suffices to bound one of the first two of these,
together with the last.

Lemma 7. We have

|Pn1,δ| < 1.26 · Fn1 and |In1,δ| <
4

π

(
235 3−5 F

)−n1
,

Proof. We begin by separating the integral defining In1,δ(3/128) into
two pieces, one involving a closed contour containing only the pole at
z = 0. Taking τ as in (17), we may write

Pn1,δ =
1

2πi

∫
Γ

(1− 3z/128)4n1−δ+r/3

zn1+1(1− z)4n1−δ+1
dz

where Γ is the closed, positively oriented contour with |z| = τ . Using
the transformation z = τeiθ, we have that

|Pn1,δ| ≤
1

2π

∫ 2π

0

∣∣∣∣ (1− 3z/128)4n1−δ+r/3

zn1+1(1− z)4n1−δ+1

∣∣∣∣ τ dθ
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and so

|Pn1,δ| ≤
1

τn1
max

0≤θ≤2π

∣∣∣∣∣
(
1− 3τeiθ/128

)4n1−δ+r/3

(1− τeiθ)4n1−δ+1

∣∣∣∣∣ ,
whereby

|Pn1,δ| ≤
(1− 3τ/128)r/3

τn1(1− τ)

(
1− 3τ/128

1− τ

)4n1−δ

.

Since r ∈ {1, 2}, the desired bound for |Pn1,δ| follows.

To bound |In1,δ|, we argue as in [1] to arrive at the identity

(18) |In1,δ| =
(3/128)5n1−δ+1

π

∫ 1

0

v4n1−δ+r/3(1− v)n1−r/3dv

(1− 3(1− v)/128)
4n1−δ+1

.

We may thus rewrite the integrand here as

fδ,r(v)

(
v4(1− v)

(1− 3(1− v)/128)
4

)n1−1

where

fδ,r(v) =
v4+r/3−δ(1− v)1−r/3

(1− 3(1− v)/128)
5−δ ,

δ ∈ {0, 1} and r ∈ {1, 2}. Changing variable via v = 1 − z, we thus
have

|In1,δ| ≤
(3/128)5n1+1−δ

π
max{fδ,r(v) : v ∈ (0, 1)} F 1−n1 .

Since a little calculus reveals that, in all cases, max{fδ,r(v) : v ∈
(0, 1)} < 1/3 and since we have F < 12, it follows that

|In1,δ| <
4

π

(
235 3−5 F

)−n1
,

as desired. �

5. Proof of a (restricted) irrationality measure : Theorem
3. Let us suppose that r ∈ {1, 2}, s ∈ {1, 3}, p and k are integers, and
write m = 3k + r. From (13), (14) and the fact that(

n± r/3
j

)
3[3j/2] ∈ Z
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for all positive integers n and j, it follows that

3[n1/2] 27n1Pn1,δ and 32n1−δ 27(4n1−δ)Qn1,δ

are both integers. Here, n1 is a positive integer to be chosen later. We
set

Πn1,δ,r = gcd{3[n1/2] 27n1Pn1,δ, 3
2n1−δ 228n1−7δQn1,δ}

so that

A =
3[n1/2] 27n1

Πn1,δ,r
Pn1,δ and B =

32n1−δ 228n1−7δ

Πn1,δ,r
Qn1,δ

are integers. Equation (12) therefore implies that

Π−1
n1,δ,r

|In1,δ| =
∣∣∣∣ A

3[n1/2] 27n1
−
(

5

27/3

)r
B

32n1−δ 228n1−7δ

∣∣∣∣ .
If we define

Ω =
∣∣∣1− p

s 2m/3

∣∣∣ .
and

Λ =

∣∣∣∣ p

s 2m/3
−
(

5

27/3

)r
B

A 27(3n1−δ) 32n1−[n1/2]−δ

∣∣∣∣ ,
we have that

Λ < Ω + Π−1
n1,δ,r

A−1 3[n1/2] 27n1 |In1,δ|

(note that the nonvanishing ofA is a consequence of the contour integral
representation for Pn1,n2

(x)). From Lemma 4 of Beukers [3], for one of
our two choices of δ ∈ {0, 1}, we have Λ 6= 0; we fix δ to be this value
and choose

(19) n1 = 1 +

[
m− 7r + 21δ

63

]
,

so that
7r/3 + 7(3n1 − δ) >

m

3
.

Since s | 3, we thus have

Λ ≥
(
A 27(3n1−δ+r/3) 32n1−[n1/2]−δ

)−1

.
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Combining our upper and lower bounds for Λ, we find that

(20) 1 < ΩΛ1 + Λ2,

where, upon substituting for A,

Λ1 = Π−1
n1,δ,r

32n1−δ 27(4n1−δ+r/3) |Pn1,δ|

and
Λ2 = Π−1

n1,δ,r
32n1−δ 27(4n1−δ+r/3) |In1,δ| .

Applying Lemma 7, we thus have

Λ1 < 1.26 Π−1
n1,δ,r

214/3
(
32 228 F

)n1

and

Λ2 <
4

π
Π−1
n1,δ,r

214/3

(
37

27 F

)n1

,

whereby, from (20),

(21) Ω =
∣∣∣1− p

s 2m/3

∣∣∣ > Πn1,δ,r − 4
π 214/3

(
37

27 F

)n1

1.26 214/3 (32 228 F )
n1

.

In order for inequality (21) to be nontrivial, it remains therefore to
show that

(22) lim inf
n1→∞

1

n1
log Πn1,δ,r > log

(
37

27 F

)
.

In the next section, we will in fact prove the following result.

Proposition 8. For r ∈ {1, 2}, n1 ≥ 497 and δ ∈ {0, 1}, we have that

Πn1,δ,r > 1.8n1 .

Since we have that 37

27F < 1.427, inequality (22) follows as desired.
Assuming Proposition 8 and further that k ≥ 11000, so thatm ≥ 33000,
(19) thus implies that n1 ≥ 497, We therefore have

Πn1,δ,r −
4

π
214/3

(
37

27 F

)n1

> 1.79n1
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and hence, from (21),∣∣∣1− p

s 2m/3

∣∣∣ > 16166467234−n1 .

From (19), we have that n1 ≤ (m+ 77)/63 and so∣∣∣1− p

s 2m/3

∣∣∣ > 16166467234−(m+77)/63 > 1.454−m,

where we have appealed to the fact that m ≥ 33000. Since m = 3k+ r,
we thus have ∣∣∣2r/3 − p

s2k

∣∣∣ > 2r/3 1.454−3k−r > 2−1.62k,

for both r ∈ {1, 2}, k, p ∈ Z and s ∈ {1, 3}.
For k ≤ 100, a brute force search shows that the only approximations

in this range that fail to satisfy the desired bound (7) have (r, s, p, k)
in the following list (where we assume that gcd(p, s2k) = 1 to avoid
redundancy) :

(1, 1, 1, 0), (1, 1, 2, 0), (1, 1, 3, 1), (1, 1, 5, 2), (1, 3, 4, 0), (1, 3, 7, 1), (1, 3, 31, 3),
(1, 3, 61, 4), (1, 3, 121, 5), (2, 1, 1, 0), (2, 1, 2, 0), (2, 1, 3, 1), (2, 1, 3251, 11),
(2, 3, 5, 0), (2, 3, 19, 2), (2, 3, 305, 6).

In particular, in every case we have k < 12.

All that remains is to verify the inequality for, say, 100 < k < 11000.
We do this by considering the binary expansions of 2r/3 and 3 ·2r/3, for
r ∈ {1, 2}, and searching for either unusually long strings of zeros or
unusually long strings of ones (each of which would correspond to a very
good approximation to 2r/3 or 3 · 2r/3 by a rational with denominator
a power of two). Such an argument is described in detail in [1] (see, in
particular, Lemma 9.1 and the remarks following it). The fact that no
such strings occur completes the proof of Theorem 3 (again, assuming
Proposition 8).

6. Arithmetic properties of the coefficients. We now turn our
attention to proving Proposition 8. To do this, we require first a
good understanding of the content of the polynomials Pn1,n2

(x) and
Qn1,n2

(x).
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Lemma 9. Let n1 be a positive integer, n2 = 4n1 − δ for δ ∈ {0, 1}
and r ∈ {1, 2}. Suppose that p is prime, with

(23) p > max{
√

3n2 + 2, 5}.

Assume that

(24)

{
n1

p

}
∈
(

2

3
,

3

4

)
∪
(

5

6
, 1

)
,

if p ≡ r (mod 3), or

(25)

{
n1

p

}
∈
(

5

12
,

1

2

)
∪
(

2

3
,

3

4

)
∪
(

11

12
, 1

)
,

if p ≡ −r (mod 3). Then we have

ordp

(
n2 + r/3

k

)(
n1 + n2 − k

n2

)
≥ 1 for 0 ≤ k ≤ n1

and

ordp

(
n1 − r/3

k

)(
n1 + n2 − k

n1

)
≥ 1 for 0 ≤ k ≤ n2.

Proof. We begin by considering the case when p ≡ r (mod 3).

Observe that, from (24), we have that either
{
n1

p

}
∈
[

2
3 + r

3p ,
3
4

)
,

whereby

(26)

{
n2

p

}
=

{
4n1 − δ

p

}
∈
[

2

3
+

4r − 3

3p
, 1

)
,

or that
{
n1

p

}
∈
[

5
6 + 4r−3

6p , 1
)

, whence

(27)

{
n2

p

}
=

{
4n1 − δ

p

}
∈
[

1

3
+

8r − 9

3p
, 1

)
.

We conclude, in either case, that

(28)

{
n1

p

}
+

{
n2

p

}
≥ 7

6
+

20r − 21

6p
≥ 7

6
− 1

6p
≥ 1 +

1

p
,

where the last inequality follows from the assumption that p ≥ 7. We
proceed to show that p satisfying the hypotheses of the lemma have
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positive valuation for the desired binomial coefficients. If k = 0, then(
n2 + r/3

k

)(
n1 + n2 − k

n2

)
=

(
n1 − r/3

k

)(
n1 + n2 − k

n1

)
=

(
n1 + n2

n1

)
and, since n1 < n2, our assumption that p2 > 3n2 + 2 > 3n2 implies
that

ordp

(
n1 + n2

n1

)
=

{
n1

p

}
+

{
n2

p

}
−
{
n1 + n2

p

}
.

It follows that ordp
(
n1+n2

n1

)
≥ 1 if and only if

{
n1

p

}
+
{
n2

p

}
≥ 1,

whereby, from (28), we conclude as desired.

Similarly, if k = 1, then the fact that

ordp

(
n2 + r/3

k

)(
n1 + n2 − k

n2

)
≥ 1

is a consequence of the inequalities{
n1 − 1

p

}
+

{
n2

p

}
≥
{
n1

p

}
+

{
n2

p

}
− 1

p
≥ 1,

while

ordp

(
n1 − r/3

k

)(
n1 + n2 − k

n1

)
≥ 1

follows from{
n1

p

}
+

{
n2 − 1

p

}
≥
{
n1

p

}
+

{
n2

p

}
− 1

p
≥ 1.

Let us next suppose that k ≥ 2. From Lemma 4.5 of Chudnovsky [4],
if n ∈ N and p2 > 3n+ r, we have

ordp

(
n+ r/3

k

)
=

[
n− q
p

]
−
[
n− k − q

p

]
−
[
k

p

]
where q = (p− r)/3. It follows that

(29) ordp

(
n2 + r/3

k

)
=

{
n2 − q − k

p

}
+

{
k

p

}
−
{
n2 − q
p

}
and

(30) ordp

(
n1 + n2 − k

n2

)
=

{
n2

p

}
+

{
n1 − k
p

}
−
{
n1 + n2 − k

p

}
.
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Let us suppose that ordp
(
n2+r/3

k

)(
n1+n2−k

n2

)
= 0 and seek to derive a

contradiction. From (29), we have
{
n2−q
p

}
≥
{
k
p

}
which, with (26)

and (27), implies that

(31)

{
n2 − q
p

}
=

{
n2

p

}
− q

p
=

{
n2

p

}
− p− r

3p
≥
{
k

p

}
.

Similarly, from (30), we have

(32)

{
n2

p

}
+

{
n1 − k
p

}
< 1, i.e.

{
n2

p

}
+

{
n1 − k
p

}
≤ 1− 1

p
.

If
{
n1

p

}
<
{
k
p

}
, since

{
n1

p

}
≥ 2

3 + 1
3p , we have from (31), that{

n2

p

}
>

2

3
+

1

3p
+
p− r

3p
= 1 +

1− r
3p
≥ 1− 1

3p
,

an immediate contradiction. It follows that
{
n1

p

}
≥
{
k
p

}
and hence{

n1 − k
p

}
=

{
n1

p

}
−
{
k

p

}
.

We therefore have from (31) and (32) that{
n1

p

}
+

{
n2

p

}
≤ 1− 1

p
+

{
k

p

}
≤ 1− 1

p
+

{
n2

p

}
− p− r

3p
,

whence {
n1

p

}
≤ 2p− 3 + r

3p
<

2

3
,

contradicting (24).

Similarly, we may write

(33) ordp

(
n1 − r/3

k

)
=

{
n1 − q − k

p

}
+

{
k

p

}
−
{
n1 − q
p

}
and

(34) ordp

(
n1 + n2 − k

n1

)
=

{
n1

p

}
+

{
n2 − k
p

}
−
{
n1 + n2 − k

p

}
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where now q = (2p+ r)/3. Let us suppose that

(35) ordp

(
n1 − r/3

k

)(
n1 + n2 − k

n1

)
= 0

so that, in particular, we have

(36)

{
n1 − q
p

}
=

{
n1

p

}
− q

p
=

{
n1

p

}
− 2p+ r

3p
≥
{
k

p

}
.

It follows that we necessarily have{
k

p

}
< 1− 2p+ r

3p
=

1

3
− r

3p
≤
{
n2

p

}
,

whereby{
n1

p

}
+

{
n2 − k
p

}
=

{
n1

p

}
+

{
n2

p

}
−
{
k

p

}
≤ 1− 1

p
.

Arguing as before, we find that{
n2

p

}
< 1− 1

p
− 2p+ r

3p
<

1

3
− 1

p
,

again contradicting (26) and (27).

The argument for p ≡ −r (mod 3) is essentially similar. Relation
(25) implies that we have one of
(37){
n1

p

}
∈
[

5

12
+

9− 4r

12p
,

1

2

)
⇒
{
n2

p

}
=

{
4n1 − δ

p

}
∈
[

2

3
+

6− 4r

3p
, 1

)
,

(38){
n1

p

}
∈
[

2

3
+

3− r
3p

,
3

4

)
⇒
{
n2

p

}
=

{
4n1 − δ

p

}
∈
[

2

3
+

9− 4r

3p
, 1

)
or
(39){
n1

p

}
∈
[

11

12
+

9− 4r

12p
, 1

)
⇒
{
n2

p

}
=

{
4n1 − δ

p

}
∈
[

2

3
+

6− 4r

3p
, 1

)
.

In each case, we may thus conclude that

(40)

{
n1

p

}
+

{
n2

p

}
≥ 13

12
+

33− 20r

12p
≥ 13

12
− 7

12p
≥ 1 +

1

p
.
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Arguing as previously, (40) implies the desired conclusion almost im-
mediately in case k = 0 or 1. Let us assume that k ≥ 2. From Lemma
4.5 of Chudnovsky [4], we once again have (29) and (33), only this time
with q = (2p− r)/3 and q = (p+ r)/3, respectively. If we suppose that

ordp
(
n2+r/3

k

)
= 0, then{

n2

p
− 2

3
+

r

3p

}
≥
{
k

p

}
,

whereby, from (37), (38) and (39),

(41)

{
n2

p

}
≥ 2

3
− r

3p
+

{
k

p

}
,

whence
{
k
p

}
< 1/3 <

{
n1

p

}
. If also ordp

(
n1+n2−k

n2

)
= 0, we again have

(32), and so, from (41),

2

3
− r

3p
+

{
n1

p

}
≤
{
n2

p

}
+

{
n1

p

}
−
{
k

p

}
≤ 1− 1

p
,

a contradiction. If, on the other hand, we assume (35), then both{
n1 −

(
p+r

3

)
p

}
≥
{
k

p

}
and

{
n1

p

}
+

{
n2 − k
p

}
≤ 1− 1

p
.

The first of these implies that

1− 1

p
≥
{
n1

p

}
≥ 1

3
+

r

3p
+

{
k

p

}
,

whence {
k

p

}
≤ 2

3
− r + 3

3p

and so, from (37), (38) and (39),

1− 1

p
≥
{
n1

p

}
+

{
n2 − k
p

}
=

{
n1

p

}
+

{
n2

p

}
−
{
k

p

}
≥ 1

3
+
r

3p
+

{
n2

p

}
,

whereby {
n2

p

}
≤ 2

3
− r + 3

3p
.

The resulting contradiction (to (37), (38) and (39)) completes the
proof. �
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To apply this result, we observe that if 1 ≤ c < d are integers, then
we have {n1/p} > c/d precisely when

p ∈
∞⋃
k=0

(
n1

k + 1
,

n1

k + c/d

)
.

Let us define
θ(x, q, r) =

∑
p≤x

p≡r (mod q)

log p,

where the sum is over primes p. Fixing r ∈ {1, 2}, it follows from
Lemma 9 that log Πn1,δ,r is bounded below by

(42) Lr,n1 =

k0∑
k=0

(T1,k + T2,k + T3,k + T4,k + T5,k) ,

where

T1,k = θ

(
n1

k + 2/3
, 3, r

)
− θ

(
n1

k + 3/4
, 3, r

)
,

T2,k = θ

(
n1

k + 5/6
, 3, r

)
− θ

(
n1

k + 1
, 3, r

)
,

T3,k = θ

(
n1

k + 5/12
, 3,−r

)
− θ

(
n1

k + 1/2
, 3,−r

)
,

T4,k = θ

(
n1

k + 2/3
, 3,−r

)
− θ

(
n1

k + 3/4
, 3,−r

)
and

T5,k = θ

(
n1

k + 11/12
, 3,−r

)
− θ

(
n1

k + 1
, 3,−r

)
,

for k0 =
[√

n1

12

]
−2 (we can actually, in most cases, use a slightly larger

value for k0; it is simply chosen so that inequality (23) is satisfied). To
estimate Lr,n1

, for large values of n1, we will appeal to recent bounds on
θ(x, 3, r) due to the second author, Martin, O’Bryant and Rechnitzer
[2]. In particular we use that

(43)
∣∣∣θ(x, 3, r)− x

2

∣∣∣ < { 1.798158
√
x if x ≤ 1013

0.00144 x
log x if x > 1013.
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Note that together these inequalities imply that we have∣∣∣θ(x, 3, r)− x

2

∣∣∣ < 0.00144
x

log x

for all x > 641239201. We will show that Lr,n1
> 0.58779n1, which

immediately implies Proposition 8.

Let us assume first that n1 > 2 · 109. Then

T1,0 >
n1

12
− 0.00144

(
3n1

2 log(3n1/2)
+

4n1

3 log(4n1/3)

)
> 0.083145n1,

T2,0 >
n1

10
− 0.00144

(
6n1

5 log(6n1/5)
+

n1

log(n1)

)
> 0.099852n1,

T3,0 >
n1

5
− 0.00144

(
12n1

5 log(12n1/5)
+

2n1

log(2n1)

)
> 0.199714n1,

T4,0 >
n1

12
− 0.00144

(
3n1

2 log(3n1/2)
+

4n1

3 log(4n1/3)

)
> 0.083145n1,

T5,0 >
n1

11
− 0.00144

(
12n1

11 log(12n1/11)
+

n1

log(n1)

)
> 0.090768n1,

T1,1 >
n1

70
− 0.00144

(
3n1

5 log(3n1/5)
+

4n1

7 log(4n1/7)

)
> 0.014204n1,

and

T3,1 >
n1

51
− 0.00144

(
12n1

17 log(12n1/17)
+

2n1

3 log(2n1/3)

)
> 0.019513n1,

whereby Lr,n1 > 0.58779n1 as desired. Next suppose that n1 ≤ 2 · 109.
Then, for each k ≥ 0, we have

T1,k >
n1

2(3k + 2)(4k + 3)
− 1.798158

(√
n1

k + 2/3
+

√
n1

k + 3/4

)
,

T2,k >
n1

2(6k + 5)(k + 1)
− 1.798158

(√
n1

k + 5/6
+

√
n1

k + 1

)
,

T3,k >
n1

(2k + 1)(12k + 5)
− 1.798158

(√
n1

k + 5/12
+

√
n1

k + 1/2

)
,

T4,k >
n1

2(3k + 2)(4k + 3)
− 1.798158

(√
n1

k + 2/3
+

√
n1

k + 3/4

)
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and

T5,k >
n1

2(12k + 11)(k + 1)
− 1.798158

(√
n1

k + 11/12
+

√
n1

k + 1

)
.

If we suppose that 106 ≤ n1 ≤ 2 · 109, then it is readily checked that
the inequalities here are nontrivial (i.e. that the right-hand-sides are
positive) for, in each case, 0 ≤ k ≤ 4, whereby we find that, once again,

Lr,n1 ≥
4∑
k=0

(T1,k + T2,k + T3,k + T4,k + T5,k) > 0.58779n1.

It remains to treat values of n1 < 106. We note that if we have
a = 1, n1 = 496 and n2 = 4n1 − 1, then

Π
1/n1

n1,δ,r
= 1.79954218 . . .

and hence we cannot expect to extend Proposition 8 to smaller values
of n1. By direct (if slow) computation of Πn1,δ,r, we find that the
inequality of Proposition 8 is satisfied for each r ∈ {1, 2}, 497 ≤
n1 ≤ 1000 and n2 = 4n1 − δ with δ ∈ {0, 1}. For larger values
of n1, instead of relying upon the definition of Πn1,δ,r, we appeal to
the bound log Πn1,δ,r ≥ Lr,n1

, where Lr,n1
is as defined in (42). For

1000 < n1 ≤ 10000 and r ∈ {1, 2}, we check that, in each case,
exp(Lr,n1

/n1) > 1.8. This takes roughly 20 minutes in Maple on an
elderly Macbook Air. We find that the largest value of n1 in this range
for which we have exp(Lr,n1/n1) < 1.9 corresponds to

exp(L2,3319/3319) = 1.89773 · · · .

This is unsurprising since, from (43), we have that L := limn1→∞ Lr,n1
/n1

is equal to

∞∑
k=0

(
1

(3k + 2)(4k + 3)
+

1

2(6k + 5)(k + 1)
+

1

(2k + 1)(12k + 5)
+

1

2(12k + 11)(k + 1)

)
.

Defining

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
,
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we have that

ψ(x) = −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ x

)
, for x 6= 0,−1,−2, . . . ,

whence

L = ψ(1)+ψ(3/4)+ψ(1/2)/2−ψ(2/3)−ψ(5/6)/2−ψ(5/12)/2−ψ(11/12)/2.

Using known identities for ψ, we thus have

L = −γ−3 ln(2)+
π

2
−5π

√
3

12
+

9 ln 3

4
−ψ(5/12)

2
−ψ(11/12)

2
= 0.70264 · · · ,

and so
lim

n1→∞
exp (Lr,n1

/n1) = 2.019084 · · · .

To finish the computation verifying the inequality exp(Lr,n1
/n1) >

1.8 for 10000 < n1 < 106, we employ the “bootstrapping” pro-
cedure described in detail in Section 7 of [1], which exploits that
limn1→∞ exp (Lr,n1/n1) greatly exceeds 1.8 – by way of example

exp (L1,10000/10000) > 2.006523

– together with the fact that the difference between Lr,n1
and Lr,n1+k

is “small”, provided n1 is much larger than k. This enables us to
significantly reduce the number of times we actually compute Lr,n1

.
Full details are available from the authors on request. This completes
the proof of Proposition 8..

7. Proof of Corollary 4. To go from Theorem 3 to Corollary 4 is
straightforward. Suppose that x and n are integers with x3 6= 27·2n and
x 6∈ {4, 5, 8, 15, 19, 38, 121}. We may suppose further that x is positive
since our desired conclusion is trivial otherwise. If n ≡ 0 (mod 3), say
n = 3n0, we have

∣∣x3 − 27 · 2n
∣∣ ≥ x3 − (x− 1)3 > 3x3 − 3x2 ≥ 35/3 · x4/3,

where the last inequality holds for x ≥ 3 (and, for x = 1 or 2, the desired
result follows immediately). We may thus suppose that n = 3n0 + r
for r ∈ {1, 2}, and so∣∣x3 − 27 · 2n

∣∣ = 3·2n0

∣∣∣2r/3 − x

3 · 2n0

∣∣∣·(x2 + 3 · x2n0+r/3 + 9 · 22n0+2r/3
)
.
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If |x− 3 · 2n0+r/3| > 1, then, once again, we have∣∣x3 − 27 · 2n
∣∣ > 3x3 − 3x2 ≥ 35/3 · x4/3.

Otherwise, applying Theorem 3, we thus have∣∣x3 − 27 · 2n
∣∣ > 3 · 2−0.62n0

(
x2 + x(x− 1) + x(x− 1)2

)
,

at least provided n0 > 12. Since

20.62n0 ≤
(
x+ 1

3

)0.62

,

we obtain inequality (8), after a little work. The values n0 ≤ 12
correspond to n ≤ 38. For these, we readily check that (8) is satisfied,
except for x ∈ {4, 5, 8, 15, 19, 38, 121}.

8. Proof of Theorem 5. We next proceed with the proof of Theo-
rem 5. Let us suppose that a, b and c are given integers and that there
exist integers x and n such that

x3 + ax2 + bx+ c = ±2n.

Writing u = x+ a/3, we find that

(44) u3 + (b− a2/3)u+ (2a3/27 + c− ab/3) = (−1)δ2n,

where now either u or 3u is an integer and δ ∈ {0, 1}.
If u3 = (−1)δ2n then, from (44),

(b− a2/3)(x+ a/3) = ab/3− c− 2a3/27

so that
(b− a2/3)x = −c+ a3/27.

If b = a2/3 then we necessarily have that a = 3t for some integer t,
whereby b = 3t2 and c = t3, so that x3 + ax2 + bx + c = (x + t)3.
Otherwise, we conclude that

x =
a3 − 27c

27b− 9a2
.

Next, to treat the cases where 3 | a and

x = u− a/3 for |u| ∈ {4, 5, 8, 15, 19, 38, 121} ,



22 MARK BAUER AND MICHAEL A. BENNETT

let us suppose that for one of these choices of x we have
(45)

|x| > max
{

8
∣∣b− a2/3

∣∣3 + |a/3|,
∣∣4a3/27 + 2c− 2ab/3

∣∣3/4 + |a/3|
}
.

Since |x| ≤ |a/3|+ |u| we thus have

(46) max
{

8
∣∣b− a2/3

∣∣3 , ∣∣4a3/27 + 2c− 2ab/3
∣∣3/4} < |u|.

It follows that b = a2/3 + b0 for some integer b0 with |b0| < 1
2 |u|

1/3.
Since we also have ∣∣∣∣c− ab0

3
− a3

27

∣∣∣∣ < 1

2
|u|4/3,

we may write

c =
ab0
3

+
a3

27
+ c0,

where c0 is an integer with |c0| < 1
2 |u|

4/3. Writing a = 3t, for t an
integer, we thus have

(u− t)3 + 3t(u− t)2 + (3t2 + b0)(u− t) + t3 + tb0 + c0 = ±2n,

whence

(47) u3 + b0u+ c0 = ±2n,

where

|u| ∈ {4, 5, 8, 15, 19, 38, 121} , |b0| <
1

2
|u|1/3 and |c0| <

1

2
|u|4/3.

A short computation reveals that (47) is satisfied only for

(u, b0, c0) ∈ {(±4, 0, 0), ±(5, 0, 3), (±8, 0, 0)} ,

the first and last of which correspond to x3 + ax2 + bx+ c = (x+ t)3.
The case (u, b0, c0) = ±(5, 0, 3) leads to (a, b, c, x) = (3t, 3t2, t3+3, 5−t)
and (3t, 3t2, t3 − 3,−5− t).

If we suppose finally that u3 6= (−1)δ2n and x 6= u − a/3 for any u
satisfying |u| ∈ {4, 5, 8, 15, 19, 38, 121}, from the fact that∣∣u3 − (−1)δ2n

∣∣ =
∣∣(b− a2/3)u+ (2a3/27 + c− ab/3)

∣∣ > 0

we thus have, in all cases, applying Corollary 4 to
∣∣|3u|3 − 27 · 2n

∣∣, that
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u4/3 ≤
∣∣(b− a2/3)u+ (2a3/27 + c− ab/3)

∣∣ ≤ 2 max
{∣∣b− a2/3

∣∣ |u|, ∣∣2a3/27 + c− ab/3
∣∣}

and so

|u| ≤ max
{

8
∣∣b− a2/3

∣∣3 , ∣∣4a3/27 + 2c− 2ab/3
∣∣3/4} ,

whereby

|x| ≤ max
{

8
∣∣b− a2/3

∣∣3 + |a/3|,
∣∣4a3/27 + 2c− 2ab/3

∣∣3/4 + |a/3|
}
.

This completes the proof of Theorem 5.

9. Proof of Theorem 6. In this section, we will prove Theorem 6.
Let us begin by supposing that D is an odd integer and that we have

x3
i +D = 2ki , i ∈ {1, 2, 3, 4},

with
x1 < x2 < x3 < x4 and k1 < k2 < k3 < k4.

Then, for each i ∈ {1, 2, 3},

(xi+1 − xi)
(
x2
i+1 + xi+1xi + x2

i

)
= x3

i+1 − x3
i = 2ki

(
2ki+1−ki − 1

)
,

whereby we may write

xi+1 = xi + ai · 2ki

with ai a positive integer. Substituting this into 2ki+1 = x3
i+1 +D, we

find that

(48) 2ki+1−ki = 1 + 3aix
2
i + 3a2

i 2
kixi + a3

i 2
2ki .

Let us suppose first that D is positive and write xi = −D1/3 + yi
for yi a positive real number. From (48), we have

2ki+1−ki = 1+ai·
(

3D2/3 − 3ai2
kiD1/3 + a2

i 2
2ki
)

+3aiyi

(
yi + ai2

ki − 2D1/3
)
.

Applying the arithmetic-geometric mean inequality to the first brack-
eted term on the right-hand-side of this equation, we thus have that
(49)

2ki+1−ki ≥ 1 +
(

2
√

3− 3
)
a2
iD

1/32ki + 3aiyi

(
yi + ai2

ki − 2D1/3
)
.
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Notice that

2ki = x3
i +D = 3yiD

2/3 − 3y2
iD

1/3 + y3
i

and hence

yi + ai2
ki − 2D1/3 = yi + 3aiyiD

2/3 − 3aiy
2
iD

1/3 + aiy
3
i − 2D1/3.

If we have y1 < 1 then, since

y2 − y1 = x2 − x1 = a1 · 2k1 ≥ 1,

we thus have y2 > 1 and hence, in all cases, may write y2 = Dθ for
θ > 0. Since, again by the arithmetic-geometric mean inequality, the
function

f(θ) = 3D2/3+θ − 3D1/3+2θ +D3θ

is monotone increasing as a function of θ, we thus have

2k2 > 3D2/3 − 3D1/3 + 1 > 2D2/3,

at least assuming that D ≥ 27. From (49), it follows that

2k3 > 2D2/3
((

2
√

3− 3
)

2D + 3(2D2/3 − 2D1/3)
)
> 4

(
2
√

3− 3
)
D5/3 > 1.8·D5/3.

We therefore have x3 > D5/9 and so, again applying (49), we find that
2k4 > 1.5 ·D11/3 and so

x3
4 > 1.5 ·D11/3 −D > D11/3,

since we may assume that D ≥ 2. We thus have, from Corollary 4
(where we take x = 3x4), that

D =
∣∣x3

4 − 2k4
∣∣ ≥ x4/3

4 >
(
D11/3

)4/9

= D44/27,

a contradiction.

Suppose next that D < 0 (so that x2 > x1 > |D|1/3). From (48), we
have that 2k2 > 2 |D|2/3 and hence

2k3 > 2k2
(
3x2

2 + 3 · 2k2x2 + 22k2
)
> 8 |D|2.

A final appeal to (48) implies that

2k4 > 2k3
(
3x2

3 + 3 · 2k3x3 + 22k3
)
> 512 |D|6.
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We thus have, again appealing to Corollary 4, that

|D| =
∣∣x3

4 − 2k4
∣∣ ≥ x4/3

4 =
(
2k4 + |D|

)4/9
>
(
512|D|6

)4/9
> |D|8/3,

a contradiction. This completes the proof of Theorem 6.

It is perhaps worthwhile noting that we know of only three odd
values of D for which the equation x3+D = 2n has even as many as two
solutions in integers x and n, namely D = −215 (with (x, n) = (6, 0)
and (7, 7)), D = 1 with (x, n) = (0, 0) and (1, 1), and D = 3, with
(x, n) = (−1, 1), (1, 2) and (5, 7).

10. Thue-Mahler equations. As noted earlier, the equation

(50) x3 − xy2 + 8y3 = 2k,

which generalizes (1), has itself at most finitely many solutions in inte-
gers (x, y, n), which may be determined effectively following arguments
of Tzanakis and de Weger [13], based upon lower bounds for linear
forms in complex and p-adic logarithms, together with computational
techniques from Diophantine approximation. Hambrook [6] has an im-
plementation of such an approach which works well in the case of few
primes and low degree forms (i.e. precisely the situation in which we
find ourselves); appealing to his Thue-Mahler solver, the only coprime
solutions to (50) are with (x, y) one of

(−113, 53), (−19, 9), (−2, 1), (−1, 1), (−1, 5), (0, 1), (1, 0),
(1, 1), (3,−1), (3, 1), (5, 1), (7,−3), (8, 1), (13,−6).

Similarly, the equation

x3 − 13xy2 + 20y3 = 2k.

has corresponding solutions with (x, y) among

(−21, 5), (−4, 1), (−3, 1), (−1, 1), (1, 0), (1, 1), (2, 1),
(3, 1), (4, 1), (7, 3), (11, 5), (13, 1), (19,−3).

There exist completely general bounds for the number of solutions to
Thue-Mahler equations that depend only upon the degree of the given
form F and the number of primes on the right hand side of the equation
F (x, y) = pα1

1 · · · p
αk

k . Along these lines, let us note that Evertse [5]
has shown that if F is an irreducible cubic form and p is a fixed prime,
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then the equation
|F (x, y)| = pn

has at most 760 + 6 · 74 solutions in integers. This bound, while
admirably uniform, exceeds 1050.
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