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Abstract. In this paper, we refine work of Beukers, applying results from the theory of Padé approximation
to (1 − z)1/2 to the problem of restricted rational approximation to quadratic irrationals. As a result, we derive
effective lower bounds for rational approximation to

√
m (where m is a positive nonsquare integer) by rationals

of certain types. For example, we have∣∣∣∣√2 − p

q

∣∣∣∣ � q−1.47 and

∣∣∣∣√3 − p

q

∣∣∣∣ � q−1.62,

provided q is a power of 2 or 3, respectively. We then use this approach to obtain sharp bounds for the number of
solutions to certain families of polynomial-exponential Diophantine equations. In particular, we answer a question
of Beukers on the maximal number of solutions of the equation x2 + D = pn where D is a nonzero integer and
p is an odd rational prime, coprime to D.
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2000 Mathematics Subject Classification: Primary—11D45, 11D61; Secondary—11J82, 11J86.

1. Introduction

A seemingly innocent question of Ramanujan [38] as to the squares in the sequence 2n − 7
(i.e. are there any other than those corresponding to n = 3, 4, 5, 7 and 15?) has led over
subsequent years to an extensive body of work on what are now known as “Ramanujan-
Nagell” equations (in reference to the first person to answer Ramanujan’s question; see
[37]). Though definitions vary, these are usually taken to mean equations of the form

f (x) = pn1
1 . . . pnr

r , (1.1)

where f (x) is a polynomial with integral coefficients and at least two simple zeros,
p1, . . . , pr are distinct rational primes and n1, . . . , nr ≥ 2 are integers. These questions
have attracted attention in such diverse fields as coding theory and group theory, and it would
not be overstating the case to describe the literature on them as vast. In our bibliography, we
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have attempted to include references to such equations, dating from 1987 or so. We direct
the reader to the survey article of Cohen [17] for details of earlier work.

The original techniques used to attack equations like (1.1) were elementary, based upon
properties of the number fields generated by the roots of f (x) (again, see [17]). A second
approach, relying on Baker’s lower bounds for linear forms in logarithms of algebraic
numbers, provides an effective algorithm for solving any such equation which, in many
instances, can be made practical. To derive sharp bounds upon the number of such solutions
in positive integers to families of these equations, via these techniques, appears to be rather
difficult, though, as we shall see in Section 11, they do have a role to play.

A third method for solving equations like (1.1) is what we will address in this paper.
Though the techniques, based upon explicit rational function approximation to binomial
functions, date back, in a number theoretic context, at least to work of Thue [43] and Siegel
[42], they were first applied to polynomial-exponential equations by Beukers in [9–11] (see
also [44] and [45]). Much of our paper is devoted to assessing both the strengths and the
limitations of this approach.

1.1. Diophantine approximation results

The traditional use of the so-called hypergeometric method in Diophantine approximation,
as first espoused by Thue [43] and subsequently refined by many others (see e.g. [2, 3, 6–8,
16, 34, 42]), is to generate a dense set of good rational approximations to a fixed algebraic
number (usually of the shape θ = n√a/b) in order to explicitly improve Liouville’s theorem
on rational approximation. In our context, we require something rather different as we are
concerned with quadratic irrational values of θ , where Liouville’s theorem is essentially best
possible. For our purposes, we will instead deduce lower bounds for rational approximation
to a given θ by rationals with restricted denominators. The model for the type of result we
wish to obtain is the following theorem of Beukers [10]:

Theorem 1.1 (Beukers). If p and q are integers with q = 2k, where k is a non-negative
integer, then ∣∣∣∣√2 − p

q

∣∣∣∣ > 2−43.9q−1.8.

Such a bound leads (almost immediately) to

Corollary 1.2 (Beukers). If x, D and n are integers for which x2 + D = 2n, then

n <
10 log |D|

log 2
+ 435.

This enables one to quickly answer Ramanujan’s question with which we opened this
section (in the negative). Indeed, we are left only to check the values n ≤ 485.

We aim, in this paper, to significantly sharpen and generalize these bounds, with the goal
of making them more flexible for applications. Before stating our results, we require some
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notation. Given real numbers x and α, with |x | < 1 and α ≥ 1, let us define F(z, α, x) by

F(z, α, x) = (1 − zx)α

z(1 − z)α
. (1.2)

By calculus, we find that F(z, α, x) attains its minimum on z ∈ (0, 1) at

r(α, x) = 1

2x
((α + 1) − (α − 1)x −

√
((α + 1) − (α − 1)x)2 − 4x). (1.3)

We will use these quantities to measure the Archimedean contribution of our approximating
forms. To deal with non-Archimedean contributions, we define

S1(α) =
∞∑

i=1

∑
iα− α−1

2 ≤ j≤iα

(
2α

2 j − 1
− α

j

)
, (1.4)

S2(α) =
∞∑

i=1

∑
iα< j<iα+1/2

(
2α

2 j − 1
− 1

i

)
, (1.5)

S3(α) =
∞∑

i=1

∑
iα− α

2 < j<iα− α−1
2

(
2

2i − 1
− α

j

)
(1.6)

and set

c(α) = eS1(α)+S2(α)+S3(α). (1.7)

Though it is by no means clear from this definition, we may show (though, for brevity’s
sake, we will not do so here) that c(α) is a continuous function of α for α ≥ 1, with
limα→∞ c(α) = 2. Define, for an integer t ,

κ(t) =




1 if t ≡ 0 (mod 4)

2 if t ≡ 2 (mod 4)

4 if t ≡ ±1 (mod 4).

Let us suppose that we are given a, y and m0 positive integers with y ≥ 2, and � a nonzero
integer. For our purposes, these quantities will satisfy

x2
0 + � = a2 ym0

for some integer x0. If m0 is odd and � is suitably small, we thus have
√

y well approximated
by

x0

ay(m0−1)/2
.

To measure the quality of this approximation, we set

�0 = gcd(�, a2 ym0), ξ = �

a2 ym0
, � = κ(�/�0) a2 ym0
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and define

m1 = min
p|y

ordp�

ordp y
.

Here, if p is a rational prime and k a nonzero integer, we denote by ordpk the largest power
of p dividing k. It follows that m1 ≥ m0. Further, let us take �1 to be the least positive
integer multiple of �/�0 satisfying

min
p|y

ordp�1

ordp y
= m1

(whereby �1 ≤ �) and set �1 = �0�1/�. These quantities appear to be rather mysterious.
We choose them in such a fashion to ensure that �/�0 is the denominator of ξ/4 (which
we will take later as the argument of a particular hypergeometric function). The integers
�1 and �1 satisfy

�1/�1 = �/�0

but are modified in a certain manner to reflect the relative weights of the prime factors of y
in, respectively, y and a.

Our first result is

Theorem 1.3. Suppose that a, y, x0, m0 and � are integers with m0 odd and positive and
a, y and x0 positive, y not a square, satisfying

x2
0 + � = a2 ym0 ≥ 2|�|. (1.8)

Further, suppose that there exists a real number α ≥ 3/2 satisfying

c(α)(a2 ym0)α+1 �1 F(r(α, ξ), α, ξ) > �α
1 |�|α+1 (1.9)

where the various quantities are as defined previously. If s is a given positive integer and
ε > 0 is real, then there exists an effectively computable constant q0 = q0(a, y, m0, �,

α, s, ε) such that, if p ∈ Z, q = yk for k a nonnegative integer and q ≥ q0, we have∣∣∣∣√y − p

sq

∣∣∣∣ > q−λ−ε,

where

λ =
log

(
�α

1 F(r(α,ξ),α,ξ)

c(α) �1

)
(α − 1) m1 log y

.

Let us note that this lower bound is nontrivial (in the sense that λ < 2) precisely when

�α
1 F(r(α, ξ), α, ξ) < c(α) �1 y2(α−1)m1 . (1.10)
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It may not be immediately apparent that the above theorem can ever be applied to give
a nontrivial approximation measure. To demonstrate its utility, we provide the following
corollary, where we specialize Theorem 1.3 to values of y with 2 ≤ y < 100:

Corollary 1.4. Suppose that y is a positive integer in the table below and s is a given
positive integer. Then there exists an effectively computable constant q0 = q0(y, s) such
that, if p ∈ Z, q = yk for some nonzero integer k and q ≥ q0, we have∣∣∣∣√y − p

sq

∣∣∣∣ > q−λ(y), (1.11)

where λ(y) is as follows:

y λ(y) y λ(y) y λ(y) y λ(y) y λ(y)

2 1.465 26 1.952 46 1.203 65 1.740 83 1.539

3 1.620 28 1.602 47 1.634 66 1.564 84 1.448

5 1.344 29 1.577 48 1.618 68 1.434 85 1.403

6 1.444 30 1.873 50 1.788 69 1.682 87 1.845

10 1.917 31 1.691 51 1.619 70 1.740 89 1.930

12 1.625 33 1.725 52 1.786 72 1.558 90 1.968

13 1.518 34 1.712 53 1.478 73 1.496 91 1.778

14 1.770 35 1.829 54 1.281 74 1.679 92 1.567

17 1.929 37 1.522 55 1.383 75 1.850 93 1.694

18 1.849 38 1.689 56 1.700 76 1.264 95 1.920

19 1.858 40 1.522 57 1.747 77 1.414 96 1.381

20 1.647 42 1.575 58 1.648 78 1.690 98 1.522

21 1.641 43 1.871 60 1.449 79 1.545 99 1.671

23 1.443 44 1.658 62 1.572 80 1.703

24 1.624 45 1.501 63 1.745 82 1.699

(1.12)

Note that, for obvious reasons, we have omitted values of y which are perfect powers. To
compare the above result to its analogue in [10], we observe that, apparently, Theorem 5
of [10] implies a nontrivial bound of the shape (1.11), for 2 ≤ y ≤ 99 and y not a perfect
power, only when y ∈ {2, 3, 23, 46, 55, 76}.

For applications to Diophantine problems, we desire more explicit versions of
Theorem 1.3 and Corollary 1.4. To state these, we beg the reader’s indulgence as we
introduce yet more notation. Let

χ1 = c1(α)(a2 ym0)α+1 �1 F(r(α, ξ), α, ξ)

�α
1 |�|α+1

(1.13)

and

χ2 = 2sa4α−5 y(2α−5/2)m0 (α + 1)2 |�|3−2α d1(α)−1. (1.14)
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Further, let us define

m2 = min
p|y

{
2(α − 1)

log χ2

log χ1

(
ordp�1

ordp y

)
+ 2ordpa

ordp y
+ m0

}
. (1.15)

Write

χ3 = �α
1 F(r(α, ξ), α, ξ)

c1(α) �1
, (1.16)

and, for the following values of α, define c1(α) and d1(α) by

α c1(α) log d1(α) α c1(α) log d1(α) α c1(α) log d1(α)

1.5 1.952 −20.184 3.5 1.828 −16.814 5.5 1.828 −16.951

1.6 1.892 −11.057 3.6 1.801 −14.245 5.6 1.811 −15.303

1.7 1.860 −19.422 3.7 1.774 −13.362 5.7 1.793 −14.892

1.8 1.751 −17.520 3.8 1.736 −18.144 5.8 1.769 −15.852

1.9 1.667 −13.031 3.9 1.696 −26.810 5.9 1.743 −16.914

2.0 1.613 −18.495 4.0 1.660 −16.384 6.0 1.719 −12.599

2.1 1.660 −24.199 4.1 1.687 −14.913 6.1 1.738 −11.905

2.2 1.704 −25.928 4.2 1.717 −13.293 6.2 1.760 −15.935

2.3 1.748 −29.238 4.3 1.745 −13.822 6.3 1.780 −14.180

2.4 1.779 −30.478 4.4 1.764 −13.811 6.4 1.794 −17.332

2.5 1.808 −29.261 4.5 1.783 −15.083 6.5 1.807 −19.408

2.6 1.868 −22.140 4.6 1.833 −17.414 6.6 1.843 −18.265

2.7 1.947 −24.505 4.7 1.879 −13.963 6.7 1.875 −17.606

2.8 2.064 −27.823 4.8 1.946 −21.254 6.8 1.922 −20.170

2.9 2.207 −16.762 4.9 2.040 −25.964 6.9 1.986 −23.824

3.0 2.458 −17.335 5.0 2.202 −33.331 7.0 2.097 −35.679

3.1 2.246 −16.558 5.1 2.053 −16.208 7.1 1.993 −16.101

3.2 2.107 −19.243 5.2 1.970 −23.161 7.2 1.934 −22.281

3.3 2.011 −29.883 5.3 1.912 −16.238 7.3 1.892 −15.840

3.4 1.947 −21.044 5.4 1.872 −20.496 7.4 1.863 −16.416

(1.17)

With the notation we have now established, we may state

Theorem 1.5. Suppose that a, y, x0, m0 and � are integers with m0 odd and positive and
a, y and x0 positive, y not a square, satisfying

x2
0 + � = a2 ym0 ≥ 2|�|.

Further, suppose that there exists a real number α ≥ 3/2 such that χ1 > 1. If s is a given
positive integer, then, if p ∈ Z and q = yk, for k a nonnegative integer with k ≥ m2−1

2 ,
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we have ∣∣∣∣√y − p

sq

∣∣∣∣ > c2q−λ1 ,

where

c2 = d1(α)

4s(α + 1) aym0/2
χ

− (4α−2)m1+1
(2α−2)m1

3

and

λ1 = log χ3

(α − 1)m1 log y
.

Here, we may either take c1(α) = d1(α) = 1, or, for α in Table (1.17), the values stated.

In both Theorems 1.3 and 1.5, the restriction to α ≥ 3/2 is unimportant. With suitable
changes to c2, we may in fact suppose that α ≥ α0, for any fixed α0 > 1. Again, we can
apply this result to obtain explicit bounds for numerous small values of y. With sufficient
computation, we can derive nontrivial bounds for any y with λ(y) < 2 in Theorem 1.3. For
technical reasons, however, we omit the case y = 89, treated in Corollary 1.4.

Corollary 1.6. If y is a positive integer in the table below, then, if p ∈ Z and q = yk, for
some integer k > 2, with

(y, k) /∈ {(2, 3), (2, 7), (2, 8), (3, 7)},
we have ∣∣∣∣√y − p

q

∣∣∣∣ > q−λ2(y),

where λ2(y) is as follows:

y λ2(y) y λ2(y) y λ2(y) y λ2(y) y λ2(y) y λ2(y)

2 1.48 21 1.67 38 1.72 53 1.51 69 1.73 83 1.55

3 1.65 23 1.45 40 1.55 54 1.29 70 1.75 84 1.46

5 1.36 24 1.64 42 1.61 55 1.39 72 1.58 85 1.43

6 1.46 26 1.97 43 1.91 56 1.76 73 1.51 87 1.89

10 1.99 28 1.64 44 1.68 57 1.76 74 1.69 90 1.98

12 1.65 29 1.60 45 1.53 58 1.66 75 1.91 91 1.82

13 1.53 30 1.91 46 1.21 60 1.47 76 1.27 92 1.58

14 1.84 31 1.70 47 1.66 62 1.58 77 1.44 93 1.73

17 1.94 33 1.73 48 1.63 63 1.76 78 1.70 95 1.95

18 1.87 34 1.74 50 1.81 65 1.76 79 1.56 96 1.41

19 1.87 35 1.87 51 1.65 66 1.57 80 1.72 98 1.54

20 1.67 37 1.55 52 1.81 68 1.46 82 1.71 99 1.69

(1.18)
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1.2. Diophantine equations

An almost immediate consequence of the preceding result is the following generalization
and sharpening of Corollary 1.2.

Corollary 1.7. Suppose that y and λ2(y) are as in (1.18) and that D is a nonzero integer.
If x and n > 1 are positive integers for which

x2 + D = yn,

then we may conclude that

n <
2

2 − λ2(y)

log |D|
log y

,

unless

(y, n, D) ∈ {(2, 3, −1), (2, 15, 7), (5, 3, 4), (5, 5, −11), (23, 5, −26)

(40, 3, −9), (46, 3, −8), (55, 5, 19), (76, 5, 60)}.

For arbitrary values of y, we may not be able to immediately apply Theorem 1.3 to obtain
nontrivial bounds (this is apparently the case, for instance, when y = 7). On the other hand,
in conjunction with certain “gap principles”, we can still use such techniques to derive sharp
bounds on the number of solutions to generalized Ramanujan-Nagell equations, rather than
upon their size. In what follows, we restrict our attention to equations of the shape

x2 − D = yn (1.19)

where we will take y to be an odd rational prime and D a nonzero integer. The case y = 2
has been admirably treated by Beukers [10] and Le [21, 23], culminating in the following

Theorem 1.8 (Beukers, Le). Let D be an odd, positive integer. Then the equation

x2 + D = 2n

has at most one solution in positive integer x and n, unless D = 7, 23 or 2k − 1 for some
k ≥ 4. The solutions in these exceptional cases are given by
(1) D = 7, (x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15)
(2) D = 23, (x, n) = (3, 5), (45, 11)
(3) D = 2k − 1(k ≥ 4), (x, n) = (1, k), (2k−1 − 1, 2k − 2).
Further, the equation

x2 − D = 2n

has at most three solutions in positive integers x and n, unless D = 22m − 3 · 2m+1 + 1 for
m ≥ 3 an integer. In these cases, this equation has four positive solutions, given by

(x, n) = (2m − 3, 3), (2m − 1, m + 2), (2m + 1, m + 3) and (3 · 2m − 1, 2m + 3).
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If we take D in (1.19) to be a negative integer and y a rational prime, then, as noted by
Beukers [9], distinct solutions in positive integer x and n to (1.19) correspond to integers
m > 1 for which

λm − λ̄m

λ − λ̄
= ±1,

where λ is an integer in Q(
√

D). Recent work on primitive divisors of Lucas-Lehmer
numbers by Bilu et al. [12] almost immediately implies the following

Theorem 1.9 (Apéry [1], Bugeaud and Shorey [13]). Let D be a positive integer and p be
an odd prime, not dividing D. Then the Diophantine equation

x2 + D = pn

has at most one solution in positive integers x and n, unless (p, D) = (3, 2) or (p, D) =
(4a2 + 1, 3a2 + 1) for some a ∈ N. In these cases, there are precisely two such solutions.

If, however, D > 0, it appears to be somewhat more difficult to derive a sharp bound for
the number of solutions to Eq. (1.19). In 1981, Beukers [11] proved

Theorem 1.10. Let D be a positive integer and p be an odd prime, not dividing D. Then
the Diophantine equation

x2 − D = pn

has at most four solutions in positive integers x and n.

Subsequently, Le [19, 29] (see Yuan [47] for a correction and improvement) showed that
the number of such solutions is, in fact, at most three, provided max{p, D} exceeds some
effectively computable constant. By combining Theorem 1.5 with lower bounds for linear
forms in logarithms of algebraic numbers, we may prove

Theorem 1.11. Let D be a positive integer and p be an odd prime, not dividing D. Then
the Diophantine equation

x2 − D = pn

has at most three solutions in positive integers x and n.

We note that this last result is sharp. Indeed, take either

(p, D) =
(

3,

(
3m + 1

4

)2

− 3m

)
or

(p, D) =
(

4a2 + 1,

(
pm − 1

4a

)2

− pm

)
,
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where a and m are positive integers with m > 1 (and, if p = 3, m odd). It is then easy to
check that we have three solutions in positive integers x and n to the equation x2 − D = pn ,
given by

(x1, n1) =
(

3m − 7

4
, 1

)
, (x2, n2) =

(
3m + 1

4
, m

)

and

(x3, n3) =
(

2 · 3m − 3m + 1

4
, 2m + 1

)
,

if p = 3, or

(x1, n1) =
(

pm − 1

4a
− 2a, 1

)
, (x2, n2) =

(
pm − 1

4a
, m

)

and

(x3, n3) =
(

2apm + pm − 1

4a
, 2m + 1

)
,

if p = 4a2 + 1. For future reference, we will refer to these (p, D) as exceptional pairs. It
would be of some interest to know if there are coprime pairs (p, D) which are nonexcep-
tional, for which the equation x2 − D = pn has three positive solutions.

Before we proceed further, let us note that the p-adic version of Roth’s theorem (see e.g.
Ridout [39]) immediately implies, for y a nonsquare positive integer and ε > 0, that∣∣∣∣√y − p

q

∣∣∣∣ > q−1−ε,

provided q = yk for k sufficiently large. This result is, however, ineffective, in that it is not
possible to quantify the term “sufficiently large”. Our bounds are, while weaker and less
general, completely explicit. Additionally, we would like to comment that the techniques
developed in this paper are applicable to Diophantine equations of the shape (1.19) with
composite values of y. We omit such results, however, as consideration of y composite
introduces some additional complications (but see [15, 31] and [46]).

The layout of this paper is as follows. In Section 2, we introduce the rational function
approximations which lie at the heart of our method. In Sections 3 and 4, we derive up-
per bounds upon the Archimedean valuations of our approximations. Sections 5–7 are all
devoted to studying the analogous non-Archimedean valuations. In the first two of these
sections, we show that these evaluations are closely related to the function c(α) defined in
(1.7). In Section 7, we find explicit lower bounds for a certain approximation to c(α), while,
in Section 8, we collect the ingredients from the previous sections and use them to prove
Theorems 1.3 and 1.5. Corollaries 1.4 and 1.6 are proven in Section 9.

Those readers primarily interested in applications to Diophantine problems may wish
to skip to Sections 10 and 11, within which we present the proofs of Corollary 1.7 and
Theorem 1.11, respectively.
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2. Padé approximants to (1 − z)1/2

To prove the results stated in the previous section, we will begin by constructing what is
essentially the Padé table for (1 − z)1/2. Our argument will closely follow that of Beukers
[10], though we will derive our Padé approximants via consideration of contour integrals,
rather than as special cases of the hypergeometric function. These representations have the
advantage of being especially easy to estimate by, say, the saddle-point method. Let us define

In1,n2(x) = 1

2πi

∫
γ

(1 − zx)n2(1 − zx)1/2

zn1+1(1 − z)n2+1
dz

where n1 and n2 are positive integers, γ is a closed, counter-clockwise contour enclosing
z = 0 and z = 1, and |x | < 1. Cauchy’s theorem implies that

In1,n2(x) = Pn1,n2(x) − (1 − x)1/2 Qn1,n2(x) (2.1)

where Pn1,n2(x) and Qn1,n2(x) are polynomials with rational coefficients and degrees n1

and n2, respectively. In fact, calculating the relevant residues, we find that

Pn1,n2(x) =
n1∑

k=0

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
(−x)k (2.2)

and

Qn1,n2(x) =
n2∑

k=0

(
n2 − 1/2

k

)(
n1 + n2 − k

n2

)
(−x)k . (2.3)

While it is not difficult to show that In1,n2(x) has a zero of multiplicity n1 +n2 +1 at x = 0,
we will not explictly use this fact. In the next three sections, we will derive archimedean
estimates for |In1,n2(x)| and |Pn1,n2(x)|, and discuss the p-adic valuations of the coefficients
of the polynomials Pn1,n2(x) and Qn1,n2(x). As is typical of this approach, this last problem
is by far the most difficult. For analogous work on analytic and arithmetic properties of
Padé approximants to (1 − z)ν where ν is rational, the reader is directed to the papers of
Chudnovsky [16] and the second author [6–8]. In the situation where the approximants are
far from diagonal (i.e. n2/n1 is large), it does not appear that full arithmetic information is
available in the literature.

3. Bounding |Pn1,n2 (x)|

In this section, we will obtain an upper bound for |Pn1,n2(x)|, under some minor restrictions.
We use a straightforward application of the saddle-point method to prove

Lemma 3.1. Suppose that x is a real number with |x | ≤ 1/2 and n1 and n2 are positive
integers such that there exists a real number α ≥ 3/2 with

0 ≤ αn1 − n2 < 2(α − 1). (3.1)
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It follows that ∣∣Pn1,n2(x)
∣∣ < 2(α + 1) F(r(α, x), α, x)n1 ,

where F(z, α, x) and r(α, x) are as defined in (1.2) and (1.3).

Proof: First, note that if 0 < r < 1, we may write

Pn1,n2(x) = 1

2π i

∫
�

(1 − zx)n2(1 − zx)1/2

zn1+1(1 − z)n2+1
dz

where � is defined by |z| = r , oriented positively. Writing z = reiθ , we have that

∣∣Pn1,n2(x)
∣∣ ≤ 1

2π

∫ 2π

0

∣∣∣∣ (1 − zx)n2(1 − zx)1/2

zn1+1(1 − z)n2+1

∣∣∣∣ dθ

and so

∣∣Pn1,n2(x)
∣∣ ≤ 1

rn1+1
max

0≤θ≤2π

∣∣∣∣ (1 − reiθ x)n2+1/2

(1 − reiθ )n2+1

∣∣∣∣.
Since |x | < 1 and 0 < r < 1, both |1 − reiθ | and | 1−reiθ

1−reiθ x | are increasing functions of θ on
the interval [0, π ] (and hence minimal at θ = 0), whereby

∣∣Pn1,n2(x)
∣∣ ≤

√
1 − rx

rn1+1(1 − r)

(
1 − rx

1 − r

)n2

.

Let us now choose r = r(α, x), as defined in Section 1. We claim that 0 < r(α, x) < 1.
In fact, by a routine application of the mean value theorem, we have

1

1 + α
< r(α, x) <

1

(1 − x)(1 + α)
, if 0 < x < 1,

and

1

(1 − x)(1 + α)
< r(α, x) <

1

α + 1
, if −1 < x < 0.

We may also show that

0.6
α + 1

ex−1
< F(r(α, x), α, x) <

α + 1

ex−1
, (3.2)

where the minimal value for ex−1 F(r(α,x),α,x)

α+1 , with |x | ≤ 1/2 and α ≥ 3/2, is obtained for
x = −1/2 and α = 3/2. Further, it is an easy exercise in calculus to deduce the inequality

√
1 − r(α, x)x

r(α, x)(1 − r(α, x))
< 2(α + 1)
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for all x and α with |x | ≤ 1/2 and α ≥ 3/2. Since n2 ≤ αn1, we reach the desired
conclusion. ✷

4. Bounding |In1,n2 (x)|

To bound |In1,n2(x)|, as in the analogous situation in [6], we cannot directly apply the
saddle-point method, since the second root of F(z, α, x) corresponds to a point on a branch
cut of (1 − zx)1/2. We may nonetheless prove the following

Lemma 4.1. Suppose that x is a real number with |x | ≤ 1/2 and n1 and n2 are posi-
tive integers. If there exists a real number α satisfying α ≥ 3/2 and Eq. (3.1), it follows
that ∣∣In1,n2(x)

∣∣ < (α + 1)2|x |3−2α
(|x |−(α+1) F(r(α, x), α, x)

)−n1
,

where F(z, α, x) and r(α, x) are as defined in (1.2) and (1.3).

Proof: Let us assume that x ∈ R with |x | ≤ 1/2. Following the arguments of [6], we
make the change of variables 1 − zx → −w in the contour integral representation for
In1,n2(x) to find that

In1,n2(x) = −xn1+n2+1

2π

∫
γ ′

wn2w1/2

(1 + w)n1+1(1 + w − x)n2+1
dw (4.1)

where γ ′ = γ1 + γ2 + γ3 + γ4 is a contour containing the poles of the integrand of (4.1)
while avoiding a branch cut along the nonnegative real axis (see Fig. 1).

Figure 1. The contour γ ′.
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Since∣∣∣∣
∫

γl

wn2w1/2dw

(1 + w)n1+1(1 + w − x)n2+1

∣∣∣∣ ≤
∫ 2π

0

∣∣∣∣ wn2w1/2

(1 + w)n1+1(1 + w − x)n2+1

∣∣∣∣ dθ,

for l = 2 or 4, (where w = Reiθ or reiθ respectively) we have that the contribution to (4.1)
associated with the arcs γ2 and γ4 becomes negligible as r → 0 and R → ∞. Therefore,
from

wn2w1/2

(1 + w)n1+1(1 + w − x)n2+1
=




un2+1/2

(1 + u)n1+1(1 + u − x)n2+1
on γ1

−un2+1/2

(1 + u)n1+1(1 + u − x)n2+1
on γ3,

we may conclude, letting r → 0 and R → ∞, that

∣∣In1,n2(x)
∣∣ = |x |n1+n2+1

π

∫ ∞

0

un2+1/2 du

(1 + u)n1+1(1 + u − x)n2+1
.

To estimate this, we make the change of variables u → v
1−v

, so that

∣∣In1,n2(x)
∣∣ = |x |n1+n2+1

π

∫ 1

0

vn2+1/2(1 − v)n1−1/2 dv

(1 − (1 − v)x)n2+1
. (4.2)

Suppose first that n1 = 1. Then, from (4.2), we have

∣∣I1,n2(x)
∣∣ <

|x |n2+2

π
max

v∈(0,1)

(
v1/2(1 − v)1/2

1 − (1 − v)x

)(
max

v∈(0,1)

(
v

1 − (1 − v)x

))n2

.

The function

v1/2(1 − v)1/2

1 − (1 − v)x

is maximal on (0, 1) for v = 1−x
2−x and substituting this value for v yields a function of x ,

increasing on [−1/2, 1/2], whereby

max
v∈(0,1)

(
v1/2(1 − v)1/2

1 − (1 − v)x

)
≤ 1√

2
.

Since v
1−(1−v)x is monotone increasing in v, on the interval (0, 1), we thus have that

∣∣I1,n2(x)
∣∣ <

1√
2π

|x |n2+2. (4.3)
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Next suppose that n1 ≥ 2. If we write

τ = αn1 − n2

2(α − 1)
,

so that, from (3.1), 0 ≤ τ < 1, and set

β = (2 − 2τ) α + 2τ + 1/2,

then the integrand in (4.2) becomes

vβ(1 − v)3/2

(1 − (1 − v)x)β+1/2

(
vα(1 − v)

(1 − (1 − v)x)α

)n1−2

.

Since x ≤ 1/2, we have that

vβ(1 − v)3/2

(1 − (1 − v)x)β+1/2
≤ vβ(1 − v)3/2(

1
2 (1 + v)

)β+1/2 .

By calculus, the latter quantity is maximal on (0, 1) for

v = 1

2
(
√

β2 + 8β + 4 − (β + 2)).

Substituting this value for v in

vβ(1 − v)3/2(
1
2 (1 + v)

)β+1/2 ,

and noting that the resulting expression is a decreasing function of β for

5/2 ≤ β ≤ 2α + 1/2,

it follows that

vβ(1 − v)3/2

(1 − (1 − v)x)β+1/2
≤ 4

27
.

We conclude, then, if n1 ≥ 2, that

∣∣In1,n2(x)
∣∣ <

4

27π
|x |n1+n2+1

∫ 1

0
F(z, α, x)2−n1 dz,

where F(z, α, x) is as in (1.2). We therefore have∣∣In1,n2(x)
∣∣ <

4

27π
|x |n1+n2+1 F(r(α, x), α, x)2−n1 ,

whereby, by (3.1) and (3.2),∣∣In1,n2(x)
∣∣ <

4

27π
|x |3−2α(α + 1)2e2(1−x)

(|x |−(1+α)F(r(α, x), α, x)
)−n1

.

From |x | ≤ 1/2, it follows that∣∣In1,n2(x)
∣∣ < (α + 1)2|x |3−2α

(|x |−(1+α)F(r(α, x), α, x)
)−n1

,
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provided n1 ≥ 2. From (3.2), (4.3) and α ≥ 3/2, the above inequality also holds if n1 = 1,
completing the proof of our lemma. ✷

5. Arithmetic properties of our coefficients

In this section, we will study common factors of the numerators of the (rational) coefficients
of Pn1,n2(x) and Qn1,n2(x). With this in mind, let us define

�(n1, n2) = gcd{�1(n1, n2), �2(n1, n2)},

where �1(n1, n2) denotes the greatest common divisor of the numerators of the coefficients
of Pn1,n2(x) and �2(n1, n2) is the greatest common divisor of the numerators of the coeffi-
cients of Qn1,n2(x). Our aim will be to show that log �(n1, n2) grows exponentially in n1,
where the exact order of growth depends on the ratio n2/n1. We will derive both asymptotic
results and also explicit lower bounds for �(n1, n2). The latter will find greater application
to specific Diophantine problems. We have

Proposition 5.1. Suppose that α > 1 is a given real number and that n1 and n2 are positive
integers such that

0 ≤ αn1 − n2 < 2(α − 1).

Then

lim
n1→∞

1

n1
log �(n1, n2) = log c(α),

where c(α) is as defined in (1.7).

Also

Proposition 5.2. If α > 1 is real and n1 and n2 are positive integers such that

0 ≤ αn1 − n2 < 2(α − 1),

then

�(n1, n2) ≥ d1(α)c1(α)n1 ,

where we may take either c1(α) = d1(α) = 1, or, for the values of α represented in
Table (1.17), c1(α) and d1(α) as given in that table.

Throughout, we will denote by [x] the greatest integer not exceeding a real number x
and set {x} = x − [x] (so that 0 ≤ {x} < 1). Here as before, if a is an integer, we define
ordp(a) to be the highest power of a prime p which divides a and, if r = a/b is rational, we
take ordp(a/b) = ordp(a) − ordp(b). The following lemma provides a useful description
of the “large” primes that divide �(n1, n2):
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Lemma 5.3. Suppose that p is an odd prime, not dividing n1n2, with p2 > 2n2 + 2 and{
ni − 1

p

}
>

1

2
for i = 1 and 2.

Then

ord p

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
≥ 1 for 0 ≤ k ≤ n1

and

ord p

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)
≥ 1 for 0 ≤ k ≤ n2.

Proof: We begin by noting that {
ni − 1

p

}
>

1

2

p odd, and p relatively prime to n1n2 implies that{
ni

p

}
≥ p + 3

2p
. (5.1)

If k = 0, then

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
=

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)
=

(
n1 + n2

n1

)

and, since n1 < n2, if p2 > 2n2, we have

ordp

(
n1 + n2

n1

)
=

{
n1

p

}
+

{
n2

p

}
−

{
n1 + n2

p

}
.

It follows that ordp(
n1+n2

n1
) ≥ 1 if and only if { n1

p } + { n2
p } ≥ 1. The result therefore follows

from (5.1). Similarly, if k = 1, then

ordp

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
≥ 1

follows from {
n1 − 1

p

}
+

{
n2

p

}
≥ 1
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while

ordp

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)
≥ 1

is a consequence of {
n1

p

}
+

{
n2 − 1

p

}
≥ 1.

Let us next suppose that k ≥ 2. From Lemma 4.5 of Chudnovsky [16], if n ∈ N and p2 >

2n + 2, we have

ordp

(
n + 1/2

k

)
=

[
n + 1 − q

p

]
−

[
n + 1 − q − k

p

]
−

[
k

p

]

where q = (p − 1)/2. It follows that

ordp

(
n2 + 1/2

k

)
=

{
n2 + 1 − q − k

p

}
+

{
k

p

}
−

{
n2 + 1 − q

p

}
(5.2)

and

ordp

(
n1 + n2 − k

n2

)
=

{
n2

p

}
+

{
n1 − k

p

}
−

{
n1 + n2 − k

p

}
. (5.3)

Suppose now that ordp(
n2 + 1/2

k )( n1 + n2 − k
n2

) = 0. From (5.2), we have{
n2 + 1 − q

p

}
≥

{
k

p

}
.

This, with (5.1), implies that{
n2 + 1 − q

p

}
=

{
n2

p

}
− p − 3

2p
≥

{
k

p

}
. (5.4)

On the other hand, ordp(
n1+n2−k

n2
) = 0 together with (5.3) yields{

n2

p

}
+

{
n1 − k

p

}
< 1. (5.5)

If {
n1 − k

p

}
=

{
n1

p

}
−

{
k

p

}
+ 1,

then {
n1

p

}
+

{
n2

p

}
<

{
k

p

}
,
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contradicting (5.1). It therefore follows from (5.4) and (5.5) that{
n1

p

}
+

{
n2

p

}
< 1 +

{
k

p

}
≤ 1 +

{
n2

p

}
− p − 3

2p
,

whence {
n1

p

}
<

p + 3

2p
,

contradicting (5.1). Similarly,

ordp

(
n1 − 1/2

k

)
=

{
n1 − q − k

p

}
+

{
k

p

}
−

{
n1 − q

p

}
(5.6)

and

ordp

(
n1 + n2 − k

n1

)
=

{
n1

p

}
+

{
n2 − k

p

}
−

{
n1 + n2 − k

p

}
(5.7)

and so ordp(
n1−1/2

k )( n1+n2−k
n1

) = 0, (5.6) and (5.7) imply that

{
n1 − q

p

}
=

{
n1

p

}
− p − 1

2p
≥

{
k

p

}

and {
n1

p

}
+

{
n2 − k

p

}
=

{
n1

p

}
+

{
n2

p

}
−

{
k

p

}
< 1.

Combining these, we find that {
n2

p

}
<

p + 1

2p
,

again contradicting (5.1). This completes the proof of Lemma 5.3. ✷

We will apply this lemma to approximate �(n1, n2); indeed, as the contribution of “small”
primes to �(n1, n2) is, in some sense, negligible, it is the key result in the proofs of
Propositions 5.1 and 5.2. Note that if we define S(n1, n2) to be the set of rational primes p
satisfying p2 > 2n2 + 2, gcd(p, n1n2) = 1,{

n1 − 1

p

}
>

1

2
and

{
n2 − 1

p

}
>

1

2
,

then Lemma 5.3 immediately yields the inequality

�(n1, n2) ≥
∏

p∈S(n1,n2)

p. (5.8)
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6. Asymptotics for Π(n1, n2)

In this section, we will prove Proposition 5.1. Let α be a positive real number and define

ϒα(n) = 1

n

∑
p

log p,

where the sum is over primes p satisfying{
n

p

}
>

1

2
,

{
αn

p

}
>

1

2
and p2 > 2αn + 2.

We note that exp(ϒα(n)) is approximately equal to �(n, [αn]), an observation which we
will make more precise later. It is relatively easy to describe the asymptotic behavior of
ϒα(n). We have

Lemma 6.1. Let α > 1 be a real number. If c(α) is as defined in (1.7), then

lim
n→∞ϒα(n) = log c(α).

Proof: Let α > 1 be a real number, n a positive integer and p a rational prime such that{
n

p

}
>

1

2
and

{
αn

p

}
>

1

2
.

It is readily seen that these two conditions hold simultaneously, precisely when

p ∈
(

n

i
,

2n

2i − 1

)
∩

(
αn

j
,

2αn

2 j − 1

)
, (6.1)

for some positive integers i and j . To determine how these intervals intersect, we consider
three cases, depending on whether(

n

i
,

2n

2i − 1

)
∩

(
αn

j
,

2αn

2 j − 1

)
=

(
αn

j
,

2αn

2 j − 1

)
, (6.2)(

n

i
,

2n

2i − 1

)
∩

(
αn

j
,

2αn

2 j − 1

)
=

(
n

i
,

2αn

2 j − 1

)
(6.3)

or (
n

i
,

2n

2i − 1

)
∩

(
αn

j
,

2αn

2 j − 1

)
=

(
αn

j
,

2n

2i − 1

)
. (6.4)

We note, since α > 1, that we can never have an interval of the form ( n
i , 2n

2i−1) contained
within (αn

j , 2αn
2 j−1). In case (6.2), we find that

n

i
≤ αn

j
and

2n

2i − 1
≥ 2αn

2 j − 1
,
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whereby, fixing i , it follows that

j ∈
[

iα − α − 1

2
, iα

]
. (6.5)

Similarly, if we have (6.3), but not (6.2), then

j ∈
(

iα, iα + 1

2

)
, (6.6)

while (6.4) without (6.2) implies

j ∈
(

iα − α

2
, iα − α − 1

2

)
. (6.7)

Let S1 = ∑
p log p, where the summation is over primes p satisfying (6.1) and p2 >

2αn + 2, with i and j ranging over positive integers constrained by (6.5). In order to obtain
a lower bound for S1, we note, from (6.1), that

i <
n√

2αn + 2
⇒ j <

αn√
2αn + 2

⇒ p2 > 2αn + 2,

and hence

S1 ≥
∑

i< n√
2αn+2

∑
iα− α−1

2 ≤ j≤iα

(
θ

(
2αn

2 j − 1

)
− θ

(
αn

j

)
− log

(
2αn

2 j − 1

))
,

where

θ(x) =
∑
p≤x

log p,

with the summation taken over primes. Here, the term log( 2αn
2 j−1 ) is included to account for

the possibility that 2αn
2 j−1 is prime. Using the asymptotic formula

θ(x) = x + O
(
xe−c(log x)1/2)

,

for some positive constant c, as x → ∞ (see e.g. [40]), it is straightforward to show that

S1 ≥ n
∑

i< n√
2αn+2

∑
j∈

[iα− α−1
2 ,iα]

(
2α

2 j − 1
− α

j

)
+ R1(n),

for c′ > 0 and

R1(n) = O

(
n(log n)1/2

exp(c′(log n)1/2)

)
,

where the implicit constant depends only on α. Note that the terms of the form log( 2αn
2 j−1 )

contribute, in total, at most O(
√

n log n). To derive an upper bound for S1, we note
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that

p2 > 2αn + 2 ⇒ j <
αn√

2αn + 2
+ 1

2
⇒ i <

n√
2αn + 2

+ 1

2
,

which implies the inequality

S1 ≤
∑

i< n√
2αn+2

+ 1
2

∑
iα− α−1

2 ≤ j≤iα

(
θ

(
2αn

2 j − 1

)
− θ

(
αn

j

))
.

Arguing as before, we obtain an upper bound of the form

S1 ≤ n
∑

i< n√
2αn+2

+ 1
2

∑
iα− α−1

2 ≤ j≤iα

(
2α

2 j − 1
− α

j

)
+ R2(n),

where

R2(n) = O

(
n(log n)1/2

exp(c′(log n)1/2)

)
.

Letting n tend to infinity, we see that

lim
n→∞

1

n
S1 = S1(α),

for S1(α) as in (1.4). Now, defining in an analogous fashion S2 = ∑
p log p and S3 =∑

p log p, where the primes in question satisfy (6.1) and p2 > 2αn + 2, with i and j as in
(6.6) or (6.7), respectively, we find that

lim
n→∞

1

n
S2 = S2(α)

and

lim
n→∞

1

n
S3 = S3(α).

Here, S2(α) and S3(α) are as in (1.5) and (1.6). Since

ϒα(n) = S1 + S2 + S3

n
,

this completes the proof of the lemma. ✷

While definition (1.7) makes it possible to obtain numerical approximations to c(α) of
arbitrary precision, in case α is rational, however, we may derive a different formula which
is more suitable for computations. This takes the form of a summation over terms involving
ψ(x), the derivative of the logarithm of the gamma function �(x). In the following, we let
�x� denote the greatest integer ≤x and �x� the least integer ≥x .
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Lemma 6.2. Let α = b/a where a and b are positive, coprime integers, with b > a (so
that α > 1). If we define

R1,i (α) =
�2ib/a�−1∑

j=�(2i−1)b/a�+1

(−1) jψ

(
j

2b

)
,

R2,i (α) =

−ψ

(
2i − 1

2a

)
if �(2i − 1)b/a� is odd

0 otherwise

and

R3,i (α) =

ψ

(
i

a

)
if �2ib/a� is even

0 otherwise,

then

log c(α) = 1

a

a∑
i=1

(R1,i (α) + R2,i (α) + R3,i (α)).

Proof: As mentioned in the previous proof, it is possible to express log c(α) as the measure
of the set ( ∞⋃

i=1

(
1

i
,

2

2i − 1

)) ⋂ ( ∞⋃
j=1

(
α

j
,

2α

2 j − 1

))
.

Consequently, a log c(α) is equal to the sum of the lengths of the intervals in

I =
( ∞⋃

i=1

(
a

i
,

2a

2i − 1

)) ⋂ ( ∞⋃
j=1

(
b

j
,

2b

2 j − 1

))
.

As in the proof of Lemma 6.1, there are three distinct possibilities for the intervals that are
contained in this set, corresponding to the existence of positive integers i and j with

j ∈
(

b

a
(i − 1/2) + 1/2,

bi

a

)
,

j ∈
(

b

a
(i − 1/2),

b

a
(i − 1/2) + 1/2

)

or

j ∈
[

b

a
i,

b

a
i + 1/2

)
,

respectively. Here, for convenience, we have partitioned the values of j slightly differently
than in (6.5), (6.6) and (6.7). We thus have

I =
∞⋃

i=1

(I1,i ∪ I2,i ∪ I3,i ),
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where we define

I1,i =
⋃

j∈( b
a (i−1/2)+1/2, bi

a )

(
b

j
,

2b

2 j − 1

)
,

I2,i =
⋃

j∈( b
a (i−1/2), b

a (i−1/2)+1/2]

(
b

j
,

2a

2i − 1

)

and

I3,i =
⋃

j∈[ b
a i, b

a i+1/2)

(
a

i
,

2b

2 j − 1

)
.

Note that I2,i and I3,i each contain at most a single interval. Fixing i ∈ [1, a], if

j ∈
(

b

a
(i − 1/2) + 1/2,

bi

a

)
,

then, similarly,

j + bk ∈
(

b

a
(i + ak − 1/2) + 1/2,

b(i + ak)

a

)
for every integer k. This reduces the problem of characterizing the sets I1,i to a matter of
determining them for each residue class modulo a. We may therefore write

I =
a⋃

i=1

(J1,i ∪ J2,i ∪ J3,i ),

where

J1,i =
⋃

j∈( b
a (i−1/2)+1/2, bi

a )

∞⋃
k=0

(
b

j + bk
,

2b

2 j + 2bk − 1

)
,

J2,i =
⋃

j∈( b
a (i−1/2), b

a (i−1/2)+1/2]

∞⋃
k=0

(
b

j
,

2a

2i − 1

)

and

J3,i =
⋃

j∈[ b
a i, b

a i+1/2)

∞⋃
k=0

(
a

i
,

2b

2 j − 1

)
,

in all cases for 1 ≤ i ≤ a. Since these are disjoint sets, we may compute their measures
independently:

|J1,i | =
∑

j∈( b
a (i−1/2)+1/2, bi

a )

∞∑
k=0

(
2b

2 j + 2bk − 1
− b

j + bk

)
,

|J2,i | =
∑

j∈( b
a (i−1/2), b

a (i−1/2)+1/2]

∞∑
k=0

(
2a

2i + 2ak − 1
− b

j + bk

)
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and

|J3,i | =
∑

j∈[ b
a i, b

a i+1/2)

∞∑
k=0

(
2b

2 j + 2bk − 1
− a

i + ak

)
.

From the following well known formula for ψ(x), valid for x > 0,

ψ(x) = −γ − 1

x
+

∞∑
i=1

(
1

i
− 1

i + x

)
,

we have

ψ

(
j

b

)
− ψ

(
2 j − 1

2b

)
=

∞∑
k=0

(
2b

2 j + 2bk − 1
− b

j + bk

)
,

which is precisely the inner sum appearing in |J1,i |. Applying the same argument to the
summations in |J2,i | and |J3,i |, we find that

|J1,i | =
∑

j∈( b
a (i−1/2)+1/2, bi

a )

(
ψ

(
j

b

)
− ψ

(
2 j − 1

2b

))
,

|J2,i | =
∑

j∈( b
a (i−1/2), b

a (i−1/2)+1/2]

(
ψ

(
j

b

)
− ψ

(
2i − 1

2a

))

and

|J3,i | =
∑

j∈[ b
a i, b

a i+1/2)

(
ψ

(
i

a

)
− ψ

(
2 j − 1

2b

))
.

We next note that |J2,i | is not the empty sum exactly when there exists an integer in the
interval ( b

a (i − 1/2), b
a (i − 1/2) + 1/2], or, equivalently, if there is an even integer in the

interval ( b
a (2i − 1), b

a (2i − 1) + 1]. This is possible if and only if � b
a (2i − 1)� is odd. A

similar argument shows that |J3,i | is not the empty sum if and only if �2i b
a � is even. The term

ψ(
j
b ) occurs in one of the three sums precisely when j ∈ ( b

a (i − 1/2), b
a i) which implies

2 j ∈ ( b
a (2i − 1), b

a 2i). Finally, the term ψ(
2 j−1

2b ) occurs in one of the three sums just when
j ∈ ( b

a (i − 1/2) + 1/2, b
a i + 1/2), i.e. when 2 j − 1 ∈ ( b

a (2i − 1), b
a 2i). Using these facts,

we may manipulate the above summations to find that

|J1,i | + |J2,i | + |J3,i | = R1,i (α) + R2,i (α) + R3,i (α),

which completes the proof. ✷

In the event α is a rational with small denominator, the preceding lemma takes a
particularly simple form. By way of example, if α is an integer, say α = n ≥ 2, we
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have

R1,1(n) =
2n−1∑
j=n+1

(−1) jψ

(
j

2n

)
, R2,1(n) =




−ψ

(
1

2

)
if n is odd

0 otherwise

and R3,1(n) = ψ(1), whence a simple manipulation yields

log c(n) =
n∑

j=� n+1
2 �

(
ψ

(
j

n

)
− ψ

(
2 j − 1

2n

))
. (6.8)

Similarly, if a = 2 (and, say, b = 2n + 1), we may derive

2 log c

(
2n + 1

2

)
=

2n∑
j=n+1

(−1) jψ

(
j

4n + 2

)
+

4n+2∑
j=3n+2

(−1) jψ

(
j

4n + 2

)
− δ(n),

where

δ(n) =




ψ

(
3

4

)
if n is even

ψ

(
1

4

)
if n is odd.

We are now in a position to complete the proof of Proposition 5.1. Let α > 1 be real and
define �(α) to be the set of all (n1, n2) ∈ N2, such that

0 ≤ αn1 − n2 < 2(α − 1). (6.9)

Lemma 6.3. Let α ∈ Q with α > 1. Define

�(α) = lim
n1→∞

(n1,n2)∈�(α)

1

n1

∑
p∈S(n1,n2)

log p,

where S(n1, n2) is as defined previously. Then

�(α) = log c(α).

Proof: We begin by fixing α > 1 real, choosing (n1, n2) ∈ �(α) and setting α′ = n2−1
n1−1

(so that, from (6.9), we have |α − α′| ≤ α−1
n1−1 ). For a given p ∈ S(n1, n2), we know that p

lies in the intersection of intervals of the form(
n1 − 1

i
,

2(n1 − 1)

2i − 1

)
and

(
n2 − 1

j
,

2(n2 − 1)

2 j − 1

)
,
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for an appropriate choice of i and j . Similarly, the primes involved in the sum related to
ϒα(n1 − 1) lie in the intersection of intervals of the shape(

n1 − 1

i
,

2(n1 − 1)

2i − 1

)
and

(
α(n1 − 1)

j
,

2α(n1 − 1)

2 j − 1

)
,

again, with appropriate choices for i and j . We observe that any difference between the
primes involved in the two sums must correspond to the difference in the right hand intervals,
in addition to those primes which divide n1 and n2. It follows that we have∣∣∣∣∣(n1 − 1)ϒα′(n1 − 1) −

∑
p∈S(n1,n2)

log p

∣∣∣∣∣ ≤ �1 + �2 + log(n1n2),

where

�1 =
∑

j<
√

2αn1+2

∣∣∣∣θ
(

α(n1 − 1)

j

)
− θ

(
n2 − 1

j

)∣∣∣∣
and

�2 =
∑

j<
√

2αn1+2

∣∣∣∣θ
(

2α(n1 − 1)

2 j − 1

)
− θ

(
2(n2 − 1)

2 j − 1

)∣∣∣∣.
From the Prime Number Theorem, there exists a positive constant c for which

�1 ≤
∑

j<
√

2α+2

|α − α′|n1 − 1

j
+ O

(
n1 − 1

j
exp

(
−c

(
log

α(n1 − 1)

j

)1/2))
.

Since we have |α − α′| ≤ α−1
n1−1 , this is majorized by( ∑

j<
√

2αn1+2

α

j

)
+ o(n1)

and hence is itself o(n1). Arguing similarly for �2, we conclude that∣∣∣∣∣(n1 − 1)ϒα′(n1 − 1) −
∑
p∈S

log p

∣∣∣∣∣ = o(n1),

whereby ∣∣∣∣ϒα′(n1 − 1) −
∑

p∈S log p

n1

∣∣∣∣ = o(1).

Letting n tend to infinity and applying Lemma 6.1 yields the desired result. ✷

Combining Lemmata 5.3 and 6.3 leads, immediately, to Proposition 5.1.
Before we conclude this section, we would like to take the opportunity to mention a few

properties of the function c(α) defined in (1.7). Most of these are not strictly necessary for
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the proofs of our main results, but may be of independent interest and suggest the limitations
of our method. We summarize them in the following proposition.

Proposition 6.4.
(1) c(α) is a continuous function in α, for α > 0.
(2) If α ≥ 1, then

8

eπ/2
= c(2) ≤ c(α) ≤ c(1) = 4.

(3)

lim
α→∞ c(α) = 2.

The proof of the above proposition depends primarily upon Euler-McLaurin summation.
We note that one may, in fact, show that c(α) is uniformly continuous on the interval [r, ∞),
where r is any fixed positive real number. For our purposes, however, this is not of great
importance. If we plot the graph of c(α), there are a number of features which suggest
themselves:

It is tempting to hypothesize, for instance, that c(α) is monotone on the intervals between
integers. This is not the case, however, as is demonstrated by the fact that c(2.35) =
1.8257 . . . , c(2.36) = 1.8251 . . . and c(2.37) = 1.8255 . . . .

7. Lower bounds for Π(n1, n2)

In this section, we address the problem of constructing explicit lower bounds for �(n1, n2),
as per Proposition 5.2. We combine inequalities for primes in intervals due to Schoenfeld
[41] (sharpening Rosser and Schoenfeld [40]) with rather lengthy computations. We will
describe the latter in some detail.

Let α > 1 be a fixed rational number. If c1(α) > c(α), then Proposition 5.1 implies
the existence of a positive constant d1(α) such that for all (n1, n2) ∈ �(α), �(n1, n2) ≥
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d1(α)c1(α)n1 . The level of difficulty involved in computing d1(α) depends heavily upon
both the size of c(α)− c1(α) and upon α itself. For the values of α in (1.17), we will always
choose c(α) − c1(α) to be between 0.05 and 0.15. For certain α, we take c(α) − c1(α)

particularly small, with applications to Corollary 1.6 in mind.
Once α and c1(α) are chosen, we find the value of d1(α) in (1.17) in four basic stages.

Specifically, we define, for each α under consideration, positive integers Ni (α) for 1 ≤ i ≤ 3,
with

1 ≤ N1(α) < N2(α) < N3(α),

and separately treat the cases with n1 “small” (1 ≤ n1 < N1(α)), n1 “middling” (N1(α) ≤
n1 < N2(α)), n1 “large” (N2(α) ≤ n1 < N3(α)) and n1 “very large” (n1 ≥ N3(α)). In the
first of these situations, we will compute �(n1, n2) for all relevant pairs (n1, n2) ∈ �(α),
directly from the definition. If N1(α) ≤ n1 < N2(α) or N2(α) ≤ n1 < N3(α), we will
instead estimate �(n1, n2), using inequality (5.8). In the latter range, we will apply a
“bootstrapping” argument to enable us to calculate the set S(n1, n2) for only certain pairs
(n1, n2) in �(α). Finally, if n1 ≥ N3(α), we will utilize the aforementioned bounds for
primes in intervals.

We begin by considering this last case; this will reduce the problem to a finite computation.
If n1 is sufficiently large, say n1 ≥ N3(α), suitable upper and lower bounds for θ(x), due
to Schoenfeld [41] (extending those of Rosser and Schoenfeld [40]), enable us to derive a
good lower bound for �(n1, n2). Specifically, we apply lower bounds of the shape

θ(x) > x

(
1 − 1

c log x

)
,

valid for x ≥ d , where the values of c and d are given in Corollary 2∗ of [41], together with
the inequality

θ(x) < 1.000081x,

valid for all x > 0 (see the closing remarks of [41]). If we set α′ = n2−1
n1−1 , we can then

obtain a lower bound for ϒα′(n1 − 1) of the form c′n1 for some positive constant c′ by
approximating the sums S1, S2, and S3 defined in the proof of Lemma 6.1. Combining this
with the fact that

log �(n1, n2) ≥ ϒα′(n1 − 1) − ln(n1n2),

we arrive at a bound N3(α) such that for all n1 ≥ N3(α), �(n1, n2) ≥ c1(α)n1 . While
this reduces verifying Proposition 5.2, for a given value of α, to a finite computation, the
remaining problem is still non-trivial since the values of N3(α) that arise exceed 3 × 105.

For n1 small, say with 1 ≤ n1 < N1(α), where N1(α) is 1000 or less, we compute the
values of �(n1, n2) explicitly. In many cases, the pair (n1, n2) corresponding to d1(α) (i.e.
minimizing �(n1, n2)c1(α)−n1) has n1 in this range. Since �(n1, n2) is defined to be the
greatest common divisor of �1(n1, n2) and �2(n1, n2), we first compute these two values.
Each of these terms is itself a greatest common divisor, of the coefficients of Pn1,n2(x) and
Qn1,n2(x) respectively. Naively computing each of the binomial coefficients involved here
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would be taxing, even for values of n1 this small. However, we circumvent this by exploiting
the following identities.

(
n2 + 1/2

k

)
=

(
n2 + 1/2

k − 1

)(
n2 + 3/2 − k

k

)
(∗)

(
n1 + n2 − k

n2

)
=

(
n1 + n2 − k + 1

n2

)(
n1 − k + 1

n1 + n2 − k + 1

)
(∗)

(
n1 − 1/2

k

)
=

(
n1 − 1/2

k − 1

)(
n1 + 1/2 − k

k

)
(†)

(
n1 + n2 − k

n1

)
=

(
n1 + n2 − k + 1

n1

)(
n2 − k + 1

n1 + n2 − k + 1

)
(†)

To compute �1(n1, n2), we begin by setting

G1 =
(

n1 + n2

n1

)
and n = 1.

Using the two formulae labeled (∗), we can see that in general the next coefficient of
Pn1,n2(x) may be obtained by multiplying the previous one by

fk = (n1 − k + 1)(n2 + 3/2 − k)

(n1 + n2 − k + 1)k
.

If we write n fk = ak
bk

in reduced form, then we note that ak does not contribute to �1(n1, n2)

and bk diminishes it. Therefore, we set G1 equal to the numerator of G1/bk . Now, ak may
serve to reduce bk+1, so we set n := nak . Iterating this process until k equals n1, we obtain
the value for �1(n1, n2). We compute �2(n1, n2) using the same idea, except with an
analogous definition for fk , derived from equations (†). Explicitly evaluating

�(n1, n2) = gcd{�1(n1, n2), �2(n1, n2)}

for all n1 < N1(α), we set

d2(α) = min
(n1,n2)∈�(α)

n1<N1(α)

�(n1, n2)

c1(α)n1
.

As mentioned previously, in most cases under consideration, we have d1(α) = d2(α). If,
however, c1(α) is chosen particularly close to c(α), the value for d1(α) may come from a
pair (n1, n2) that is larger.

Once n1 exceeds N1(α), the above exhaustive computation becomes too burdensome.
Luckily, the asymptotic behavior of �(n1, n2) is starting to play a role, a fact we can
exploit. Given t ∈ N minimal such that t ≥ N1(α)(α − 1), if n1 is the smallest positive
integer such that n1 ≥ t

α−1 , setting n2 = n1 + t , we find that both (n1, n2) and (n1+1, n2+1)

are in the set �(α) (and, indeed, n1 ≥ N1(α) is minimal with this property in �(α)). Let
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r = n2−1
n1−1 and define

S′(n1, n2) =
�(n1−1)/

√
2n2+2�⋃

i=1

(I1,i ∪ I2,i ∪ I3,i ),

where

I1,i =
�ri�⋃

j=�r(i−1/2)+1/2�

(
n2 − 1

j
,

2(n2 − 1)

2 j − 1

)
,

I2,i =
(

n2 − 1

�r(i − 1/2) + 1/2� − 1
,

2(n1 − 1)

2i − 1

)

if

�r(i − 1/2) + 1� < �r(i − 1/2) + 1/2�
and the empty set otherwise, and

I3,i =
(

n1 − 1

i
,

2(n2 − 1)

2�ri� + 1

)
,

provided �ri� < �ri − 1/2�, and the empty set, if this inequality fails to be satisfied. Com-
paring definitions, it is easy to see that

S′(n1, n2) ⊆ S(n1, n2) ∪ {p prime : n1 n2 ≡ 0 (mod p)},
where S(n1, n2) is as defined before inequality (5.8). If we let P = ∏

p∈S′(n1,n2)
p, then

(5.8) implies that

�(n1, n2) ≥ P/gcd(P, n1 n2).

Furthermore, closer examination of the above definitions reveals that if

p ∈ S′(n1, n2), but p /∈ S′(n1 + 1, n2 + 1),

then, necessarily, p divides n1n2. It follows, additionally, that

�(n1 + 1, n2 + 1) ≥ P/gcd(P, n1n2(n1 + 1)(n2 + 2)).

We may therefore conclude, if

P

gcd(P, n1n2(n1 + 1)(n2 + 2))
≥ d1(α)c1(α)n1+1, (7.1)

that a like lower bound holds for �(n1, n2) and �(n1 +1, n2 +1). If (7.1) fails for (n1, n2),
we term (n1, n2) a potentially minimal pair. We repeat this computation for all n1 < N2(α),
which we usually take to be between 5000 and 10000. We then explicitly compute �(n1, n2)



240 BAUER AND BENNETT

and �(n1 +1, n2 +1) using the previous techniques, for all of the potentially minimal pairs,
and set

d3(α) = min
(n1,n2)∈�(α)

n1<N2(α)

�(n1, n2)

c1(α)n1
.

In all our cases, it turns out that d1(α) = d3(α); indeed our choices of N2(α) are made
so that this occurs. The following table lists the pairs (n1, n2) for each α that give us our
lower bound for d1(α), i.e. �(n1, n2) = d1(α)c1(α)n1 (the values for logd1(α) given in
Table (1.17) are rounded down to 3 decimal places).

α n1 n2 α n1 n2 α n1 n2

1.5 296 444 3.5 404 1411 5.5 362 1985

1.6 277 443 3.6 395 1421 5.6 353 1972

1.7 723 1229 3.7 379 1402 5.7 98 550

1.8 284 511 3.8 523 1983 5.8 95 550

1.9 398 756 3.9 509 1983 5.9 94 551

2.0 448 895 4.0 496 1983 6.0 201 1205

2.1 2360 4954 4.1 344 1405 6.1 92 552

2.2 372 818 4.2 473 1983 6.2 303 1870

2.3 3503 8055 4.3 331 1421 6.3 107 672

2.4 336 806 4.4 460 2024 6.4 190 1207

2.5 1912 4778 4.5 181 814 6.5 286 1855

2.6 535 1390 4.6 433 1985 6.6 283 1859

2.7 212 570 4.7 121 564 6.7 181 1209

2.8 507 1419 4.8 410 1965 6.8 252 1703

2.9 484 1403 4.9 401 1964 6.9 287 1972

3.0 456 1365 5.0 394 1965 7.0 2102 14706

3.1 190 586 5.1 386 1965 7.1 204 1445

3.2 174 554 5.2 378 1965 7.2 2045 14722

3.3 426 1405 5.3 105 552 7.3 608 4438

3.4 163 551 5.4 365 1965 7.4 600 4438

(7.2)

To complete our computation, we need to handle the “large” values of n1, between N2(α)

and N3(α). Here, we expect the asymptotics of �(n1, n2) to assert themselves. We employ
a technique used in Bennett [7] to reduce the remaining calculations. As in the previous
step, we begin by computing S′(n1, n2) with n1 and n2 minimal in �(α) with n1 ≥ N2(α).
For positive integers r1 and r2, we define an auxilliary set S′′(r1, r2) (where we suppress
dependence on n1 and n2) via

S′′(r1, r2) =
�(n1−1)/

√
2n2+2�⋃

i=1

(I ′
1,i ∪ I ′

2,i ∪ I ′
3,i ).
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Here, we set

I ′
1,i =

�ri�⋃
j=�r(i−1/2)+1/2�

(
n2 − 1

j
,

n2 − 1 + r2

j

]

and define

I ′
2,i =

(
n2 − 1

�r(i − 1/2) + 1� ,
2(n2 − 1 + r2)

2(�r(i − 1/2) + 1�) − 1

]
,

provided

�r(i − 1/2) + 1� < �r(i − 1/2) + 1/2�
and

I ′
3,i =

(
n1 − 1

i
,

n1 − 1 + r1

i

]
,

provided

�ri� < �ri − 1/2�.
In the latter two cases, we take I ′

2,i and I ′
3,i to be empty if the given inequalities are not

satisfied. From the definition of S′, we have that

S′(n1, n2)\S′′(r1, r2) ⊆ S′(n1 + r ′
1, n2 + r ′

2)

for any r ′
1 < r1 and r ′

2 < r2. This enables us to approximate the set

S′(n1 + r ′
1, n2 + r ′

2)

in terms of S′(n1, n2) and S′′(r1, r2). If we define P as before and set

Q =
∏

p∈S′′(r1,r2)

p,

then for any (n′
1, n′

2) ∈ �(α) such that 0 ≤ n′
1 − n1 < r1 and 0 ≤ n′

2 − n2 < r2, we have

�(n′
1, n′

2) ≥ P

Q(n1 + r1)(n2 + r2)
.

If the value on the right hand side is greater than d1(α)c1(α)n1+r1 , it follows that

�(n′
1, n′

2) ≥ d1(α)c1(α)n′
1

for all (n′
1, n′

2) in the given range. If we choose r1 and r2 to be as large as possible while
still making the above inequalities hold, this enables us to automatically verify the bound
on �(n1, n2) stated in Proposition 5.2 for each of the values (n′

1, n′
2) with 0 ≤ n′

1 −n1 < r1

and 0 ≤ n′
2 − n2 < r2. Since computing the set S′′ is much easier than computing S′,

this “bootstrapping technique” is computationally efficient. For our purposes, determining
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values of r1 and r2 that satisfy the above requirements is more or less a matter of trial and
error. Applying this approach for all n1 < N3(α) completes the proof of Proposition 5.2,
for the α under consideration. We note that we choose

N1(α) =




1000 if α ∈ {2.4, 2.5}
900 if α = 2.0

800 if α ∈ {1.7, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.4}
500 otherwise,

N2(α) =




18000 if α = 2.1

12000 if α = 1.7

10000 if α ∈ {1.5, 1.6, 1.8, 1.9, 2.0, 2.3, 2.4, 2.5}
8000 if α ∈ {2.2, 3.1, 3.2, 3.3, 3.4}
5000 otherwise

and N3(α) as in the following table (where we also list the number of potentially minimal
pairs corresponding to our choices of N1(α) and N2(α)).

α pairs N3(α) α pairs N3(α) α pairs N3(α)

1.5 0 3.5 × 105 3.5 22 3 × 105 5.5 294 3 × 105

1.6 36 5.5 × 105 3.6 106 3 × 105 5.6 354 3 × 105

1.7 38 1.5 × 106 3.7 190 3 × 105 5.7 386 3 × 105

1.8 10 5 × 105 3.8 184 3 × 105 5.8 650 3 × 105

1.9 72 4.5 × 105 3.9 174 3 × 105 5.9 394 3 × 105

2.0 318 6 × 105 4.0 40 3 × 105 6.0 392 3 × 105

2.1 1192 1.3 × 106 4.1 32 3 × 105 6.1 408 3 × 105

2.2 948 1.35 × 106 4.2 116 3 × 105 6.2 368 3 × 105

2.3 1296 1.45 × 106 4.3 126 3 × 105 6.3 396 3 × 105

2.4 1198 1.7 × 106 4.4 146 3 × 105 6.4 366 3 × 105

2.5 1864 1.8 × 106 4.5 134 2.25 × 105 6.5 362 3 × 105

2.6 1002 7.5 × 105 4.6 278 3 × 105 6.6 734 4 × 105

2.7 684 7.5 × 105 4.7 350 3 × 105 6.7 1138 4 × 105

2.8 1454 1.05 × 106 4.8 284 3 × 105 6.8 1238 5 × 105

2.9 1092 5.5 × 105 4.9 286 3 × 105 6.9 1134 5.5 × 105

3.0 770 4.5 × 105 5.0 588 6 × 105 7.0 2324 9 × 105

3.1 1150 6 × 105 5.1 696 3 × 105 7.1 1822 5 × 105

3.2 532 5.1 × 105 5.2 128 3 × 105 7.2 1998 5 × 105

3.3 256 5 × 105 5.3 310 3 × 105 7.3 1806 5 × 105

3.4 448 5 × 105 5.4 276 3 × 105 7.4 1676 5 × 105

(7.3)

Now that we have the framework for the computations in place, we will indicate how
they play out in a particular example, where we choose c(α) − c1(α) rather small, in order
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to illustrate various complexities that may arise. We take α = 2.1, calculate c(2.1) = 1.705
to three decimal places and let c1(2.1) = 1.66. There is no particular significance to this
value, other than that it makes the resulting computations somewhat more challenging. We
note, for each value of n1 ∈ N, that there are either two or three choices for n2 ∈ N with
(n1, n2) ∈ �(2.1).

To begin, we need to determine a suitable value for N3(2.1). We wish to take it as small as
possible in order to minimize subsequent calculations. We claim that N3(2.1) = 1.3 × 106

is a valid choice. Let (n1, n2) ∈ �(2.1), set r = n2−1
n1−1 and define S′(n1, n2) as previously.

We therefore have

log �(n1, n2) ≥ −log(n1n2) +
∑

p∈S′(n1,n2)

log p.

One may readily show that

I1,1 =
(

n2 − 1

2
,

2(n2 − 1)

3

)

and so ∑
p∈I1,1

log p = θ

(
2(n2 − 2)

3

)
− θ

(
n2 − 1

2

)
.

Applying the bounds of Schoenfeld [41],

∑
p∈I1,1

log p ≥ 2(n2 − 2)

3

(
1 − 1

41 log(2(n2 − 2)/3)

)
− 1.000081

(n2 − 1)

2
.

Now n1 ≥ 1.3 × 106 and so n2 ≥ 2.73 × 106, whereby∑
p∈I1,1

log p ≥ 0.16549 (n2 − 1).

Since 0 ≤ 2.1n1 − n2 < 2.2 implies that

|r − 2.1| ≤ 1.1

n1 − 1
< 8.47 × 10−7,

we have

0.16549(n2 − 1) ≥ 0.34752(n1 − 1) ≥ 0.3475n1,

whence ∑
p∈I1,1

log p > 0.3475n1.

Since I2,1 and I3,1 are empty, we next consider

I1,2 =
(

n2 − 1

4
,

2(n2 − 1)

7

)
,
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whereby

∑
p∈I1,2

log p = θ

(
2(n2 − 2)

7

)
− θ

(
n2 − 1

4

)
.

It follows that

∑
p∈I1,2

log p ≥ 2(n2 − 2)

7

(
1 − 1

41 log(2(n2 − 2)/7)

)
− 1.000081

(n2 − 1)

4

and, arguing as before, this exceeds 0.073869n1. Again, I2,2 and I3,2 are empty. Repeating
this process for i ≤ 23, we find that∑

p∈s ′(n1,n2)

log p ≥ 0.50694n1

and hence we conclude that

log �(n1, n2) ≥ 0.50694n1 − log(n1n2) ≥ 0.50691n1 > log(1.66)n1.

It follows that �(n1, n2) > 1.66n1 , provided n1 ≥ N3(2.1) = 1.3 × 106.
It remains to check the desired inequality for all (n1, n2) ∈ �(2.1) such that n1 < 1.3 ×

106. We choose N1(2.1) = 800 and find that

d2(2.1) = min
(n1,n2)∈�(2.1)

n1<800

�(n1, n2)

1.66n1
= �(573, 1202)

1.66573
∼ 2.625 × 10−7.

We note that, in this case, d2(2.1) != d1(2.1). The computation of d2(2.1) took approximately
41 minutes 29 seconds of CPU time on a Sun Ultrasparc 10.

If N1(2.1) ≤ n1 < N2(2.1) = 18000, we use the second technique described for approxi-
mating �(n1, n2). We begin by choosing (n1, n2) = (800, 1680) ∈ �(2.1) and proceed by
computing, for all pairs (n1, n2) in the chosen ranges, both S′(n1, n2) and the associated
values

P =
∏

p∈S′(n1,n2)

p, d =
(

P

gcd(P, n1n2)

)
1.66−n1

and

d ′ =
(

P

gcd(P, n1n2(n1 + 1)(n2 + 1))

)
1.66−n1−1.

We find precisely 1192 pairs (n1, n2) with 800 ≤ n1 < 18000 for which either d or d ′

is less than d2(2.1). These correspond to (n1, n2) (respectively, (n1 + 1, n2 + 1)) being a
potentially minimal pair. For each of these pairs, we explicitly compute

�(n1, n2)1.66−n1 (7.4)



APPLICATIONS OF THE HYPERGEOMETRIC METHOD 245

and check to see if any of the resulting values is less than d2(2.1). We find four such pairs,
corresponding to

(n1, n2) ∈ {(1017, 2135), (1016, 2133), (1413, 2967), (2360, 4954)}.

The minimum value of (7.4) for these pairs is that with n1 = 2360 and n2 = 4954, whence
we set

d3(2.1) = min
(n1,n2)∈�(2.1)

n1<18000

�(n1, n2)

1.66n1
= �(2360, 4954)

1.662360
∼ 3.094 × 10−11.

On an Ultrasparc 10, these computations took 8 hours 35 minutes 36 seconds of CPU time.
We now proceed to the “bootstrapping” which we will use to deal with the remaining

values between n1 = 18000 and n1 = 1.3 × 106. This represents the majority of the overall
computation. We remind the reader that computing S′(n1, n2), is significantly more difficult
than computing S′′(r1, r2), since n1 and n2 will generally be much larger than r1 and r2.
This motivates our desire to choose the pair (r1, r2) to be as large as possible. For our
example, we begin with (n1, n2) = (18000, 37800). When we choose r1 and r2, we do so
in such a fashion that (n1 + r1, n2 + r2) ∈ �(2.1). In this case, we start with r1 = 41 and
r2 = 86 (although these values look peculiar, they arise from a third parameter which we
are suppressing). Computing S′(18000, 37800) we find that logP > 9528.4, and the value
of log Q associated to S′′ (41, 86) is less than 343.6. It follows that

log P − log Q − log(n1 + r1) − log(n2 + r2) > 9164.4

while

(n1 + r1) log c1(2.1) − log d1(2.1) = 18041 log 1.66 − 24.199 < 9119.3.

Since the first of these values is larger, we conclude that, for any pair (n1, n2) ∈ �(2.1) such
that 0 ≤ n1 −18000 < r1 and 0 ≤ n2 −37800 < r2, our desired lower bound for �(n1, n2)

holds. We observe that this has reduced our problem to checking pairs (n1, n2) ∈ �(2.1)
such that n1 ≥ 18041. As n1 gets larger, we can increase the values of r1 and r2 for
which the above procedure works. To move from n1 ≥ 18000 to n1 ≥ 25000, we apply
this bootstrapping technique 206 times. For larger n1, however, this approach becomes
increasingly efficient. The following table summarizes this information.

n1 Number of bootstraps

18000 to 25000 206

25000 to 50000 351

50000 to 100000 332

100000 to 200000 322

200000 to 400000 326

400000 to 1.3 × 106 566

(7.5)
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This final stage of the computation took 27 hours and 29 minutes of CPU time, completing
the proof of Proposition 5.2 in case α = 2.1. Run times for the other values of α were
similar. We should emphasize that we have not made especially great efforts to optimize
the aforementioned algorithms.

8. Proofs of Theorems 1.3 and 1.5

We will actually begin by proving Theorem 1.5; the proof of Theorem 1.3 will follow along
similar lines, essentially just replacing c1(α) with c(α).

Let us suppose that a, y, x0, m0 and � are integers with m0 odd and positive, a, y and x0

positive, y not a square, and x2
0 + � = a2 ym0 . Since(

n + 1/2

k

)
4k ∈ Z

for all positive integer n and k, it follows from (2.2) and (2.3) that

�
−n1
0 �n1

�(n1, n2)
Pn1,n2(ξ) = A ∈ Z

and

�
−n2
0 �n2

�(n1, n2)
Qn1,n2(ξ) = B ∈ Z.

Equation (2.1) therefore implies that

�
−n1
0 �(n1, n2)

−1
∣∣In1,n2(ξ)

∣∣ =
∣∣∣∣ A

�n1
− x0

aym0/2

B�
n2−n1
0

�n2

∣∣∣∣.
Let us next suppose that p, s and m are positive integers with m > m2 odd (where m2 is

as in (1.15)) and set

� =
∣∣∣∣ p

sym/2
− 1

∣∣∣∣.
Since each prime dividing y also divides �1, we can choose t ∈ N minimal such that

�t
1ay

1
2 (m0−m) ∈ Z. (8.1)

Given a real number α ≥ 3/2, we then may take n1 integral, satisfying

t

α − 1
≤ n1 <

t

α − 1
+ 2 (8.2)

and set n2 = n1 + t . We note that this provides precisely two choices for n1.
Defining

 =
∣∣∣∣ p

sym/2
− x0 B�

n2−n1
0

aAym0/2�n2−n1

∣∣∣∣,
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we therefore have

 < � + �(n1, n2)
−1 A−1

(
�

�0

)n1 ∣∣In1,n2(ξ)
∣∣

(note that the nonvanishing of A is a consequence of the contour integral representation for
Pn1,n2(x) given in Section 3). From Lemma 4 of Beukers [10], for one of our two choices
for n1, we have  != 0 and so, from (8.1),

 ≥ (
saAym0/2�

n2−n1
1

)−1
.

Combining our upper and lower bounds for  , we find that

1 < � 1 +  2, (8.3)

where, upon substituting for A,

 1 = s�(n1, n2)
−1aym0/2

(
�

�0

)n1

�
n2−n1
1

∣∣Pn1,n2(ξ)
∣∣.

and

 2 = s�(n1, n2)
−1aym0/2

(
�

�0

)n1

�
n2−n1
1

∣∣In1,n2(ξ)
∣∣.

Now, applying Lemma 4.1, Proposition 5.2 and the fact that n2 ≤ αn1 leads to the
inequality

 2 <
s(α + 1)2�

αn1
1 |�|(α+1)n1+3−2α

d1(α)a2(α+1)n1+5−4α y((α+1)n1+5/2−2α)m0(c1(α)�1 F(r(α, ξ), α, ξ))n1
,

whereby

 2 <
1

2
χ2 χ

−n1
1 . (8.4)

Suppose that p is a prime dividing y. It follows, since �t
1ay

1
2 (m0−m) is an integer, that

necessarily

ordp
(
�t

1ay
1
2 (m0−m)

) = t ordp�1 + ordpa + 1

2
(m0 − m) ordp y ≥ 0,

and so

t

(
2ordp�1

ordp y

)
+ 2ordpa

ordp y
+ m0 ≥ m.

Since the choice of p dividing y was arbitrary, from m ≥ m2, we conclude that

t ≥ (α − 1)
log χ2

log χ1
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and hence, via (8.2),

n1 ≥ log χ2

log χ1
.

We conclude, from (8.4), that  2 < 1/2 and so (8.3) implies the inequality

� >
1

2 1
= �(n1, n2)�

n1
1

2saym0/2�
n2
1

∣∣Pn1,n2(ξ)
∣∣ .

Again using that n2 ≤ αn1 and applying Lemma 3.1 and Proposition 5.2, we have

� >
d1(α)

4s(α + 1) aym0/2

(
c1(α)�1

�α
1 F(r(α, ξ), α, ξ)

)n1

. (8.5)

Now if

t0 =
[

m

2m1

]
+ 1

and p is a prime dividing y, we have

ordp
(
�

t0
1

) ≥ t0 m1 ordp y >
m

2
ordp y = ordp(ym/2).

and so (8.1) implies that

t ≤ t0 <
m

2m1
+ 1.

From (8.2), we thus have

n1 <
t

α − 1
+ 2 <

m

2(α − 1)m1
+ 2α − 1

α − 1
= m − 1

2(α − 1)m1
+ (4α − 2)m1 + 1

2(α − 1)m1
. (8.6)

Substituting the values for χ3 and λ1 completes the proof of Theorem 1.5.
The proof of Theorem 1.3 proceeds similarly. If ε1 > 0, from Proposition 5.1 we have,

for n1 exceeding some effectively computable bound (depending on ε1 and α), that

�(n1, n2) ≥ c(α)(1−ε1)n1 .

Arguing as before, we obtain, in analogue to (8.5),

� > C

(
c(α)1−ε1�1

�α
1 F(r(α, ξ), α, ξ)

)n1

,

where the constant C is effective and depends upon α, s, a, y and m0 (and, again, n1 is
suitably large). Applying (8.6) and choosing ε1 suitably small relative to a given ε > 0
completes the proof.
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9. Proof of Corollaries 1.4 and 1.6

Corollary 1.4 follows immediately from Theorem 1.3 upon choosing parameters y, m0, �, a
and α as follows; we leave verification to the reader:

y m0 � a α y m0 � a α

2 15 7 1 3.457 54 1 2 3 6.589

3 15 −37 1 3.195 55 5 19 1 4.724

5 3 4 1 5.019 56 3 −784 1 1.967

6 5 32 1 3.088 57 3 56 3 3.323

10 5 144 1 2.094 58 3 24 7 5.369

12 3 −36 1 2.447 60 1 −4 1 4.306

13 3 −12 1 3.335 62 1 −2 1 5.046

14 13 −372992 1 2.196 63 1 −1 1 5.503

17 7 −1192 11 2.910 65 1 1 1 5.507

18 5 92 13 4.016 66 1 2 1 5.049

19 5 15 16 5.143 68 1 4 1 4.333

20 1 4 1 3.265 69 3 180 1 2.380

21 1 −4 1 3.507 70 3 −49 3 3.413

23 5 −26 1 3.926 72 1 −9 6 3.071

24 1 −9 3 3.015 73 5 −368 1 3.157

26 3 40 7 3.729 74 5 −145 3 3.427

28 3 48 1 2.674 75 3 −625 1 1.964

29 1 4 1 3.563 76 5 60 1 5.143

30 7 −13696 11 2.664 77 1 −4 1 4.529

31 3 6 5 6.141 78 3 −169 1 2.415

33 3 −16 7 5.440 79 1 −2 1 5.186

34 1 −2 1 4.416 80 1 −1 1 5.685

35 3 26 1 2.576 82 1 1 1 5.687

37 3 28 1 3.181 83 1 2 1 5.191

38 1 2 1 4.435 84 3 −196 1 2.818

40 1 4 1 3.830 85 1 4 1 4.548

42 5 608 1 2.684 87 3 −841 1 1.947

43 3 −17 1 2.676 89 1 8 1 2.410

44 3 −80 1 2.532 90 1 −1 2 7.003

45 1 −4 1 4.038 91 3 147 1 2.365

46 3 −8 1 6.613 92 1 −8 1 3.055

47 1 −2 1 4.734 93 7 −75087 1 2.357

48 1 −9 3 3.248 95 5 16606 11 2.543

50 1 1 1 5.319 96 1 −4 1 4.757

51 1 2 1 4.750 98 1 −2 1 5.328

52 3 −17 1 2.848 99 1 −1 1 5.839

53 1 4 1 4.070

(9.1)
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It appears that these choices are optimal or close to being so, though we will provide
no proof of this here. For many values of y, other parameter sets also lead to nontrivial
measures (i.e. those with λ(y) < 2). By way of example, while the best measure we have
been able to find for

√
12 corresponds to the choices (m0, �, a, α) = (3, −36, 1, 2.447)

(where the identical measure is also obtained by taking (m0, �, a, α) = (1, −9, 6, 2.447)),
we may also choose the quadruple (m0, �, a, α) as follows:

m0 � a α λ(12)

1 −4 1 3.190 1.775

5 −97 6 2.362 1.796

5 −1296 7 2.459 1.976

7 −388 1 2.362 1.796

7 −6208 4 2.362 1.796

11 −3652 3 2.664 1.662

13 −58432 1 2.440 1.667

13 −525888 3 2.162 1.766

13 −2103552 6 1.974 1.852

15 −8414208 1 1.974 1.852

15 −75727872 3 1.843 1.919

15 −302911488 6 1.743 1.979

17 −1211645952 1 1.743 1.979

(9.2)

Note that a number of these sets of parameters actually correspond to the same “examples”
and yield identical approximation measures. If we define N (X) to be the set of y ≤ X
for which we may apply Theorem 1.3 to deduce a value of λ(y) < 2, it appears to be
rather difficult to obtain sharp lower bounds for N (X) as x → ∞. While, in all likelihood,
N (X) = o(X), its exact order of growth is complicated to determine.

To prove Corollary 1.6, if y != 10, 89, we make the same choices for m0, � and a as in
Table (9.1), which generate the (presumably) optimal measures λ(y). If y = 10, however,
we take m0 = 1, a = 5 and � = 25 which, due to the vagaries of our computations of
c1(α) and d1(α), yields a (barely) nontrivial λ2(10) (which m0 = 5, a = 1, � = 144 and,
say, α = 2.0 fails to do).

We choose α as follows:

y α y α y α y α y α y α

2 3.4 21 3.4 38 4.3 53 3.9 69 2.3 83 5.1

3 3.1 23 3.9 40 3.7 54 6.5 70 3.4 84 2.8

5 4.9 24 3.0 42 2.6 55 4.7 72 3.0 85 4.4

6 3.0 26 3.7 43 2.6 56 1.9 73 3.1 87 1.9

10 1.7 28 2.6 44 2.5 57 3.3 74 3.4 90 6.9

12 2.4 29 3.5 45 3.9 58 5.3 75 1.9 91 2.3

(Continued on next page.)
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(Continued ).

y α y α y α y α y α y α

13 3.3 30 2.6 46 6.5 60 4.2 76 5.1 92 3.0

14 2.1 31 6.1 47 4.6 62 5.0 77 4.4 93 2.3

17 2.9 33 5.4 48 3.2 63 5.4 78 2.4 95 2.5

18 3.9 34 4.3 50 5.2 65 5.4 79 5.1 96 4.6

19 5.1 35 2.5 51 4.6 66 5.0 80 5.6 98 5.2

20 3.2 37 3.1 52 2.8 68 4.2 82 5.6 99 5.7

(9.3)

In each case, we may readily check that Theorem 1.5 yields a value for λ1(y) which is
less than the λ2(y) given in (1.18). Moreover, Theorem 1.5 implies, for each such y, an
inequality of the shape ∣∣∣∣√y − p

q

∣∣∣∣ > c2(y)q−λ1(y),

for q = yk and k ≥ m2(y)−1
2 . It follows that if we set

k0(y) = max

{
m2(y) − 1

2
,

log c2(y)

(λ1(y) − λ2(y)) log y

}
,

then ∣∣∣∣√y − p

q

∣∣∣∣ > q−λ2(y), (9.4)

for all q = yk with k ≥ k0(y). For the integers y under consideration, we find the following
values of k0(y):

y k0(y) y k0(y) y k0(y) y k0(y)

2 53620 30 7414 53 17304 76 27204

3 21428 31 200978 54 49217 77 2581

5 189873 33 69443 55 162770 78 9324

6 57622 34 4705 56 2229 79 3426

10 27426 35 28510 57 11160 80 8769

12 12805 37 3415 58 10943 82 23921

13 15152 38 3911 60 34735 83 12517

14 32595 40 13134 62 11710 84 7475

17 73087 42 10139 63 6772 85 3397

18 62512 43 15461 65 3444 87 3424

19 27085 44 4735 66 46962 90 56505

20 4405 45 8683 68 6084 91 3904

(Continued on next page.)
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(Continued ).

y k0(y) y k0(y) y k0(y) y k0(y)

21 6156 46 27139 69 5604 92 34071

23 82521 47 5263 70 24671 93 7078

24 80463 48 40214 72 2831 95 4977

26 20043 50 2867 73 38801 96 2410

28 3861 51 3106 74 12414 98 3145

29 38888 52 9137 75 2533 99 3140

(9.5)

As a final step in proving Corollary 1.6, we must show, for all values of k < k0(y) given
in Table (9.5), that the corresponding inequality (9.4) still holds. Many of the values of
k0(y) given in this table are too large to easily perform an exhaustive search, so we take a
different approach. We begin by computing the y-ary expansion of

√
y, that is

√
y =

∞∑
n=0

an

yn
where an ∈ {0, . . . , y − 1}.

Straightforward consideration of the terms in this expansion provides us with a simple way
of searching for good rational approximations to

√
y with denominators a power of y:

Lemma 9.1. Let y be a non-square positive integer and λ > 1 be real If q = yk and there
exists an integer p such that ∣∣∣∣√y − p

q

∣∣∣∣ ≤ q−λ (9.6)

then, in the y-ary expansion of
√

y, either a j = 0 for all values of j between k + 1 and
�λk� or a j = y − 1 for all j in this range.

Proof: Write

√
y =

∞∑
n=0

an

yn
where an ∈ {0, . . . , y − 1}

and assume that p/q is a rational number with denominator q = yk , satisfying (9.6). From
the y-ary expansion for p/q,

p

q
=

k∑
n=0

bn

yn
where bn ∈ {0, . . . , y − 1},

inequality (9.6) implies that

−y−kλ ≤
k∑

n=0

an − bn

yn
−

∞∑
n=k+1

an

yn
≤ y−kλ. (9.7)
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Let us note first that
∞∑

n=k+1

an

yn
<

1

yk
,

where the strict inequality follows from the fact that
√

y is irrational. Secondly, if we write∣∣∣∣∣
k∑

n=0

an − bn

yn

∣∣∣∣∣ = c

yk
,

where c is a nonnegative integer, then, if c ≥ 2,∣∣∣∣∣
k∑

n=0

an − bn

yn

∣∣∣∣∣ −
∞∑

n=k+1

an

yk
>

1

yk
,

contradicting (9.7). It follows that c = 0 or c = 1. In the first case,

∞∑
n=k+1

an

yk
<

1

ykλ
.

Choosing a j != 0 to be the first non-zero coefficient with index at least k + 1, we thus have

∞∑
n=k+1

an

yk
>

1

y j

Combining these two inequalities, we find that

1

y j
<

1

ykλ

and so j > λk; i.e. the y-ary expansion of
√

y has a string of zeros from index n = k + 1
to n = �λk�. On the other hand, if c = 1, then we have

1

yk
−

∞∑
n=k+1

an

yk
<

1

ykλ
.

In this case, choose a j to be the first coefficient not equal to y − 1, with index at least k + 1.

Then

∞∑
n=k+1

an

yk
<

1

yk
− 1

y j
.

Combining the last two inequalities, we once again find that

1

y j
<

1

ykλ
⇒ j > λk,

whereby a j = y − 1 for all values of j between k + 1 and �λk�. ✷
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Applying this lemma, in order to verify inequality (9.4) for q = yk with k < k0(y), it
suffices to check for suitably long strings of zeros or y − 1’s in the y-ary expansion of

√
y.

With this in mind, we turn our attention to computing the coefficients an . Suppose that we
have a suitably good decimal approximation to

√
y, say x with

|√y − x | ≤ y−(λ+1)k0/2

(this is easily achieved via Newton’s method). If
√

y has a string of zeros in its expansion of
the certain length, then it is easy to see that x either has a string of zeros, or a string of y−1’s
in its expansion, of the same length. A similar argument holds for strings of y −1’s. We may
thus use x to search for strings of zeros and y − 1’s in the expansion for

√
y. Computing

the first thousand coefficients in the expansion of x , we check for any such strings of length
≥3. If we find none, we may deduce that any integer k which fails to satisfy (9.4) must have
either k ≤ 10 or k ≥ 1000. If such a string does exist, we check and see whether it satisfies
the requirements of Lemma 9.1. Once this is completed, we note that we are looking for
strings whose length roughly exceeds (λ − 1)k, beginning with the kth coefficient (where
we can suppose that k ≥ 1000). It follows, if we compute two consecutive coefficients
which are not equal, say ak and ak+1, that in order to satisfy the conditions of Lemma 9.1,
the �(λ − 1)k/2�th coefficient must be 0 or y − 1. In fact, at least the next �(λ − 1)k/2�
coefficients must all be 0’s or all y − 1’s. Hence we can skip forward and compute the
coefficients starting with ak+�(λ−1)k/2�. If two consecutive coefficients differ or are not equal
to 0 or y − 1, we may perform another such jump. As long as we do not find �(λ − 1)k/3�
identical, consecutive coefficients, we are in no danger of violating (9.4). Carrying out this
procedure, we verify the desired inequalities for all values of y and k up to k0(y), with the
noted exceptions, in under two hours of CPU time (on an Ultrasparc 10).

Let us work out the details in case y = 2. Applying Theorem 1.5 with a = 1, � = 7,

m0 = 15, (noting that 1812 + 7 = 215) and α = 3.4, we find that

χ1 > 1.157, χ2 < 8.557 × 1026, χ3 < 1.363 × 1018, c2 > 2.045 × 10−57,

m2 < 34640 and λ1 = 1.476487 . . . . It follows, if p is an integer and q = 2k for k a non-
negative integer, that ∣∣∣∣√2 − p

q

∣∣∣∣ > q−1.48,

provided k ≥ k0(2) = 53620.

To check the values of k below this bound, we compute the binary expansion of
√

2 to,
say, 55000 binary digits. To do this, we use Newton’s method to derive a rational x such that

|
√

2 − x | ≤ 10−20480 < 2−1.24×55000.

Computing the digits an in the binary expansion to x for 0 ≤ n ≤ 1000, we find 65 strings
of consecutive zeros or ones, of length at least 3. Since the longest of these has length 8,
we conclude that if k < 1000 is such that∣∣∣∣√2 − p

2k

∣∣∣∣ ≤ 2−1.48k,
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then

�1.48k� − (k + 1) + 1 ≤ 8 ⇒ k ≤ 18.

Using brute force, we check the remaining p/2k with k ≤ 18 and find that 3/2 and 181/27

are the only exceptions to inequality (9.4) for k < 1000. Examining the binary expansion
of x , we find that a1000 = 0 and a1001 = 1. Since these are distinct, Lemma 9.1 enables us
to look ahead in the expansion to a1240 = 0. Since a1241 = a1242 = 0, but a1243 = 1, we may
jump again to consideration of a1537 = 1. The fact that a1538 = 0 allows us to skip still further
ahead in the binary expansion. We iterate this process, performing a total of 19 jumps, thus
verifying inequality (9.4) for all k < k0(2), except for k ∈ {1, 7}. This completes the proof
of Corollary 1.6 in case y = 2. The other values of y follow in a similar fashion.

The computations corresponding to y = 2 are, in a certain sense, a worst case scenario as
they always require calculating at least two consecutive coefficients in the binary expansion
of

√
2. As y gets larger, this technique becomes rather more efficient, since there are more

residue classes in which an can lie, and hence it is less likely that a given coefficient is 0 or
y − 1.

10. Proof of Corollary 1.7

Suppose that D is a nonzero integer and that x2 + D = yn for some positive integers x and
n where y is an integer in Table (1.18). If n is even, say n = 2k, then

|D| = |x2 − yn| ≥ y2k − (yk − 1)2 = 2yk − 1 > yk

and so

n = 2k < 2
log |D|
log y

.

If, however, n = 2k + 1 for k > 2 and

(y, k) !∈ {(2, 3), (2, 7), (2, 8), (3, 7)},
|D| = |x2 − y2k+1| = y2k

(√
y + x

yk

)∣∣∣∣√y − x

yk

∣∣∣∣
and so ∣∣∣∣√y − x

yk

∣∣∣∣ = |D|
y2k

(√
y + x

yk

) .

Applying Corollary 1.6, we find that

|D| > y(2−λ2(y))k

(√
y + x

yx

)
,
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i.e.

y2k

(√
y + x

yk

) 2
2−λ2(y)

< |D| 2
2−λ2(y) .

Since 1 < λ2(y) < 2, we have (
√

y + x
yk )

2
2−λ2(y) > y and so yn < |D| 2

2−λ2(y) , which yields
the desired result. On the other hand, if n = 3 or 5, or if (y, n) is one of (2, 7), (2, 15),
(2, 17) or (3, 15), it is easy to check that, for the values of y under consideration, the only
triples (y, n, D) contradicting the inequality

n <
2

2 − λ2(y)

log |D|
log y

are given by

(y, n, D) ∈ {(2, 3, −1), (2, 15, 7), (5, 3, 4), (5, 5, −11), (23, 5, −26)

(40, 3, −9), (46, 3, −8), (55, 5, 19), (76, 5, 60)}.
This completes the proof of Corollary 1.7.

11. The equation x2 − D = pn with D positive

In this section, we will deal with the Diophantine equation

x2 − D = pn, (11.1)

where p is an odd rational prime and D is a positive integer. Specifically, we will prove
Theorem 1.11. If D is square, then, as noted by Beukers [11], factorization of the right
hand side of (11.1) leads, almost immediately, to the conclusion that the equation possesses
at most two solutions in positive integers x and n. We will therefore assume, here and
henceforth, that D is a positive, nonsquare integer, coprime to p (this last is a technical
condition, imposed for simplicity). Treatment of Eq. (11.1), in contrast to the analogous
equation with D < 0, is complicated by the presence of infinite units in Q(

√
D). We will

have use of the following lemma of Le [19].

Lemma 11.1. Let D be a positive nonsquare integer and p be a positive prime, coprime
to D. Suppose that u1 + v1

√
D is the fundamental solution to the equation

u2 − Dv2 = 1. (11.2)

If the equation

X2 − DY2 = pZ , gcd(X, Y ) = 1, Z > 0 (11.3)

has a solution in positive integers (X, Y, Z), then it has a unique positive solution (X1, Y1,

Z1) satisfying

Z1 ≤ Z , 1 <
X1 + Y1

√
D

X1 − Y1

√
D

< (u1 + v1

√
D)2,



APPLICATIONS OF THE HYPERGEOMETRIC METHOD 257

where Z runs over all solutions in positive integers (X, Y, Z) of (11.3). Further, every
positive solution (X, Y, Z) of (11.3) may be written as

Z = Z1t, X + Y
√

D = (X1 ± Y1

√
D)t (u + v

√
D)

where t ∈ N and (u, v) is an integral solution of (11.2).

Let us write θ = u1 + v1

√
D and σ = X1 + Y1

√
D, for u1, v1, X1 and Y1 the positive

integers whose existence is guaranteed by the previous lemma. Suppose that (A, m) is a
solution in positive integers to Eq. (11.1). Arguing as in the proofs of Lemma 4 of Beukers
[11] and Lemma 4 of Le [19], we have

A ±
√

D = θ̄ sσ t , (11.4)

where m = tZ1 for Z1 as defined in Lemma 11.1, s and t integers with 0 ≤ s ≤ t, and
gcd(s, t) = 1. Conjugating (11.4) in Q(

√
D), we find that

|θ̄ sσ t − θ s σ̄ t | = 2
√

D

and so

|(σ̄ /σ )t (θ/θ̄)s − 1| = 2
√

D

|A ± √
D| . (11.5)

This last equation will prove crucial in the proof of Theorem 1.11. It leads to a linear form in
logarithms of algebraic numbers, to which we can apply lower bounds from transcendental
number theory. Initially, we will use (11.5) to prove a gap principle for solutions to (11.1);
i.e. a result that ensures that two suitably large solutions cannot lie too close together.

Lemma 11.2. Suppose that D is a nonsquare, positive integer and p is a rational prime,
coprime to D. If (A1, m1) and (A2, m2) are solutions to Eq. (11.1) in positive integers with
m2 > 2m1 and pm1 > (k2 − 1)D, where k ≥ 5, then it follows that

m2 > Z1 log θ

(
2p

2p + 1

)(
k − 1

k + 1

)3/2( pm1

D

)1/2

.

Proof: We will closely follow the proof of Lemma 4 of Beukers [11]. Writing

Ai ±
√

D = θ̄ si σ ti ,

we have, under our hypotheses, that

|Ai ±
√

D| ≥ |Ai | −
√

D ≥
√

pmi + D −
√

D >

√
k − 1

k + 1
pmi /2,

and thus, from (11.5),

|(σ̄ /σ )ti (θ/θ̄)si − 1| < 2

√
k + 1

k − 1

(
D

pmi

)1/2

.
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Now, it is well known, if |δ| < 1/2, that

|log(1 − δ)| < |δ|(1 + |δ|)
and so, since k ≥ 5 and θ/θ̄ = θ2, we conclude that

|ti log(σ/σ̄ ) − 2si log θ | < 2

(
k + 1

k − 1

)3/2( D

pmi

)1/2

. (11.6)

Arguing as in the proof of Lemma 4 of Beukers [11], s1/t1 != s2/t2 and hence, eliminating
log(σ/σ̄ ) from the inequalities in (11.6), we find that

1

t1t2
≤

∣∣∣∣ s2

t2
− s1

t1

∣∣∣∣ <
1

t1 log θ

(
k + 1

k − 1

)3/2( D

pm1

)1/2(
1 + t1

t2
p( t1−t2

2 )

)
.

Since m2 > 2m1, it follows that t2 > 2t1 and t2 ≥ t1 + 2, whereby

1 + t1
t2

p( t1−t2
2 ) < 1 + 1

2p
.

This yields the desired result. ✷

A second gap principle is the following:

Lemma 11.3. Suppose that D is a nonsquare, positive integer and p is a rational prime,
coprime to D. If (x1, n1), (x2, n2) and (x3, n3) are three solutions in positive integers to
Eq. (11.1), with n1 < n2 < n3, then n3 = 2n2 +r where r is an odd positive integer. Further,
if r = 1, then (p, D) is an exceptional pair, as defined in Section 1. If r > 1, then

r ≥




max

{
n1,

2n2 − 1

3

}
if p = 3

max

{
n1,

2n2 + 1

3

}
if p > 3.

(11.7)

Proof: This is a minor sharpening (in case r > 1 and p > 3) of Lemma 5 of Beukers [11].
In the penultimate displayed equation in the proof of that lemma, we find, for n3 = 2n2 +r,
where r is an odd positive integer with r > 1, that

p2n2 < p3r · 4(1 + p−r/2)6

and that there exists a positive integer d such that both

|2d − pr/2| < 0.29 and pn2+r ≡ 1 (mod 4d). (11.8)

Now 4(1 + p−r/2)6 < p provided p ≥ 7(if r = 3) or p ≥ 5 (if r > 3). It follows that either
p = 3, both p = 5 and r = 3, or p2n2 < p3r+1, whence 2n2 ≤ 3r . In the last case, since r
is odd, necessarily 2n2 ≤ 3r − 1, which leads to the stated conclusion. If p = 5 and r = 3,
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the first inequality in (11.8) is not satisfied for integral d and so the lower bound for r holds,
as advertised. ✷

Let us suppose, here and henceforth, that we have four distinct solutions in positive
integers x and n to Eq. (11.1), say (xi , ni ) for 1 ≤ i ≤ 4, where n1 < n2 < n3 < n4.

11.1. Exceptional pairs (p, D)

We begin by proving Theorem 1.11 in the case of exceptional pairs (p, D). In this situation,
we will not require any lower bounds for linear forms in logarithms, but will instead rely
upon Theorem 1.5 and various gap principles. To start, assume that p = 4a2 + 1 for some
integer a ≥ 5; we will treat p = 3, 5, 17 and 37 later. We apply Theorem 1.5 with

y = p, � = �0 = �1 = a = m0 = 1, � = �1 = 4p

and α = 5. It follows that

χ1 >
1

466
pF p,

where Fp = F(r(5, 1/p), 5, 1/p). Since we may readily show, by calculus, that Fp is in-
creasing in p,

14.806 . . . = F101 ≤ Fp < 6 e = 16.309 . . . ,

and so χ1 > 0.031p. Similarly,

χ2 < 2.152 × 1016 p7.5,

whence

m2 < 8
log(2.152 × 1016 p7.5)

log(0.031p)
+ 1.

The right hand side of this last expression is monotone decreasing in p for p ≥ 101 and
hence we may conclude that m2 < 508, if p ≥ 101. Next, note that

χ3 <
(4p)56 e

2.202
< 7585p5

and so

λ1 <
log(7585p5)

4 log p
< 1.734,

where the last inequality is a consequence of p ≥ 101. Since

c−1
2 < 7.173 × 1015 p1/2χ

19/8
3 < 1.177 × 1025 p99/8,
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choosing λ2 = 1.8, we have

log c2

(λ1 − λ2) log y
<

log(1.177 × 1025 p99/8)

0.066 log p
< 378,

where, again, the last bound follows from p ≥ 101. Defining

k0 = max

{
m2 − 1

2
,

log c2

(λ1 − λ2) log y

}
,

we thus have k0 < 378, if p ≥ 101. If k ≥ k0, arguing as in the proof of Corollary 1.6,∣∣∣∣√p − x

pk

∣∣∣∣ > p−1.8k,

for any integer x and so, as in the proof of Corollary 1.7, we may conclude that any solution
(x, n) in positive integers to the equation x2 + D = pn (where D != 0) satisfies

n < 10
log |D|
log p

, (11.9)

provided p = 4a2 + 1 ≥ 101 and n > 757.
Since we suppose that (p, D) is exceptional, we have

D =
(

pm − 1

4a

)2

− pm <
p2m

4(p − 1)

and so, from n3 = 2m + 1,

pn3

D
> 4p(p − 1) = (2p − 1)2 − 1.

Applying Lemma 11.2 with k = 2p − 1, we thus have

n4 >
4(p − 1)2

2p + 1
log θ. (11.10)

Now D is minimal for m = 2 and p = 101 and so D ≥ 249899, whence log θ > log(2
√

D) >

6.9. Inequality (11.10) thus implies that n4 > 1359. Also, log θ > log(2
√

D) > 1
2 log D

and so

n4 >
2(p − 1)2

2p + 1
log D. (11.11)

In combination with (11.9) (taking n = n4), this contradicts p ≥ 101.
Let us next suppose that p = 5, 17 or 37. In these cases, we apply Corollary 1.7. Since

n4 > n3 ≥ 2m + 1 ≥ 5, in each instance, we have n4 < c log D, where we may take
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c = 1.95, 11.77 or 1.24, if p = 5, 17 or 37, respectively. Arguing as previously, we once
again obtain inequality (11.11) and hence another contradiction.

Finally, if p = 3, we require a slightly stronger gap principle than that provided by
Lemmata 11.2 and 11.3. The following is a combination of Assertions 2 and 3 (restricted
to the case p = 3) of Le [29]:

Lemma 11.4. Suppose that m > 1 is an odd positive integer and D = ( 3m+1
4 )2 − 3m. If

the Diophantine equation x2 − D = 3n has a solution in positive integers (x4, n4) with
n4 > 2m + 1, then there exist positive integers k1 and k2 such that

n4 = mk1 + (2m + 1)k2 and k1 + k2 ≥ 2 · 3m−1 + 1.

Applying this lemma, we find that

n4 ≥ 2 · 3m−1m + 2m + 1,

while, from Corollary 1.7,

n4 < 5.21 log D = 5.21 log

((
3m + 1

4

)2

− 3m

)
.

Taken together, these two inequalities contradict m ≥ 3, completing the proof of
Theorem 1.11, in case (p, D) is an exceptional pair.

11.2. Nonexceptional pairs (p, D)

Let us now suppose that (p, D) is not an exceptional pair. In this situation, we will use
Eq. (11.5), with s and t corresponding to a putative fourth solution (x4, n4) to (11.1). In
this manner, we will deduce the existence of a small linear form in logarithms of algebraic
numbers. Before we carry this out, however, we state a trio of technical lemmata which, in
the first two instances, will simplify our computations. The third will provide, via the p-adic
hypergeometric method, an “anti-gap” principle to use in conjunction with Lemma 11.2.
We have

Lemma 11.5. Suppose that D is a nonsquare, positive integer and p is a rational prime,
coprime to D. If (x1, n1), (x2, n2) and (x3, n3) are three solutions in positive integers to
Eq. (11.1), with n1 < n2 < n3. If r = n3 − 2n2 > 1, then pr > 1027. Further, if
3 ≤ p < 106, we have pr > 1054.

Proof: This is a routine if not especially short computation, following Lemma 6 of Beukers
[11]. For each prime p with 3 ≤ p < 109 and each odd integer r ≥ 3, with

p <

{
1054/r if 3 ≤ p < 106

1027/r if 106 < p < 109,

we check to see if (11.8) is satisfied, noting that, by Lemma 11.3, 2 ≤ n2 ≤ 3r±1
2 . Here, the

sign depends on whether p = 3 or otherwise. If we denote by π(x) the number of primes
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p ≤ x , there are precisely

π(109) + 3π(106) − 4 +
56∑

k=5

(
π

(
1054/(2k+1)

) − 1
) = 51093638

such pairs (r, p) to be considered. We perform this calculation using Maple V (being careful
to remind Maple that neither 10932 nor 35112 is prime!) and verify our results with Pari
GP. The only quadruples (p, r, n2, d) we find, satisfying (11.7) and (11.8), are in the set

{(29, 3, 3, 78), (47, 3, 3, 161), (439, 3, 3, 4599), (443, 3, 3, 4662), (5, 5, 7, 28)}.
Arguing as in Lemma 5 of Beukers [11], we have

x2 =
∣∣∣∣ pn2+r − 1

4d
− dpn2

∣∣∣∣,
i.e. for the five cases in question,

x2 = 4143, 22409, 6047779, 6205217 and 7673,

respectively. In each instance, we may check that the equation

x2
2 − x2

1 = pn2 − pn1

has no solution in positive integers x1 < x2 and n1 < n2. This completes the proof of
Lemma 11.5. ✷

We will later have use of an upper bound for the quantity θ defined after Lemma 11.1.

Lemma 11.6. Suppose that D is a nonsquare, positive integer and p is a rational prime,
coprime to D. Suppose that Eq. (11.1) has two solutions in positive integers (A1, m1) and
(A2, m2), with

pm1 < pm2 ≤ D4/5,

where D ≥ 38. Then, we may conclude that

log θ <
(log D)2

Z1 log p
.

Proof: Writing mi = ti Z1, we have Ai ± √
D = σ ti θ̄ si , where 0 ≤ si ≤ ti are integers.

It follows that

|t2 log(A1 ±
√

D) − t1 log(A2 ±
√

D)| = |s2t1 − s1t2| log θ ≥ log θ, (11.12)

since s1/t1 != s2/t2 (again, from the proof of Lemma 4 of [11]). On the other hand,

|t2 log(A1 ±
√

D) − t1 log(A2 ±
√

D)| ≤ t2 log(A1 +
√

D) + t1 log(A2 +
√

D). (11.13)
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Since pmi ≤ D4/5, we have ti ≤ 4
5

log D
Z1 log p , while

Ai +
√

D = pmi

Ai − √
D

≤ D4/5

Ai − √
D

implies (crudely!) that Ai + √
D < 3

√
D. It follows, from (11.12) and (11.13), that

log θ <
8 log(D) log(3

√
D)

5Z1 log p
.

Since D ≥ 38, log(3
√

D) ≤ 5
8 log D and we conclude as stated. ✷

The next lemma is a (very) slight modification of Theorem 1 of Beukers [11].

Lemma 11.7. Let D > 220 be a nonsquare integer and p be an odd rational prime,
coprime to D. If Eq. (11.1) has two solutions in positive integers (A1, m1) and (A2, m2),

with m2 > 2m1, then

pm1 < 160D2.

Proof: We note that the proof of Theorem 1 of Beukers [11] depends upon upper bounds
for |Pn1,n2(x)|, |Qn1,n2(x)| and |In1,n2(x)|, in case x is large in modulus. It follows that we
cannot apply Lemmata 3.1 and 4.1 directly. While it is still possible to sharpen the upper
bounds in [11], through consideration of nonarchimedean contributions, we have no need
to do so. Following Beukers, we write

ξ = A1(4D)n2 Qn1,n2(−pm1/D) and η = (4D)n2 Pn1,n2(−pm1/D),

and notice that ξ and η are integers, satisfying

‖ξ − η
√

D‖p ≤ p−m1(n1+n2+1),

|ξ | < 4n2+1 pn2m1(D + pm1)1/2 (11.14)

and

|η| < 22n1+n2 pn1m1

(
2D

pm1
+ 1

)n1

(4D)n2−n1 . (11.15)

Here, ‖·‖p denotes the usual p-adic norm. The last two inequalities are valid provided
n2 > 2n1. If, further, pm1 ≥ 160D2, we may apply Lemma 11.2 with k = 4

√
10D to con-

clude, since θ > 2
√

D, that

m2 > 0.4 log(θ2)

(
pm1

D

)1/2

≥ 0.8 log(3)m1 log(4D)

log(pm1)

(
pm1

4D

)1/2

.

From pm1 ≥ 160D2 and D > 220, we thus have

log(4D)

log(pm1)

(
pm1

4D

)1/2

> 40
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and so m2 > 35m1. We now choose positive integers n1 and n2 such that

m1(n1 + n2) ≤ m2 < m1(n1 + n2 + 1),

n2 − 9 ≤ 7n1 ≤ n2 + 6

and ξ − ηA2 != 0. The first of these guarantees (together with m2 > 35m1) that n1+n2 ≥ 35;
the last is possible by Lemma 2 of [11], since, for a fixed value of n1 + n2, the inequality
n2 − 9 ≤ 7n1 ≤ n2 + 6 affords precisely two choices for n1. From the argument preceding
displayed Eq. (10) of [11], we have

|ξ | + |ηA2| ≥ pm2 .

On the other hand, since pm1 ≥ 160D2 and D > 220, (11.14) and (11.15) imply that

|ξ | + |ηA2| < 4.1 · 4n2 p(n2+1/2)m1 + 4.1n1 2n2 pn1m1(4D)n2−n1
√

D + pm2 .

Combining these inequalities, either

4.1 · 4n2 p(n2+1/2)m1 >
1

2
pm2 ≥ pm1(n1+n2),

or

1.05 · 4.1n1 2n2 pn1m1+m2/2(4D)n2−n1 >
1

2
pm2 ≥ pm1(n1+n2).

In the first case, we have

p(n1−1/2)m1 < 8.2 · 4n2 ,

while the second yields

p
1
2 m1(n2−n1) < 2.1 · 4.1n1 2n2(4D)n2−n1 .

We thus have

pm1 < max
{
8.2

1
n1−1/2 2

2n2
n1−1/2 , 2.1

2
n2−n1 4.1

2n1
n2−n1 2

2n2
n2−n1 (4D)2

}
. (11.16)

Since n1 +n2 ≥ 35 and n2 −9 ≤ 7n1 ≤ n2 +6, it is readily checked that n1 ≥ 4, n2 −n1 ≥
25, n1/(n2 −n1) ≤ 1/5 and n2/(n2 −n1) ≤ 6/5 (all corresponding to n1 = 5 and n2 = 30).
We thus have

8.2
1

n1−1/2 2
2n2

n1−1/2 ≤ 8.2
1

3.5 2
2.31
3.5 < 4 × 105

and

2.1
2

n2−n1 4.1
2n1

n2−n1 2
2n2

n2−n1 ≤ 2.1
2
25 4.1

2
5 2

12
5 < 9.85.

Since D > 220, we thus have pm1 < 160D2, as claimed. ✷
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From (11.4) and (11.5), we can find integers s4 and t4 with 0 ≤ s4 ≤ t4 and n4 = t4 Z1,
so that

|(σ̄ /σ )t4(θ/θ̄)s4 − 1| = 2
√

D

|x4 ± √
D| . (11.17)

Defining

 = |t4 log(σ/σ̄ ) − 2s4 log θ |,
we will use inequality (11.6) to show that  is “small”. On the other hand, we may apply
the following corollary to Theorem 2 of Mignotte [36], here, h(α) denotes the absolute
logarithmic Weil height of α, defined, for algebraic α, by

h(α) = 1

[Q(α) : Q]

(
log a0 + log

∏
σ

max{1, |σ(α)|}
)

,

where σ runs over the embeddings of Q(α) into C and a0 > 0 is the leading term in the
minimal polynomial for α over Z.

Lemma 11.8. Consider the linear form

 = b2 log α2 − b1 log α1

where b1 and b2 are positive integers and α1, α2 are nonzero, multiplicatively independent
algebraic numbers. Set

D = [Q(α1, α2) : Q]/[R(α1, α2) : R]

and let ρ, λ, a1 and a2 be positive real numbers with ρ ≥ 4, λ = log ρ,

ai ≥ max{1, ρ|logαi | − log |αi | + 2Dh(αi )} (1 ≤ i ≤ 2)

and

a1a2 ≥ max{20, 4λ2}.
Further suppose h is a real number with

h ≥ max

{
3.5, 1.5λ, D

(
log

(
b1

a2
+ b2

a1

)
+ log λ + 1.377

)
+ 0.023

}
,

χ = h/λ and υ = 4χ + 4 + 1/χ . We may conclude, then, that

log| | ≥ −(C0 + 0.06)(λ + h)2a1a2,

where

C0 = 1

λ3

{(
2 + 1

2χ(χ + 1)

)(
1

3
+

√
1

9
+ 4λ

3υ

(
1

a1
+ 1

a2

)
+ 32

√
2(1 + χ)3/2

3υ2√a1a2

)}2

.
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Since

pn2 > x2
2 − x2

1 ≥ 4x1 > 4
√

D (11.18)

and, via Lemma 11.5, pr > 1027, we have

pn3 = p2n2+r > 1.6 × 1028 D > 160D2,

provided D < 1026. It follows, from Lemma 11.7, that we may assume, henceforth, that
D ≥ 1026. As noted in Le [29], σ/σ̄ is a root of the polynomial

pZ1 x2 − 2
(
X2

1 + DY2
1

)
x + pZ1 ,

while θ satisfies θ2 − 2u1θ + 1 = 0. We thus have h(σ/σ̄ ) = log σ and h(θ) = 1
2 log θ .

Further, σ/σ̄ < θ2, by Lemma 11.1, and so

σ 2 < σσ̄θ2 = pZ1θ2,

whereby σ < pZ1/2θ . We will apply Lemma 11.8, taking

α1 = θ, α2 = σ/σ̄ , b1 = 2s4, b2 = t4, ρ = 5, a1 = 6 log θ,

and

a2 = 12 log θ + 2Z1 log p,

a valid choice by the above upper bounds for σ and σ/σ̄ . Since s4 ≤ t4, we have

log

(
b1

a2
+ b2

a1

)
< log

(
t4

3 log θ

)
.

From Lemma 11.3 and (11.18),

pn3 = p2n2+r ≥ 3− 1
3 p

8
3 n2 > 3−1/3(4

√
D)8/3,

and so, from D > 1026 and p ≥ 3, we may take k = 105 in Lemma 11.2 to conclude that

t4 > 4.53D1/6 log θ. (11.19)

It follows that t4 > 9.75 × 104 log θ and hence we may take

h = 2

(
log

(
t4

log θ

)
+ 1.58

)
− log 5

in Lemma 11.8, whereby h > 24. Since

a1 > 6 log(2
√

D) > 6 log(2 × 1013) = 183.76 . . .
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and a2 > 2a1, we may readily compute that C0 < 0.43. Applying Lemma 11.8, it follows
that

log  > −141.12

(
log

(
t4

log θ

)
+ 1.58

)2

log θ

(
log θ + 1

6
Z1 log p

)
.

From (11.6), since we may take k = 105,

log  < log(2.1
√

D) − t4 Z1

2
log p.

Combining these two inequalities and dividing by 1
2 Z1 log p log θ , we find that

t4
log θ

<
2 log(2.1

√
D)

Z1 log p log θ
+ 282.24

(
log

(
t4

log θ

)
+ 1.58

)2( log θ

Z1 log p
+ 1

6

)
.

Since θ > 2
√

D, D > 1026 and p ≥ 3, we have

2 log(2.1
√

D)

Z1 log p log θ
< 1.83,

which, together with t4 > 9.75 × 104 log θ , implies that

t4/ log θ(
log

( t4
log θ

) + 1.58
)2 <

282.24 log θ

Z1 log p
= 47.06. (11.20)

We will finish the proof of Theorem 1.11 by considering two cases. First; let us suppose
that p > 106. From p > 3, Lemma 11.3 and (11.18),

pn3 = p2n2+r ≥ p
8
3 n2+ 1

3 > (4
√

D)8/3 p1/3

and so, with D > 1026 and p > 106, we may choose k = 106 in Lemma 11.2 to conclude
that

t4 > 0.9928/3 p1/6 D1/6 log θ > 62.86D1/6 log θ. (11.21)

Applying inequality (11.21) and Lemma 11.6 to (11.20), it follows that

D1/6

(log(62.86D1/6) + 1.58)2
<

4.49 log2 D

log2(106)
+ 0.75,

contradicting D > 1026.
If, on the other hand, 3 ≤ p < 106, we may suppose from Lemmata 11.5 and 11.7, in

conjuction with (11.18), that D > 1053. From (11.19) and (11.20), we conclude that

D1/6

(log(4.53D1/6) + 1.58)2
<

62.31 log2 D

log2 3
+ 10.39,

again contradicting our lower bound upon D.



268 BAUER AND BENNETT

12. Concluding remarks

The techniques of this paper may be generalized to handle a wide variety of Diophantine
equations of the shape

f (x) = yn, (12.1)

where f (x) is a fixed polynomial with integer coefficients and at least two distinct roots
(over C) and y > 1 is a fixed integer. In the simplest case generalizing (1.19), where f (x)

is a monic quadratic with distinct roots, we may apply either Theorem 1.3 or Theorem
1.5 with s = 1 or 4. For more general polynomials, we require more than a single “good”
approximation to obtain analogous results; indeed, for a fixed y, it may be necessary to have
as many as deg f (x) triples (x0, a, m0) with∣∣ f (x0) − adeg f (x)ym0

∣∣
suitably small, in order to completely solve Eq. (12.1).

As mentioned at the end of our Introduction, one would like to extend Theorem 1.11 to
characterize those pairs (p, D) for which Eq. (11.1) has exactly three positive solutions (to
parallel Theorem 1.9). Besides its intrinsic interest, such a result would enable us to remove
the technical condition in Theorem 1.11 that p and D are coprime. Along these lines, the
following is an easy consequence of Theorem 1.9:

Theorem 12.1. Let D be a positive integer and p be an odd prime. Then the Diophantine
equation

x2 + D = pn

has at most one solution in positive integers x and n, unless (p, D) = (3, 2 × 32 j ) or
(p, D) = (4a2 + 1, (3a2 + 1)(4a2 + 1)2 j ) for some positive integer a and nonnegative
integer j . In these cases, there are precisely two such solutions.

To see this, note that if p is a rational prime and D is a positive integer multiple of p
for which the equation x2 + D = pn has two solutions in positive integers (x1, n1) and
(x2, n2), with n2 > n1, then, if ordp D = l, we have, from pn1 > D ≥ pl , that n1 ≥ l + 1.
It follows from x2

1 + D = pn1 that l is necessarily even, say l = 2l1, whence

(xi/pl1)2 + (D/p2l1) = pni −2l1 for i = 1, 2.

Since n2 > n1 > 2l1 and p is coprime to D/p2l1 , it follows from Theorem 1.9 that
(p, D/p2l1) = (3, 2) or (4a2 + 1, 3a2 + 1) for a ∈ N.
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