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ABSTRACT 

In this paper, we completely solve the simultaneous Diophantine equations 

x2 - az2 = 1, y2 - br2 = 1 

provided the positive integers a and b satisfy b - a E { 1,2,4}. Further, we show that these equations 
possess at most one solution in positive integers (x, y, r) if b - a is a prime or prime power, under 
mild conditions. Our approach is (relatively) elementary in nature and relies upon classical results 
of Ljunggren on quartic Diophantine equations. 

1. INTRODUCTION 

A number of recent papers (see e.g. [l], [4], [5], [6], [9], [13], [14], [HI, [19]) have 
discussed the solvability in integers of systems of simultaneous Pell equations 
of the form 

(1.1) x2 - az2 = 1, y2 - bz2 = 1, 

where a and b are distinct nonsquare positive integers. Since (1.1) generically 
defines a curve of genus one, such results are analogous to finding integral 
points on a given model of an elliptic curve over Q. It follows from work of 
Siegel [16] that (1.1) has finitely many integer solutions, upper bounds for the 
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size of which may be deduced from the theory of linear forms in logarithms of 
algebraic numbers, a la Baker [2]. Indeed, in [4], the first author, sharpening 
work of Masser and Rickert [12], proved that such a system possesses at most 
three solutions in positive integers (x, y, z). Further, there are infinite families 
(a, b) for which (1.1) has at least two positive solutions (see e.g. [5]). 

The starting point of this paper is the minimal case of (l.l), with a = 2 and 
b = 3. In 1918, Rignaux [15] used an elementary argument (based, essentially, 
on Fermat’s method of infinite descent) to show that (1.1) has, in this situation, 
no positive solutions. Much more recently, Rickert [14] gave another proof of 
this result, via the theory of Pade approximation to binomial functions. As re- 
marked by Ono 1131, however, the existence of only trivial solutions to (1.1) for 
a = 2 and b = 3 is a consequence of the related elliptic curve 

y2 = x(x + 2)(X + 3) 

having Mordell-Weil rank zero over Q. In the general situation where b - a = 1, 
though, this last argument may be insufficient to imply the nonexistence of 
positive solutions to (1.1). One may (say via Ian Connell’s computer package 
APECS) check that roughly half of the elliptic curves of the form 

y2 =x(x+a)(x+a+ 1) 

with 2 5 a 5 100 have positive rank (e.g. a = 6,10,17, etc). On the other hand, 
in this paper we prove 

Theorem 1.1. Zfu and b ure positive integers with b - u E { 1,2,4}, then the sys- 
tem of equations (1.1) has no solutions in positive integers (x, y, z) unless one of the 

following situations occur: 
(i) (u,b) = (u2 - 1, u2 + 1) for some integer u, in which case there is the one 

solution (x, y, z) = (2u2 - 1, 2u2 + 1,2u). 
(ii) (u,b) = (u2 - 2, u2 + 2) for some integer u, in which case there is the one 

solution (x,y,z) = (u2 - 1,u2 + l,u), 

In particular, there are no positive solutions tfb - a = 1. 

In the more general setting where b - a is divisible by at most one prime, we are 
able to obtain the slightly less precise result: 

Theorem 1.2. Suppose that a and b are nonsquare positive integers with b - a = 
pk for pprime and k E N. Then (1.1) has at most one solution in positive integers 
(x, y, z) with gcd(x, y) not divisible by p. 

An immediate consequence of this is 

Corollary 1.3. Zf a and b are nonsquare positive integers with b - u prime, then 
(1.1) has at most one solution in positive integers (x, y, z). 

To see how Corollary 1.3 follows from Theorem 1.2, observe that if b - a = p, 
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then (1.1) implies that y2 -x2 =pz 2. If p divides both x and y, then p also di- 
vides z, contradicting (1.1). This result is sharp in the sense that, given an in- 
teger n = 2 or n > 4, we may find integers a and b for which (1.1) is solvable with 
b - a = n. In fact, for n = 2k + 1, k 2 2, then with b = k2 + 2k, a = k2 - 1, (1.1) 
has the solution (x, y, z) = (k, k + l,l). Similarly, if n = 2k, then with 
b = k2 + k and a = k2 - k, (1.1) has the solution (x,y, z) = (2k - 1,2k + 1,2). 
We know of no pair (a, b) with b - a = 3 for which (1.1) is solvable in positive 
integers. 

One motivation for studying equations (1.1) for which b - a has few prime 
factors is that the parameterized families of (a, b) for which (1.1) is known to 
have at least two solutions, when viewed as polynomials in one of the param- 
eters m, have the property that b - a factors over Z[m] into many irreducible, 
pairwise relatively prime polynomials of low degree (see e.g. [5] for a descrip- 
tion of these families). It follows that w(b - u) should grow quite rapidly for 
such pairs (a, b) (here, w(n) denotes the number of distinct prime factors of n). 
One may, in fact, readily show, for these families, that w(b - a) 2 4 unless 
u=m2 -1andb=n2-lwith 

n=16m5-16m3+3m. 

whereby 

b -a = 8m2(2m2 - 1)2(8m4 - 8m2 + 1). 

In this case, we have w(b - a) = 3 provided m = 2,8,256 or 512. Possibly, these 
are the only examples of (a, b) for which w(b - a) 5 3 and (1.1) possesses two 
positive solutions. 

As a final remark, we note that, with a modicum of effort, the elementary 
approach we take in proving Theorems 1.1 and 1.2 may be extended to treat the 
cases where b - a = 2jp k, for j, k E N and p prime. 

2. PRELIMINARY RESULTS 

The proofs of Theorem 1.1 and Theorem 1.2 rely on the following sharpening of 
Ljunggren’s classical result on the equation X2 - D Y 4 = 1 (see [l l]), proved in 

[201). 

Lemma 2.1. Let D be a nonsquare positive integer, T + Ufi denote the fundu- 
mentalsolution to X2 - DY2 = 1, and Tk + ukfi = (T + Uo)k for k 2 1. If 
there are two solutions kl < k2 to the equation uk = 2sZ2, with 6 E (0, 1) and Z a 
positive integer, then except for D E { 1785,4 . 1785,16 . 1785}, the two solutions 
are precisely kl = 1 and k2 = 2. For the three exceptional values given, there is a 
thirdsolution k3 = 4. 

A simple consequence of this is the following 

Lemma 2.2. Zf D is a nonsquare positive integer with D f 3 (mod 4) and 
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D 6 { 1785,4. 1785,16.1785}, then the Diophantine equation x2 - Dy4 = 1 has 
at most one solution in positive integers x and y. 

Proof. From Lemma 2.1, if D 9 {1785,4.1785,16.1785} and x2 - Dy4 = 1 
has two distinct positive solutions, then, in the notation of Lemma 2.1, we have 
U = u2 and 2TU = v2 for integers u and v. It follows that T = 2w2 for w E Z 
and so, since T2 - DU2 = 1, we have 4w4 - Du4 = 1 whereby D E 3 
(mod 4). 0 

Regarding the related equation X2 - D Y 4 = 4, we will have need of a result of 
Cohn, which appeared as Theorem 3 in [7]: 

Lemma 2.3. Let D be a nonsquare positive integer for which the equation 
X2 - D Y2 = 4 has a solution in odd integers. Let t + ua denote the smallest 
such solution andfor k 2 1 define 

tk+UkvQ t+ufi k 
2 = ( > 2 

The equation uk = x2 has only the solutions k = 1 ifu is a square, k = 2 ift and u 
are squares, and the possible solution k = 3 if u = 3B2 for some integer B. 

Finally, to deal with the special values D E {1785,4.1785,16.1785} described 
in Lemma 2.1, we utilize 

Lemma 2.4. If a and b are positive integers such that ab E {1785,4.1785, 
16.1785}, then (1.1) has no solutions in positive integers (x, y, z) unless 

(a, b) E {(2,14280), (6,1190), (68,105), (168,170)). 

In each of these cases, there is precisely one positive solution, corresponding to 
z = 2,2,4 and 26, respectively. 

Proof. This lemma follows from a standard combination of bounds for linear 
forms in logarithms of (three) algebraic numbers, with lattice basis reduction 
(in this case, the lemma of Baker and Davenport [3] suffices). The reader is di- 
rected to [l] and [5] for details. We note that the main result of [l] implies that 
the number of positive solutions to (1 .l) is at most one, provided max{a, b} 5 
200. q 

3. PROOF OF THEOREM 1.1 

From Lemma 2.4, we may henceforth assume that 

(3.1) ab $ {1785,4.1785,16.1785}. 

Suppose, first, that (x,y, z) is a positive solution to (1.1) where b - a = 1. It 
follows that y2 - x2 = z2, and gcd(y - x, y + X) = 1 or 2. If gcd(y - x, y + x) = 
1, then there exist positive integers A and B such that z = AB, y - x = A2 and 
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y + x = B2. Thus y = (A 2 + B2)/2 and upon substituting y and z into the sec- 
ond equation in (1.1) and simplifying, we obtain 

(3.2) 
A2 + (1 - 2b)B2 2 

2 > 
-b(b - 1)B4 = 1. 

Similarly, if gcd(y - x,y + x) = 2, we may find positive integers A and B with 
z = 2AB, y - x = 2A2 andy + x = 2B2, whencey = A2 + B2 and (from (l.l)), 

(3.3) (A2 + (1 - 2b)B’) 2 - 4b(b - 1)B4 = 1. 

Now the fundamental solution to X2 - b(b - 1) Y * = 1 is given by 

e = (2b - 1) + 2&QFij 

and so, defining Tk and uk by 

Tk + ukdm = ek, 

the equation uk = 2”B2 has a solution (k,S, B) = (1, 1,l). Inequality 3.1 and 
Lemma 2.1 therefore imply that all possible solutions to the equation uk = 
2”B2 have k E { 1,2}. But, if k = 1, we have 6 = B = 1 and so (3.3) implies that 

(A2+(l-2b))2=4b(b-1)+1 

whence 

A2 + (1 - 2b) = f(2b - 1). 

It follows that A2 = 0 or A2 = 4b - 2, both of which contradict the fact that A 

is a positive integer. If we have a solution with k = 2, then since 

T2+U2,/~=(2(2b-1)2-1)+4(2b-1)~~, 

it follows that 26B2 = 4(2b - 1). Arguing modulo 4 implies that S = 0, 
whereby, substituting 4(2b - 1) for B’ in (3.2) yields 

We conclude that 

A2 - (4b - 2)’ = f(16b2 - 16b + 2) G 2 (mod4), 

which gives the desired contradiction. 
Next assume that b - a = 2. In this case, y2 - x2 = 2z2 and so there are in- 

tegers A and B such that z = 2AB, y f x = 4A2 and y F x = 2B2. Therefore 
y = B2 + 2A2, and upon substituting y and z into the second equation in (1.1) 
and simplifying, we obtain 

(3.4) (B2+(2-2b)A2)2-4b(b-2)A4= 1. 

The minimal solution to X2 - b(b - 2) Y2 = 1 is (b - 1) + ,/mand so we 
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define Tk + uk,jm = ((b - 1) + dm)k. It follows that the equa- 
tion Uk = 26A 2 has the solution (k, S, A) = (1, 0,l) and so Lemma 2.1 implies 
that Uk = 2A2 possesses a solution only (possibly) for k = 2. For such a solu- 
tion, we have 2A2 = 172 = 2Ti Ui = 2(b - 1) and so (a, b) = (A 2 - 1, A 2 + 1). 
Substituting A 2 = b - 1 into (3.4), we find that B = 1, and so it is easily deduced 
that the only solution in positive integers is (x, y, z) = (2A 2 - 1,2A 2 + 1,2A). 
Conversely, for any integer A, equations (1.1) with (a, b) = (A2 - 1, A2 + 1) has 
the positive integer solution (x, y, z) = (2A 2 - 1,2A 2 + 1,2A). 

Now assume that b - a = 4. In this situation, y2 - x2 = 4z2 and so there are 
positive integers A and B such that z = AB, y f x = 2A2 and y $ x = 2B2. In 
both cases, y = A2 + B2. Substituting y and z into the second equation in (1.1) 
and simplifying, one therefore obtains 

(3.5) (2A2 + (2 - b)B2)2 - b(b - 4)B4 = 4. 

First, consider the case that b is even, b = 2bo say. Then (3.5) becomes 

(A2 + (1 - bo)B2) 2- bo(bo - 2)B4 = 1. 

From an analysis similar to that in the previous paragraph, it follows that there 
is a solution in positive A, B only if bo = 2u2 + 1 for some integer u. Hence 

(a,b) = ((2~4)~ - 2, (2~4)~ + 2), with the only solution to (1.1) being (x, y, z) = 
((2u)2 - 1, (2z4)2 + 1,2u). 

If b is odd, then the equation X2 - b(b - 4) Y2 = 4 is solvable in odd integers 
(X, Y) = (b - 2,l). Therefore, by Lemma 2.3, the only possible solutions to 
(3.5) arise from the minimal solution (b - 2 + ,,/w)/2 or its square 

((b2--b+2)+(b-2)d@=ij)/2 ( i.e. we have either B2 = 1 or B2 = 

b - 2). In the first instance, from (3.5) we have that 2A2 + (2 - b) = f(b - 2) 
forcing either A = 0, which is not possible, or b = A2 + 2. In the second case, 
substituting B2 = b - 2 into (3.5), we have 

The choices of signs lead to either A2 = (b - 2) 2 - 1, a contradiction since A is 
positive, or to A = 1. Therefore, in any case, (a, b) = (u2 - 2, u2 + 2) for some 
positive integer u, and the only solution in positive integers to (1.1) is 
(x, y, z) = (u2 - 1, u2 + 1, u). This completes the proof of Theorem 1.1. 

4. PROOF OF THEOREM 1.2 

Let us now suppose that b - a = pk for p prime and k E N. We first take p = 2 
(whereby, from Theorem 1.1, we may assume that k 2 3). It follows that 
y2 - x2 = 2kz2 and so, since gcd(x,y) is odd, by assumption, there exist in- 
tegers A and B, B odd, such that z = AB, y f x = 2k-‘A2 and y T x = 2B2. 
Therefore, y = B2 + 2k-2 A 2 and so upon substituting y and z into the second 
equation in (1.1) and simplifying, one obtains 

(4.1) B4+2k-‘A2B2+2 2k-“A“ _ bA2B2 = 1. 
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Note that since k 2 3 and B is odd, it follows that 4 divides bA2. Multiplying 
(4.1) by 4 and completing the square therefore yields 

(4.2) (2B2 + (2k-’ - ~+4~)~-b(b - 27A4 = 4. 

Assume first that 4 does not divide b. From the above remark, A is even, say 
A = 2& whereby equation (4.2) becomes 

(4.3) (B2 + (2k - 2b)A;) 2-4b(b - 2k)A; = 1 

We may thus apply Lemma 2.2 to conclude that (4.3) has at most one positive 
solution (again, we are assuming (3.1)). 

Now suppose that 4 divides b and hence a. If we write b = 4bo and a = 4ao, 
then bo - a0 = 2k-2 and the number of solutions to (1.1) is bounded by the 
number of solutions to (1.1) with (a, b) replaced by (ao, bo) (a solution (x, y, z) in 
the first case corresponds to a solution (x, y, 22) in the second). The fact that 
there is at most one solution to (1.1) now follows inductively by the result of the 
previous paragraph, together with Theorem 1.1. 

Suppose now that p is an odd prime. 
From (l.l), we have that y2 - x2 = pkz2 and so, since we assume that p does 

not divide both x and y, we must have either 

yfx=pkA2, y’fx=B2,z=AB, 

with A and B odd, or 

yfx=2pkA2, y?x=2B2,z=2AB. 

In the first case, y = $ (B2 +pkA2) and, upon substituting this into the second 
equation in (1.1) and completing the square, we find 

(4.4) B2 - (a+b)A2 2_abA4 = 1, 

2 > 

The second case yields y = B2 + pkA2 and, in a similar manner, we obtain 

(4.5) (B2 - (a + b)A2) 2-4abA4 = 1. 

In either case, we may clearly suppose that ab is not a square. 
Assume that there are two distinct solutions (xr,yr,zi) and (x~,JQ,z~) in 

positive integers to (l.l), with, say z2 > zi and satisfying the condition of The- 
orem 1.1. Then, from (4.4) and (4.5), there are two units in Q(6) of one of the 
following forms: 

B2- (a+b)A2 
2 

+A26 where A odd 

or 

(C2 - (a + b)D21 + 2D2&. 



If E = T + VI/& denotes the fundamental solution to X2 - abY = 1, then it 
is readily deduced from Lemma 2.1, since T and U are positive, that 

> 
+A2&=u2+A2&&, 

and 

c2 = f(C2 - (u + b)D2) + 2D2&, 

where zt = AB with A and B odd and 22 = 2CD. From the choices of signs, we 
are left with four cases to consider, which we will treat in turn. Three of these 
prove to be straightforward, while the fourth requires considerably more effort. 

First, suppose that 

E= 
B2-(a+b)A2+A2G 

2 > 

and 

whereby 

C2-(a+b)D2=2 
B2 - (a + b)A2 

2 > 

2_1 

and 

2D2=2A2 
B2 - (u + b)A2 

> 2 

Upon simplifying and using the fact that 

B2-((a+b)A2=U2 
2 

I 

we obtain 

C2 + 1 = B2 
B2 - (a + b)A2 

2 > 

= U2B2 

This leads to u = 1, E = 1 and hence A = 0, a contradiction. 
Next, let 

E= 
B2-(a+b)A2+A~G 

2 

and 

c2 = (a + b)D2 - C2 + 2D2&. 

Recall that E = u2 + A2&. Since one of a or b is even, u is odd, and hence 

B2-(a+b)A2=2u2=2(mod8). 

8 



Since A and B are odd, it follows that a + b = 7 (mod 8). Now 

(a+b)D2-C2=2u4-l=l (mod8) 

and since D = uA is odd, it follows that C2 zz 6 (mod 8), which is clearly not 
possible. 

If 

E= (a+e42-B2+A2&g 

2 

and 

E* = (u + b)D2 - C2 + 2D2d&, 

then an argument similar to the one given for the first situation implies that 
C2 - 1 = B2u2, forcing Bu = 0, a contradiction. 

We must work a little harder to rule out the fourth possibility. Assume hen- 
ceforth that 

(4.6) 
~ = (a + b)A2 -B* 

2 
+A2Jab=u2+A2Jab 

and 

(4.7) e2 = C2 - (u + b)D2 + 2D2&&. 

Recall that (xi,yi, zi) and (x:!,JQ,z~) are distinct positive solutions to (l.l), 
with, say, z2 > zi (whence zi = AB and z2 = 2CD). It follows that we may write 

o ii _ o -ji pki _ p-k] 

zi= 2Jii = 2fi 

where o and ,f3 are the fundamental solutions to the equations x2 - uz2 = i and 
y2 - bz2 = 1, respectively, andji and ki are positive integers, for 1 5 i 5 2. Re- 
call, also, that A, B and hence zi are odd, while z2 is even. It follows from 
standard results on the 2-divisibility of terms in linear recurrence sequences 
(see e.g. [IO]) thatjz and k2 are necessarily even. 

To obtain our desired contradiction, we consider the quantity 

(4.8) 
zj _ A2B2 (,il _ &I) 2 (ph _ p-h) 2 

z2 - m = 2J;i(aiz - &2) = 2,&(pk2 - p-h) 

Now, from (4.6) and (4.7) and the fact that 6 and ~~ are units in Q(a) of norm 
one, we may readily show that 

(4.9) 0<A*(~%-,h)~-B~y-& 

(4.10) 0<C-(~+J;;)D<8D,@(&+Jii) 

and 



(4.11) O<D2-&A4< ---&. 

Combining these inequalities with (4.8) we find that 

(4.12) K 

where 

1 

‘-A4&&(fi-\/ii)* )( 

1 

‘-2A2D2J;T, ,i 

1 

l- scD3&iqdz+ &I) 

Using (4.9), (4.10) and (4.1 I), we have that 

and so b - a 2 3, A 2 1 and B 1 1 imply that K > 0.64. 
Next, observe that (4.8) also implies the inequalities 

Combining these with (4.2) yields 

*kl-kz < (1 _p-‘)- 2 (a-dq’ 

@(dz+J;;)’ 

Since ,0 > 2fi and k2 is even, it follows that 2kl - k2 E {-2,O). In fact, if 
2kl - k2 2 2, then ,0 2kl -‘2 2 ,B2 > 4b, which contradicts the second inequality 
in (4.13). Similarly, if 2kl - k2 5 -4, then /32kl-k2 5 P-4 5 (16b2)-‘, contra- 
dicting the first inequality in (4.13). 

Suppose that 2kl - k2 = 0. Since /? 2 3 + fi and n > 0.64, it follows from 
(4.13) that 

(A- dq2 
0.94 < &(&+ &> < 1.57, 

whereby we may readily show that 8.53a < b < 13.87a. Since (4.8) implies that 

(x4- J;;)2 
“fi(fi+&q 

< a2jl -j2 < (1 _ a-2)- 2 (d&q2 

q&+%/q 

the inequality (Y L 2 + fi yields 

0.20 < a2jl -j2 < 0.49, 

a contradiction, sincejz is even and, again, a L 2 + fi. 
Finally, let us suppose that 2kl - k2 = -2. Define the sequences { Vn} and 
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{ W,,} by V, + W,,d = ,P for n E N, so that Wki = zi for 1 5 i 5 2. It follows, 
since A divides D, that A divides 2CD = z2 = Wk2, while A also divides 

W2k, = 2Vk, Wk, = 2Vk,AB. By the divisibility properties of the sequence 

{ WI, gcd( wkz, Kk, ) = Wgcd(k*.Zk,) = Wz, and hence A divides W2. But since 
Wk, is odd and divisible by A, it follows that A divides WI. 

If zi # WI, then kl > 1 whereby, since Wk, and hence k, are odd, we have 
kl 2 3. It follows that 

AB = Wk, 2 w3 = (4V: - 1) Wi > (4W;b - 1) Wi 2 (4A2b - l)A, 

where the last inequality is a consequence of the fact that A divides WI. This 
contradicts (4.9) and so we conclude that kl = 1 and thus kZ = 4. Since VI 2 2, 
we have 

W4=4(2V;-1)ViWi L7V;W, >7W;b&>7A4b& 

On the other hand, (4.10) and (4.11) show that 

W4=2CDi2(dhJ;;)di%A4+ 
fi+fi 1 

A266 +4D2&%(fi+&) 

whence 

W4 < 4A4b& + 2. 

This contradiction completes the proof of Theorem 1.2. 
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