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Binomial Thue equations and polynomial powers

M. A. Bennett, K. Győry, M. Mignotte and Á. Pintér

Abstract

We explicitly solve a collection of binomial Thue equations with unknown degree and
unknown S-unit coefficients, for a number of sets S of small cardinality. Equivalently, we
characterize integers x such that the polynomial x2 + x assumes perfect power values,
modulo S-units. These results are proved through a combination of techniques, including
Frey curves and associated modular forms, lower bounds for linear forms in logarithms, the
hypergeometric method of Thue and Siegel, local methods, and computational approaches
to Thue equations of low degree. Along the way, we derive some new results on Fermat-
type ternary equations, combining classical cyclotomy with Frey curve techniques.

1. Introduction

The binomial Thue equations

Axn − Byn = C, (1.1)

where n � 3 and A,B and C are nonzero integers, play an important role in Diophantine analysis and
have numerous applications; see, for example, [Mor69, ST86, Ben01, HSS01, Ben04, BGP04, GP05]
and the references given there. It follows from a classical theorem of Thue [Thu09] that (1.1) has at
most finitely many solutions in integers (x, y), which, via a result of Baker [Bak68], are explicitly
bounded in size. If one allows n � 3 to be variable, Tijdeman [Tij75] showed that (1.1) has still
at most finitely many solutions (x, y, n) with |xy| > 1 (and even that max{x, y, n} is effectively
bounded). An extension of this result to the case where the coefficients A,B and C are, additionally,
taken to be unknown S-units, rather than fixed, may be found in recent work of Győry, Pink and
Pintér [GPP04]. Recall that, for a finite set of primes S, an integer a is called an S-unit if all its
prime factors lie in S.

In the proofs of [Bak68], [Tij75] and [GPP04] Baker’s theory of linear forms in logarithms was
involved. Although the results of [Bak68] and [Tij75] have been improved several times, even the
best known general upper bounds on the solutions of (1.1) are too large for numerical resolution of
the equation in concrete cases.

Equation (1.1) with unknown n � 3 and unknown S-unit coefficients A,B has been resolved in
only a few instances, in each case with C = ±1. For example, if S = {2}, the fact that (1.1) has no
solution with |xy| > 1 is a consequence of work of Darmon and Merel [DM97] and Ribet [Rib97] on
Fermat-type equations. For sets S of cardinality exceeding unity, the only explicit result known is
Theorem 1.2 of [Ben04] which solves (1.1) for C = ±1 and S = {2, 3}. In the proof of this theorem,
fundamental use is made of the fact that the primes 2 and 3 correspond to values of m for which
one may construct Frey curves over Q from solutions (a, b, c) to Aan +Bbn = cm. However, for more
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general sets S, even those with |S| = 2, additional arguments and new ingredients are also needed,
including improved lower bounds for linear forms in three (or, potentially, more) logarithms.

Our first result concerning (1.1) generalizes the aforementioned earlier work with S ⊆ {2, 3}.
Theorem 1.1. Let S = {p, q} for p and q primes with 2 � p, q � 13. If A,B, x, y and n are positive
integers with A,B S-units, A < B and n � 3, then the only solutions to (1.1) with C = ±1 are
those with

n � 3, A ∈ {1, 2, 3, 4, 7, 8}, x = y = 1

and

n = 3, (A,x) = (1, 2), (1, 3), (1, 4), (1, 9), (1, 19), (1, 23), (3, 2), (5, 11),
n = 4, (A,x) = (1, 2), (1, 3), (1, 5), (3, 2),

n = 5, (A,x) = (1, 2), (1, 3),
n = 6, (A,x) = (1, 2).

Another classical Diophantine problem, given a polynomial f(x) with integer coefficients and a
finite set S of primes, is to determine the integers x for which the superelliptic equation

f(x) = ωyn (1.2)

has solutions in integers y, ω with ω an S-unit. As is well-known, (1.2) may be reduced to a number
of equations of the shape (1.1) over the splitting field of f . When n � 3 is fixed and f has at least two
simple zeros, an explicit upper bound was given for the solutions x, y, ω of (1.2) by Baker [Bak69].
This result was extended in [ST76, Tur82, ST86, GPP04] to the case when n is also unknown, but
with exceptionally large bounds for x and y.

Unfortunately, it is virtually always an impractical task to actually compute the solutions of
(1.2) for a given polynomial and set of primes. In the case when f(x) = x(x + 1), however, (1.2)
and (1.1) with C = ±1 and A,B unknown integer S-units are equivalent. In this situation, the
aforementioned results of [DM97, Rib97, Ben04] concerning (1.1) furnish all the solutions to (1.2)
for S = {2, 3}.

Our Theorem 1.1 is equivalent to the following result.

Theorem 1.2. Let S be as in Theorem 1.1, and let f(x) = x(x + 1). If x is a positive integer such
that (1.2) has solutions in integers y, n and ω with ω an S-unit and n � 3, then

x ∈ {1, 2, 3, 4, 7, 8, 15, 24, 26, 27, 32, 48, 63, 64, 80, 242, 624, 728, 6655, 6859, 12 167}.

We note that, for the polynomial f(x) = x(x + 1), there is no loss of generality in restricting to
positive values of x, since f(−x) = f(x − 1).

One of the main interests in our theorems is that their proofs require a combination of information
derived from (several) Frey curves with the hypergeometric method of Thue and Siegel, recent lower
bounds for linear forms in three logarithms, the use of somewhat involved local considerations, and
techniques for solving Thue equations of moderate degree, based on ideas of Hanrot [Han97]. For a
number of the sets S under consideration (such as S = {2, 5} or {2, 7}), it is only through careful
application of state-of-the-art estimates, together with this hybrid Frey-curve approach, that we are
able to completely solve (1.1) and (1.2).

The outline of this paper is as follows. In proving Theorem 1.1, we restrict ourselves to those solu-
tions of (1.1) for which xy > 1. The solutions with x = y = 1 will be given at the end of the proof. In
Section 2, we establish two new results (Theorems 2.1 and 2.2) on general ternary equations, based
on the modularity of Galois representations, to determine the solutions of (1.1) for all but small n,
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except for S = {2, 5} and {2, 7}. In Section 3, we appeal to lower bounds for linear forms in loga-
rithms to bound n in these latter two cases. Section 4 is comprised of two new results (Theorems 4.1
and 4.2) on generalized Fermat-type equations, combining work from the classical theory of cyclo-
tomic fields with techniques based on the modularity of Frey curves. For our purposes, these results
are used primarily to reduce considerably our remaining computations. Sections 5 and 6 deal with
local (and not-so-local!) methods for proving that (1.1) has no solution if S = {2, 5} or {2, 7}, except
for small n. Finally, in Sections 7 and 8, we conclude by treating the remaining small values of n
and the solutions x = y = 1, respectively.

We note that our Theorems 2.1, 2.2, 4.1 and 4.2 concerning ternary equations may be of
independent interest.

2. Ternary equations via Frey curves

For S = {p, q} with distinct primes 2 � p, q � 13, we will consider those positive integer solutions
A,B, x, y, n of (1.1) for which xy > 1, where we take C = 1, and suppose that A and B are S-
units. Our first step is to obtain a reasonable upper bound for n. To achieve this, we will begin by
considering more general equations of the form

AXn − BY n = Zm, m ∈ {3, n}.
Approaches to solving such equations, analogous to that employed by Wiles [Wil95] to prove
Fermat’s last theorem, may be found in numerous recent papers, for example, [BS04, BVY04,
DM97, Kra97, Rib97, Ser87].

For our purposes, we will restrict attention to the cases m = 3 and m = n. If 2 �∈ S, we will
appeal to the following theorem.

Theorem 2.1. Suppose that AB = pαqβ where either p, q ∈ {3, 5, 7, 11, 13}. If n > 7 is prime and
coprime to pq, then the equation

AXn − BY n = Z3 (2.1)

has no solutions in integers (X,Y,Z) with |XY | > 1, XY even, and AX,BY and Z pairwise
coprime.

In other words, under the assumptions of Theorem 2.1, (2.1) has no solutions with |XY | > 1
and Z odd.

Proof. If one of p or q, say p, is equal to 3 and β ≡ 0 (mod n), then this is a special case of [BVY04,
Theorem 1.5]. Otherwise, let us suppose that we have a solution to (2.1) in integers (X,Y,Z)
with |XY | > 1, XY even, and AX,BY and Z pairwise coprime. Without loss of generality, we
may assume that AX �≡ 0 (mod 3) and BY n �≡ 1 (mod 3), and that A and B are nth power free.
Following [DM97, BVY04], we consider the elliptic curve

E : y2 + 3Zxy − BY ny = x3. (2.2)

By what are now fairly standard arguments (see, e.g., [BVY04] or [DM97]), the canonical Galois
representation

ρE,n : Gal(Q/Q) → GL2(Fn),

of Gal(Q/Q) on the n-torsion points E[n] of E, may be shown, for n > 7 prime, to arise from a
weight 2, level Nn(E) cuspidal new form

f =
∞∑

r=1

cr exp(2rπiz)
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of trivial Nebentypus character. Here,

Nn(E) =

{
rad3(AB)ε3 if n � AB,

n rad3(AB)ε3 if n | AB,

where

ε3 =




1, if ord3(B) = 3,
3, if ord3(BY n) � 4 and ord3(B) �= 3,
9, if 9 | (2 − BY n − 3Z),
27, if 3 ‖ (2 − BY n − 3Z) or if ord3(B) = 2,
81, if ord3(B) = 1,

and radl(m) denotes the product of distinct prime factors of m which are different from l.

For our purposes, what is useful about this result is that, writing Kf for the field of definition
of the Fourier coefficients cr of the putative form f , and supposing that l is a prime, coprime to
nNn(E), we necessarily have

NormKf/Q(cl − al) ≡ 0 (mod n), (2.3)

where al = ±(l + 1) (if l | XY ), or

al ∈ {x ∈ Z : |x| < 2
√

l, x ≡ l + 1 (mod 3)} (if l is coprime to XY ).

This is Proposition 4.2 of [BVY04]; the congruence conditions upon the al arise from the fact that
our Frey curve E has a rational 3-isogeny.

To prove Theorem 2.1, it is enough to show that no modular forms with the properties stated
here can, in fact, exist. If

Nn(E) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60},
then there are no weight 2 cuspidal newforms whatsoever at level Nn(E), whence we derive an
immediate contradiction. Otherwise, the crucial observation to make is that, from the assumption
that XY is even, we have a2 = ±3, whereby, from (2.3), either

c2 ≡ 3 (mod ν) or c2 ≡ −3 (mod ν), (2.4)

for a prime ν of Kf , lying above n. If f is one-dimensional (so that it corresponds to an elliptic curve
over Q), since Nn(E) is always odd when 2 �∈ S, we necessarily have c2 ∈ {0,±1,±2}, contradicting
both congruences in (2.4) for n > 7. For higher dimensional forms, either of (2.4) fixes cl modulo
ν, for each l coprime to nNn(E). From Stein’s Modular Forms Database [Ste], we check that, for
the levels Nn(E) of interest, in all cases, we may find at least one l contradicting (2.3). By way
of example, to discount the possibility of the form (819, 11) (in Stein’s notation) giving rise to a
solution to (2.1), with n = 11 or n � 17 prime, we note that the Fourier coefficients for this form
lie in the number field Q(θ), where θ4 − 7θ2 + 4 = 0. Since c2 = θ, both congruences in (2.4) lead
to the conclusion that n = 11. From c5 = −θ3/2+7θ/2, c17 = 2θ and c19 = θ2 +1, we are unable to
use (2.3) to eliminate the possibility that n = 11 by using l ∈ {5, 17, 19}. Happily though, we have
c23 = −3θ3/2 + 13θ/2 and, hence,

c23 ≡ ±21 ≡ ±1 (mod ν)

for ν a prime above 11 in Q(θ). Since

a23 ∈ {0,±3,±6,±9,±24},
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this contradicts (2.3). Arguing similarly for all forms at the levels Nn(E) under consideration,
completes the proof of Theorem 2.1. In the following table, we list the Nn(E) of importance, together
with the cl employed in our proof.

p q Nn(E) cl

3 5 15, 45, 135, 405 c2, c7

3 7 21, 63, 189, 567 c2, c5

3 11 11, 33, 99, 297, 891 c2, c5

3 13 39, 117, 351, 1053 c2, c5, c7, c17

5 7 105, 315, 945 c2, c11, c13, c17

5 11 165, 495, 1485 c2, c7

5 13 195, 585, 1755 c2, c7

7 11 231, 693, 2079 c2, c5, c17

7 13 273, 819, 2457 c2, c5, c11, c23

11 13 429, 1287, 3861 c2, c5

The next result will be of use in case 2 ∈ S.

Theorem 2.2. Suppose that AB = 2αqβ where q ∈ {3, 5, 7, 11, 13}. If n > 7 is a prime, coprime to
q, then the equation

AXn − BY n = Zn (2.5)

has no solutions in integers (X,Y,Z) with |XY | > 1 and AX,BY and Z pairwise coprime, unless,
possibly,

(q, α) ∈ {(3, 1), (3, 2), (3, 3), (5, 2), (5, 3), (7, 2), (7, 3)} and XY is odd

or

(q, n, α) ∈ {(11, 7, 1), (13, 7, α)} and XY is odd.

This implies that if, in particular, n > 13 is prime and α = 0 or α � 4, then (2.5) has no
solutions with |XY | > 1. For n > 13, this can be compared with the corresponding results of
[Ben04, Rib97, Ser87, Wil95].

Proof. If either α ≡ 0 (mod n) or β ≡ 0 (mod n), this follows from work of Darmon and Merel
[DM97], Ribet [Rib97], Serre [Ser87] and Wiles [Wil95]. Otherwise, supposing that n is coprime to
αβ, we may assume, without loss of generality, that AXn ≡ −1 (mod 4) and BY ≡ 0 (mod 2), and
consider

E : y2 = x(x − AXn)(x − BY n).

As in the preceding proof, the canonical Galois representation of Gal(Q/Q) on the n-torsion points
E[n] of E, may be shown, for n > 7 prime, to arise from a weight 2, level Nn(E) cuspidal new form

f =
∞∑

r=1

cr exp(2rπiz)

of trivial Nebentypus character (see, e.g., [Kra97]). Here,

Nn(E) =

{
rad2(AB)εn if n � AB,

n rad2(AB)εn if n | AB,
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where

εn =




1, if ord2(B) = 4,
2, if ord2(B) � 5,
8, if ord2(B) = 2 or 3,
32, if ord2(B) = 1.

If Nn(E) ∈ {3, 5, 6, 7, 10, 13, 22} then there are no weight 2 cuspidal newforms at these levels.
As previously, we have (2.3) for each prime l, coprime to nNn(E), where now al = ±(l + 1)

(if l | XY ), or

al ∈ {x ∈ Z : |x| < 2
√

l, x ≡ l + 1 (mod 4)} (if l is coprime to XY ).

Once again, from Stein’s Modular Forms Database [Ste], we may check that (2.3) leads to a con-
tradiction for all prime n under consideration, by choosing l ∈ {3, 5} as noted in the following
table.

q Nn(E) cl

5 160 c3

7 14, 224 c3

11 11, 88, 352 c3, c5

13 26, 104, 416 c3, c5

In the exceptional cases it is easy to show that XY must be odd. Indeed, if XY is even and,
for example q = 7, (2.5) reduces to the case of conductor 14, where a useful fact is that elliptic
curves over Q with conductor 14 do not have full 2-rational torsion. In the other cases we can argue
similarly to prove the assertion.

From Theorems 2.1 and 2.2, and [Ben04, Theorem 1.2] to complete the proof of Theorem 1.1
with xy > 1, it remains to treat (1.1) for C = ±1 with

either n ∈ {3, 4, 5, 7} or n ∈ {11, 13} and n | AB, (2.6)

as well as to show that, for primes n � 11, the following equations have no solutions in integers
X,Y with |XY | > 1 and odd

Xn − 2α5βY n = 1, 2 � α � 3, 1 � β � n − 1, (2.7)

Xn − 2α7βY n = 1, 2 � α � 3, 1 � β � n − 1, (2.8)

2αXn − 5βY n = 1, 2 � α � 3, 1 � β � n − 1, (2.9)

and

2αXn − 7βY n = 1, 2 � α � 3, 1 � β � n − 1. (2.10)

In Sections 3–6, we will deal with these last four equations. The cases listed in (2.6) will be
treated in Section 7.

3. Linear forms in logarithms

To find an upper bound for n in (2.7), (2.8), (2.9) and (2.10), for fixed α and β, we may apply a
result derived from lower bounds for linear forms in two complex logarithms, say as follows.

Proposition 3.1. Let α1 and α2 be multiplicatively independent positive rational numbers, suppose
that b1 and b2 are positive integers, and define

Λ = b2 log α2 − b1 log α1.
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Let a1, a2, h, k and ρ2 > 1 be positive real numbers, and set λ = log ρ2. Suppose that

h � log
(

b1

a2
+

b2

a1

)
+ log λ + f(K) + 0.023,

ai � max{1, ρ2| log αi| − log(αi) + 2h(αi)} (i = 1, 2), and a1a2 � λ2,

where

f(x) = log
(

(1 +
√

x − 1)
√

x

x − 1

)
+

log x

6x(x − 1)
+

3
2

+ log
(

3
4

)
+

log(x/(x − 1))
x − 1

,

L = 2+[2h/λ], and K = 1+[kLa1a2]. Here, if p and q are positive integers, h(p/q) = log max{p, q}.
Then, if k satisfies the inequality

3(L − 1)λk − 3hk − L
√

k − 1
a1

− 1
a2

− 2
√

L

a1a2
� 0, (3.1)

it follows that

log |Λ| � −λkL2a1a2 − max{λ(L − 0.5) + log((L3/2 + L2
√

k)max{a1, a2} + L), log 2}.

This is Theorem 1.5 of [Mig98], a variant of Théorème 2 of Laurent, Mignotte, and Nesterenko
[LMN95]. We will apply this later théorème to handle certain ‘degenerate’ linear forms in three
logarithms. It will also prove convenient to state the following corollary of this result.

Proposition 3.2. Let A,B and n be positive integers with n � 3 and A > B. If there exist integers
X and Y with |XY | > 1 and

AXn − BY n = 1,

then

n � 3106 log A.

Proof. This has been proved by iterated application of Proposition 3.1; see [Pin].

Unfortunately, there is no obvious way to bound β, independent of n. To deal with (2.7), (2.8),
(2.9) and (2.10), we will thus appeal to a lower bound for linear forms in three complex logarithms.
The strongest such result available until recently was due to Matveev [Mat00]. Unfortunately, for our
purposes, the bounds implicit in [Mat00] are not strong enough to enable us to complete the proof
of Theorem 1.1. We thus must apply a more recent bound, due to Mignotte [Mig, Proposition 5.1],
which is in fact a special case of an improvement of Theorem 12.9 in [BMS]. Even after specializing
this result to the problem at hand, we warn the reader that it remains extremely technical to state!

Proposition 3.3. Let α1, α2 and α3 be multiplicatively independent rational numbers with αi > 1
for 1 � i � 3, suppose that b1, b2 and b3 are positive coprime (not necessarily pairwise) rational
integers and define

Λ = b2 log α2 − b1 log α1 − b3 log α3.

Write

d1 = gcd(b1, b2), d3 = gcd(b3, b2), b1 = d1b
′
1, b2 = d1b

′
2 = d3b

′′
2, b3 = d3b

′′
3,

and let ρ3 � e be a real number and λ = log ρ3. Choose a1, a2 and a3 to be real numbers such that

ai � (ρ3 − 1) log αi + 2h(αi), i = 1, 2, 3,

and assume further that

Ω = a1a2a3 � 2.5 and a = min{a1, a2, a3} � 0.62.
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Let m and χ be real numbers with m � 3 and 0 < χ � 2, and L � 5 an integer. Define

K = [mΩL], c1 = max{(χmL)2/3,
√

2mL/a},
c2 = max{21/3(mL)2/3,

√
m/aL}, c3 = (6m2)1/3L,

Ri = [cia2a3], Si = [cia1a3] and Ti = [cia1a2],

for 1 � i � 3. Let us also write

R = R1 + R2 + R3 + 1, S = S1 + S2 + S3 + 1 and T = T1 + T2 + T3 + 1

and define

C = max
{

R

a2a3
,

S

a1a3
,

T

a1a2

}
and V = ((R1 + 1)(S1 + 1)(T1 + 1))1/2.

Finally, assume that

κλ − 2 log(KL) − 3gCLΩ − (K − 1) log b̃ + 2 log 1.36 � 0, (3.2)

where

κ =
KL

2
+

L

4
− 1 − 2K

3L
, g =

1
4
− K2L

12RST
and

b̃ = e3

(
CΩ
2K

)2( b′1
a2

+
b′2
a1

)(
b′′3
a2

+
b′′2
a3

)
.

Then either

log|Λ| > −(KL + log(3KL))λ,

or at least one of the following conditions (C1), (C2), (C3) holds:

(Ci) |b1| � Ri, |b2| � Si and |b3| � Ti for i = 1, 2; or

(C3) either there exist nonzero rational integers r0 and s0 such that

r0b2 = s0b1

with

|r0| � (R1 + 1)(T1 + 1)
M − T1

and |s0| � (S1 + 1)(T1 + 1)
M − T1

,

where

M = max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV },
or there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1, gcd(r1, s1) = δ,

|r1s1| � δ · (R1 + 1)(S1 + 1)
M − max{R1, S1} , |s1t1| � δ · (S1 + 1)(T1 + 1)

M − max{S1, T1}
and

|r1t2| � δ · (R1 + 1)(T1 + 1)
M − max{R1, T1} .

In essence, this result provides a nice lower bound on the linear form Λ, unless there is a ‘small’
linear dependency amongst the coefficients bi (these are just the conditions (C1), (C2) and (C3)).
To apply this bound to (2.7), (2.8), (2.9) and (2.10), it will be helpful to have a decent lower bound
for |X| and |Y | at hand.
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Lemma 3.4. Let n > 7 be prime. Suppose that X and Y are odd integers with |XY | > 1, satisfying
one of the equations (2.7), (2.8). Then

|X| > exp{n/3106} − 1.

If X and Y are odd integers with |XY | > 1, satisfying one of the equations (2.9), (2.10), then

|X| > n − 2
√

n + 1.

Proof. Suppose first that there exist odd integers X and Y with |XY | > 1, satisfying one of the
equations (2.7), (2.8). Rewriting these equations as(

Xn − 1
X − 1

)
(X − 1) = 2αqβY n with q = 5 or 7,

we note that any prime divisor of (Xn − 1)/(X − 1) may be readily shown to be congruent to 0 or
1 modulo n. It follows that 2αqβ divides X − 1 and, hence,

|X − 1| � 2αqβ.

However, Proposition 3.2 implies that

n < 3106 log(2αqβ) � 3106 log(|X − 1|),
whereby

|X| > exp{n/3106} − 1.

If, on the other hand, there exist odd integers X and Y with |XY | > 1, satisfying one of the
equations (2.9), (2.10), then we consider the elliptic curve

E : y2 = x(x + qβY n)(x + 2αXn), q ∈ {5, 7}.
As in the proof of Theorem 2.2, the corresponding mod n Galois representation arises from a weight
2 cuspidal newform of level 40 or 56, depending on whether q = 5 or 7, respectively. Since |XY | > 1,
either n | X (so that |X| � n) or there exists a prime l, coprime to 2qn, such that l | X. In the
latter case, E has multiplicative reduction at l and, hence, from (2.3) and the fact that all weight
2 newforms at levels 40 and 56 are one-dimensional, we have

n | cl ± (l + 1),

where cl is a rational integer with (via the Hasse–Weil bounds) |cl| < 2
√

l. It follows that

n < l + 2
√

l + 1 � |X| + 2
√

|X| + 1,

whence |X| > n − 2
√

n + 1.

Carefully combining the previous results in this sections yields the following bounds on n in
(2.7), (2.8), (2.9) and (2.10).

Proposition 3.5. If there exist odd integers X and Y with |XY | > 1, satisfying one of the equations
(2.7), (2.8), (2.9), (2.10), then n < n0 in the following table.

Equation n0

(2.7) 4.4 × 107

(2.8) 5.5 × 107

(2.9) 5.9 × 107

(2.10) 7.8 × 107

Proof. We will restrict our attention to, for example, (2.9), where, for added simplicity, we will
assume that X and Y are positive. The other cases are proved in a very similar fashion; the stronger
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estimates for (2.7) and (2.8) are the result of the correspondingly sharper lower bounds upon X,
from Lemma 3.4. If we have positive integers X and Y with XY > 1 satisfying (2.9), then necessarily
X > Y � 1 (since, via Proposition 3.2, we may assume that β > 2). We consider the linear form

Λ = β log 5 − n log(X/Y ) − α log 2.

In the notation of Proposition 3.3, we have

α1 = X/Y, α2 = 5, α3 = 2, b1 = n, b2 = β and b3 = α.

It follows from (2.9) that |eΛ − 1| � 2−5. Hence,

|Λ| � 2|eΛ − 1| = 2
∣∣∣∣5β

2α

(
Y

X

)n

− 1
∣∣∣∣ � 2X−n. (3.3)

Suppose, here and henceforth, that

n � 5.9 × 107,

whence, by Lemma 3.4, X > 5.89 × 107. We will apply Proposition 3.3 with

χ = 1/2, L = 73, m = 28, ρ3 = 7.3,
a1 = 6.3 log 5 + 2 log X, a2 = 8.3 log 5, and a = a3 = 8.3 log 2,

whereby

c1 = 101.4613408 . . . , c2 = 202.9226816 . . . , and c3 = 1223.1469343 . . .

Using these constants, we have

R1 = 7797, R2 = 15595, R3 = 94001,

and, from the fact that X > 5.89 × 107,

S1 � [1498.2467 log X],
S2 � [2996.4934 log X], S3 � [18 061.8138 log X],

T1 � [3478.8211 log X], T2 � [6957.6422 log X], and T3 � [41 938.2329 log X].

It is easy to verify that

χV � max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1},
BS :=

(R1 + 1)(T1 + 1)
χV − max{R1, T1} < 279, BT :=

(R1 + 1)(S1 + 1)
χV − max{R1, S1} < 118,

independently of X (for X > 5.89 × 107), and that inequality (3.2) is satisfied.
We thus have either

log |Λ| � −KL log ρ3 − log(3KL) > −5.851 × 107 log X,

whence, with (3.3),
n < 5.9 × 107,

or one of conditions (C1), (C2) or (C3). In cases (C1) or (C2), we in fact obtain the stronger
inequality

n � max{R1, R2} = 15595,
contradicting n � 5.9 × 107. Moreover, the first case of condition (C3), that is, r0b2 = s0b1, cannot
hold because of the bound on r0 (namely |r0| � BS) and the fact that b1 = n � 5.9 × 107 is prime,
and b2 = β < n. On supposing that condition (C3) holds, then we necessarily have

s1t1n + r1s1α − r1t2β = 0,
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where r1, s1, t1 and t2 are as in the statement of Proposition 3.3. We write r1 = δr′ and s1 = δs′,
whence

s′t1n + δr′s′α − r′t2β = 0.

It follows that r′ | n and, hence, since |δr′s′| � BT < 118 and n � 5.9 × 107 is prime, r′ = ±1.
Without loss of generality, we may thus write

s′t1n + δs′α − t2β = 0. (3.4)

Since 2 � α � 3, 1 � β � n − 1 and |δs′| � 117, this implies

|s′t1| � |t2| � BS < 279.

Now the identity (3.4) enables us to rewrite t2Λ as a linear form in two logarithms. In our
example,

t2Λ = n log(5s′t1 × (Y/X)t2) − α log(2t2 × 5−δs′).

Note that (3.4), together with the inequalities

2 � |δs′α| � 351 and n > 5.9 × 107,

imply that t2 �= 0. Without loss of generality, we may in fact assume, from (3.4), that t2 and s′t1
are positive integers.

We will apply Proposition 3.1 with, in the notation of that result,

α1 = 2t2 × 5−s′δ, α2 = 5s′t1 × (Y/X)t2 , b1 = α and b2 = n.

Note that

log α2 = s′t1 log 5 − t2 log(X/Y )

and so, from (3.4),

n log α2 = t2(β log 5 − n log(X/Y )) − δs′α log 5.

Combining this with (3.3), it follows that

n log α2 = t2(α log 2 + 2θX−n) − δs′α log 5,

where |θ| < 1. This implies, from the inequalities n > 5.9 × 107, 2 � α � 3, |δs′| � 117, t2 < 279
and X > 5.89 × 107, that

|log α2| < 0.0001.

Choosing ρ2 = 12 therefore enables us to take

a1 = 13 log(2t2 × 5|s
′δ|), a2 = 2t2 log X + 0.01, h = log n,

and

0.029 < k < 0.035,

chosen as small as possible, while satisfying inequality (3.1). With these choices, for 1 � |s′δ| � 117
and 1 � t2 � 278, we verify, in each case, that Proposition 3.1 and inequality (3.3) together imply
that n < 5.9 × 107, as desired. Arguing similarly for the remaining equations completes the proof
of Proposition 3.5.

4. Cyclotomy

One may reasonably approach (2.7) and (2.8) via classical work on cyclotomic fields. With this in
mind, let B be a nonzero rational integer, and consider the equation

Xn + Y n = BZn, (4.1)
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where n > 3 and X, Y , Z are coprime nonzero rational integers. Let φ(B) denote Euler’s function.
We have the following results, which may be of independent interest.

Theorem 4.1. Let n > 3 be a prime and B a positive integer such that n is coprime to Bφ(B),
and

Bn−1 �≡ 2n−1 (mod n2). (4.2)

Suppose that (4.1) has a solution in pairwise relatively prime nonzero integers X, Y and Z. Then
either (i) n | Z or (ii) n | XY , BZ is odd and rn−1 ≡ 1 (mod n2) for each divisor r of B. Further,
in either case (i) or (ii), we have

log n < 3R log R, where R = rad (B) =
∏
p|B

p. (4.3)

This is a sharper and rather more explicit version of a recent result of Halberstadt and Kraus
[HK02, Theorem. 6.1]. Apart from (4.3), Theorem 4.1 was proved in [BGP04] (see also [Gyo66]).
If we have that n | XY Z in (4.1), it is easy to show that we necessarily have (4.3), with no additional
hypotheses on n and B.

Proof. If B is a perfect nth power this is an immediate consequence of [Wil95]. Otherwise, the result
is a consequence (cf. in [BGP04, Corollary 6.2]) of Satz 1 of Győry [Gyo66], except for the inequality
for n. We note that the proofs in [Gyo66] depend on Eisenstein’s reciprocity theorem in cyclomotic
fields. To derive an upper bound for n, in the case n | XY Z, we argue as in Kraus [Kra97]. As in
the proof of our Theorem 2.2, we associate to a nontrivial solution of (4.1) (noting that the case
B = 2 was treated in [DM97]) a Frey curve E with corresponding weight 2 cuspidal newform f
of level N dividing 16R. If this newform is one-dimensional and n fails to divide B, then E has
multiplicative reduction at n, while f corresponds to an elliptic curve F/Q with good reduction
at n. By Proposition 3 of Kraus and Oesterlé [KO92], it follows that the nth Fourier coefficient an

of the curve F satisfies

an ≡ ±(n + 1) ≡ ±1 (mod n).

Since an is an even rational integer, satisfying |an| < 2
√

n, this is a contradiction.
It remains to treat the case where our cuspidal newform f =

∑∞
r=1 cr exp (2rπiz) at level N has

coefficients in a number field of degree at least 2. Via Lemme 1 of [Kra97], if we define

µ(N) = N
∏
l|N

(
1 +

1
l

)
,

where l runs through the distinct prime factors of N , then there necessarily exists a prime p, coprime
to N , such that cp �∈ Z, with p � µ(N)/6. From (2.3), it follows that n divides the (nonzero) integer

NormKf/Q(cp ± ap),

and, hence, via the Hasse–Weil bounds,

n � (p + 1 + 2
√

p)[Kf :Q].

Since a result of Martin [Mar05] yields the inequality

[Kf : Q] � N + 1
12

,

and we have p � µ(N)/6, it follows that

n � (
√

µ(N)/6 + 1)(N+1)/6. (4.4)
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Assume that B is even; the case where B is odd leads to a stronger bound via a similar analysis.
From the fact that N divides 16R, the last inequality implies that

µ(N) � 24R
∏

l|B,l �=2

(
1 +

1
l

)
� 24R

∏
l|B,l �=2

(
1 − 1

l

)−1

and so

µ(N) � 24R
rad2(B)

φ(rad2(B))
,

where rad2(B) =
∏

l|B,l �=2 l. Applying Lemma 25 of [Mar05] to give an explicit lower bound for
φ(rad2(B)), we conclude that

µ(N) � 24R
log R

log 2
and, hence, from (4.4),

n �
(

2
(

R
log R

log 2

)1/2

+ 1
)(16R+1)/6

.

This implies the stated bound as soon as R � 10. For R ∈ {2, 3, 5, 7}, Theorem 4.1 (in much stronger
form) is a consequence of work of Serre [Ser87] and Ribet [Rib97]. Finally, if R = 6, the fact that
all weight 2, level N = 2α · 3 cuspidal newforms are one-dimensional, for α ∈ {0, 1, 3, 5}, leads to
the desired conclusion.

Our second result of this section will prove helpful in Section 7, treating (1.1) for n ∈ {11, 13},
A = 1, n | B and C = ±1. Where this result is applicable, it is much more computationally
efficient than solving the corresponding Thue equations via linear forms in logarithms and lattice
basis reduction.

Let n > 3 be a prime, and suppose that in (4.1) B is divisible by n. Let n, p1, . . . , pr denote the
distinct prime factors of B, and, for r � 1, f1, . . . , fr the smallest positive integers for which

pfi
i ≡ 1 (mod n), i = 1, . . . , r.

Set ordn(B) = N , and ζ = e2πi/n. Denote by h0 the class number of the number field K0 =
Q(ζ + ζ−1), and by Bm the mth Bernoulli number. We recall that B2m+1 = 0 for m � 1.

Theorem 4.2. Suppose that N = 1 or N � 4, and that the following conditions hold:

(i) h0 is not divisible by n;

(ii) none of the Bernoulli numbers B2tn, t = 1, . . . , (n − 3)/2, is divisible by n3;

(iii) if r � 1,
r∑

i=1

1
fi

� n − 3
2(n − 1)

and (n − 1)/fi is odd for i = 1, . . . , r.

Then (4.1) has no solution in coprime nonzero rational integers X,Y,Z which are not divisible
by n.

In the particular case n | N , Theorem 4.2 was proved in [Ago77, Theorem 2], (see also [Gan72],
where the proof of the corresponding result is not correct). Theorem 2 of [Ago77] is stated with 2 | fi

in place of 2 � ((n − 1)/fi) for i = 1, . . . r. However, the proof in [Ago77] is correct and complete
only under the stronger assumption 2 � ((n − 1)/fi).

We note that condition (i) is satisfied by all odd primes n < 5500 (cf. [BS72]) while a simple
check using Pari shows that condition (ii) is satisfied by all odd primes n < 350.
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Proof. Suppose that (4.1) has a solution in coprime nonzero rational integers X,Y and Z not
divisible by n. Then it follows that n | X + Y and

n | (Xn + Y n)/(X + Y )

whence N � 4.
We shall prove more. Let M be a positive integer with M � (n − 1)/2 or M � (3n + 1)/2.

Further, let κ = (1− ζ)(1 − ζ−1) and suppose that δ is a nonzero algebraic integer in K0 having at
most (n− 3)/2 distinct prime ideal factors in K = Q(ζ), each of which is real. We show that under
assumptions (i) and (ii), the equation

Xn + Y n = ηκM δZn (4.5)

where η is a unit in K0, is impossible in pairwise relatively prime nonzero integers X,Y,Z in K0

which are not divisible by the prime element λ = 1 − ζ in K.
Indeed, (4.5) implies that λ divides X+ζiY in K for each i with 0 � i � n−1. However, κ = µλ2

for a unit µ in K, and hence the inequality M � (n − 1)/2 cannot hold. For M � (3n + 1)/2, our
claim can be proved in the same way as the corresponding assertion was proved in [Ago77] in the
particular case M = mn with m > 1. It suffices to take M everywhere in [Ago77] in place of mn,
and observe that the congruences for α on [Ago77, p. 5] are valid not only modulo λM−2n, but also
modulo λM−n−1.

Consider again (4.1). We have n = η0κ
(n−1)/2 with some unit η0 in K0. Putting η = ηN

0 ,M =
N(n− 1)/2 and δ = B/nN , every solution of (4.1) in coprime nonzero rational integers X,Y,Z not
divisible by n yields a solution of (4.5). Further, by using condition (iii) one can prove (see, e.g.,
[Ago77, p. 6]) that δ has at most (n− 3)/2 distinct real prime ideal factors in K. Now the assertion
follows from our above result concerning (4.5).

5. Local approaches to (2.7) and (2.8)

Consider first (2.7) and (2.8) for n < 7.8×107. Using Theorem 4.1 we show that, for given n and α,
β is uniquely determinable. This will be crucial for solving (2.7) and (2.8). By applying Theorem 4.1
to (2.7) and (2.8) with B = 2αqβ, for α ∈ {2, 3}, and q ∈ {5, 7}, we conclude that either n | Y , or
that

(2αqβ)n−1 ≡ 2n−1 (mod n2),

and, thus,

(2α−1qβ)n−1 ≡ 1 (mod n2), (5.1)

where q = 5 and 7, respectively, and α ∈ {2, 3}, 1 � β � n − 1.
If n | Y , then we may argue as in the proof of Theorem 4.1. The fact that all weight 2 cuspidal

newforms at levels 40 and 56 are one-dimensional (corresponding to elliptic curves over Q with
rational 2-torsion) leads to a contradiction. It remains therefore to treat those α, β and n satisfying
congruence (5.1). We begin by showing that, for fixed α, q and n � 4 × 1012, (5.1) has a single
solution in 0 < β < n. Let g be a primitive root mod n2, and tq, t2 be positive rational integers
with max{tq, t2} < n(n − 1) such that

gtq ≡ q (mod n2) and gt2 ≡ 2 (mod n2).

From (5.1), we have

(gβtq+(α−1)t2)n−1 ≡ 1 (mod n2)

and so
βtq + (α − 1)t2 ≡ 0 (mod n). (5.2)
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If n | t2tq, then n | t2 and n | tq, whence

2n−1 ≡ qn−1 ≡ 1 (mod n2).

However, from [CDP97], the only primes n for which 2n−1 ≡ 1 (mod n2) and n � 4 × 1012 are
n = 1093 and n = 3511. In neither case do we have 5n−1 ≡ 1 (mod n2) or 7n−1 ≡ 1 (mod n2), hence
this is a contradiction for n � 4 × 1012. Otherwise, if n is coprime to t2tq, then (5.2) has a unique
integral solution β in the interval (0, n).

We will use this information to reduce considerably the calculations involved in proving that for
n � 11 prime, (2.7) and (2.8) have no solutions in integers X and Y , with |XY | > 1.

To complete the proof that the only integer solutions to (2.7) and (2.8) are with |XY | � 1, we will
begin by arguing locally, finding, for each (α, β, q, n), a prime l such that l | Y . This will guarantee
that our Frey curve corresponding to a solution to (2.7) or (2.8) has multiplicative reduction at l,
which, in turn, will lead us to a contradiction. This method was applied to similar problems by the
first author in [Ben04].

We begin with (2.7). For each prime n with 11 � n < 4.4 × 107, each α ∈ {2, 3} and, as we saw
above, the unique β = β(α, n) satisfying (5.1) with q = 5, we consider (2.7) modulo various primes
l ≡ 1 (mod n). There are

2π(4.4 × 107) − 8 = 5322 760

such triples (α, β, n) to treat. If l = 2kn + 1 for suitably small k, relative to n, then we might
reasonably hope that, from (2.7), necessarily l | Y . If this occurs, it follows that our corresponding
Frey curve has multiplicative reduction at l, whence, for an elliptic curve F/Q of conductor 40, the
lth Fourier coefficient cl satisfies

cl ≡ ±(l + 1) ≡ ±2 (mod n). (5.3)

If k is not too large, the Hasse–Weil bounds thus imply that cl = ±2.

We wrote a simple program in Pari GP to find, for each (α, β, n) under consideration, a prime l
for which l | Y , but cl fails to satisfy (5.3). This took only a few minutes on an old Sun Sparc. For
example, if say n = 10000 019 and α = 2, we find that 6 is a primitive root modulo n2, that

t2 = 18273 596 511 709, t5 = 54085 373 386 760

and, hence, β = 3015 935. Next, we choose l = 80000 153 and note that, if l fails to divide XY ,
then

Xn, Y n ≡ ±1,±538 808,±6 494 373,±13 435 164 (mod l). (5.4)

It follows that

X10 000 019 − 4 · 53 015 935Y 10 000 019 �≡ 1 (mod l),

unless l | XY . However, the lth Fourier coefficient for an elliptic curve of conductor 40 satisfies
c80 000 153 = −16 470, contradicting (5.3). This shows that (2.7) has no solution with α = 2, n =
10000 019 and |XY | > 1.

We argue in a similar fashion for (2.8), only now dealing with primes n < 5.5 × 107. This leads
us to

2π(5.5 × 107) − 8 = 6564 392

triples (α, β, n). As before, for each of these, we find a prime l with the desired properties. This
completes the proof that (2.7) and (2.8) have no solutions with |XY | > 1, for n � 11 prime. Details
of these computations are available from the first author on request.
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6. Local approaches to (2.9) and (2.10)

In the case of (2.9) and (2.10), as in the previous section, we consider the equations modulo primes
l of the form l = 2kn + 1. The terms Xn and Y n assume only 2k + 1 values modulo l and, hence,
(2.9) and (2.10), viewed modulo l, restrict β to lie in a (small) subset Sα,q,n,l of {1, 2, . . . , n − 1}.
Choosing a second prime l1 = 2k1n + 1, l1 > l, we might be so lucky that

Sα,q,n,l ∩ Sα,q,n,l1

is empty. For (α, q) = (2, 5) or (3, 7), however, this cannot occur, since

1 ∈ S2,5,n,l and 1 ∈ S3,7,n,l,

for all n and l. Our best hope for these cases, then, would be to find primes l and l1 such that

Sα,q,n,l ∩ Sα,q,n,l1 = {1}.
As it transpires, for each n > 19, α ∈ {2, 3} and q ∈ {5, 7}, we are able to find pairs l and l1 such
that

Sα,q,n,l ∩ Sα,q,n,l1 = ∅, if (α, q) ∈ {(3, 5), (2, 7)},
or

Sα,q,n,l ∩ Sα,q,n,l1 = {1}, if (α, q) ∈ {(2, 5), (3, 7)}.
By way of example, if α = 2, n = 10000 019, and we have a solution to (2.9), then, setting
l = 80000 153, either l | XY (which we saw in the previous section to be impossible) or we have
(5.4). It follows that

β ∈ {1, 228 430, 834 421, 1 282 074, 2 092 402, 3 736 215, 5 753 495, 6 834 596}. (6.1)

Now consider (2.9) modulo l1 = 380 000 723. For an elliptic curve over Q of conductor 40, we have
cl1 = 29280 and, hence, we may suppose that l1 is coprime to XY . Thus, we have that Xn and Y n

are congruent modulo l1 to one of

± 1,±82 112 813,±149 954 656,±79 032 476,±110 277 417,±135 718 056,±18 775 479,

± 140 828 911,±97 873 722,±132 355 249,±170 198 844,±71 588 544,±275 744 734,

± 2 816 836,±41 375 381,±84 539 473,±172 217 362,±92 827 353,±100 960 138.

It follows that

β ∈ {1, 211 982, 348 127, 519 850, 536 141, 835 642, 916 539, 966 752, 1 000 154, 1 267 974,

1 377 872, 1 964 604, 2 857 367, 4 438 428, 4 679 933, 5 509 457, 5 520 173, 5 600 982,
5 856 938, 6 078 164, 6 122 024, 6 209 295, 6 555 956, 6 768 172, 7 433 870, 7 516 082,
7 905 690, 7 983 714, 8 159 851, 8 296 491, 8 301 055, 8 516 044, 8 601 690, 8 641 726,
9 058 277, 9 391 416, 9 413 209, 9 487 924},

and, hence, with (6.1), that β = 1.
After a reasonably short calculation, it remains, for n > 19, to handle the cases β = 1 where

(α, q) = (2, 5) and (3, 7), that is, the equations

4Xn − 5Y n = 1 and 8Xn − 7Y n = 1. (6.2)

We appeal to a result of the first author [Ben01, Theorem 1.2].

Proposition 6.1. If A, B and n are integers with AB �= 0 and n � 3, then the equation

|AXn − BY n| = 1

has at most one solution in positive rational integers X and Y .
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From this, it follows that the equations in (6.2) have no solutions in integers X,Y with |XY | > 1.

In a number of cases, with 11 � n � 19, the techniques of this section are apparently insufficient
to handle the corresponding Diophantine equations (2.9) and (2.10). In particular, this is the case
for

(α, β, q, n) ∈ {(2, 5, 5, 11), (2, 7, 5, 13), (3, 9, 5, 17), (2, 15, 5, 19),
(3, 9, 5, 19), (3, 17, 5, 19), (2, 3, 7, 19), (3, 3, 7, 19)}. (6.3)

To treat these and the other remaining equations with n small, we turn to recent computational
work, combining lower bounds for linear forms in logarithms with techniques for rapid calculation
of systems of independent units in number fields, and lattice-basis reduction algorithms.

7. Computational Thue equations

To complete the proof of Theorem 1.1 in the case xy > 1, it remains to treat a number of equations
of type (1.1) with reasonably small values of n (n � 19, in fact). Namely, it suffices to solve (1.1)
with C = ±1 for the n listed in (2.6), and (2.9) and (2.10) for (α, β, q, n) given in (6.3). As a first
step, we considerably reduced the number of equations to be solved. When 1 < A < B, we used local
arguments to solve the many equations under consideration. In the case A = 1, n ∈ {11, 13}, n | B,
we very quickly solved 784 of the equations in question by means of Theorem 4.2. Namely, we
showed that if β /∈ {2, 3}, then the equations

x11 − pα11βy11 = ±1 for p ∈ {2, 7, 13}, 11 � β,

and

x13 − pα13βy13 = ±1 for p ∈ {2, 5, 7, 11}, 13 � β,

have no solutions in nonnegative integers x, y, α, β with xy > 1.

For n � 7, it was reasonably routine to solve by Pari the remaining equations. For slightly larger
n, however, obtaining an unconditional result (i.e. one that does not depend on the generalized
Riemann hypothesis) remains a difficult problem. To deal with our remaining equations, for 11 �
n � 19, we are very grateful to Hanrot, who wrote an extension of Pari, Version 2.2.8 (development
Changes-1.1035), which contains a new treatment of Thue equations based on his paper [Han97].
In this paper, he shows that the knowledge of a subgroup of finite index in the full group of units
is actually sufficient to solve a Thue equation (the principal bottleneck of the classical algorithm,
currently, is the computation of the unit group of the field). With this new software, we can solve
Thue equations of rather large degree in a reasonable time. Without Hanrot’s new method, we would
have failed to solve many of these equations. A reasonably short (although nontrivial) computation
thus completes the proof of Theorem 1.1, in case xy > 1.

8. Solutions of (1.1) with x = y = 1

Finally, let us suppose that we have a solution to (1.1) with x = y = 1, C = ±1 and A,B unknown
S-units, for S = {p, q}, 2 � p < q � 13. It follows that p = 2 and, hence, we necessarily have

2α − qβ = ±1, for q ∈ {3, 5, 7, 11, 13}
and α, β nonnegative integers. Via Mihailescu [Mih04] (a hammer for a fly, in this case), we have
that min{α, β} � 1, unless (α, β, q) = (3, 2, 3). It is easy to check that these solutions correspond
to the values x � 8 in the statement of Theorem 1.2. This completes our proof.
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9. Concluding remarks

The techniques of this paper may also be extended with suitable perseverance to other two-element
sets S. The cases treated in Theorems 1.1 and 1.2 are adequate, however, to illustrate our methods.
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548 (2002), 167–234.
Han97 G. Hanrot, Solving Thue equations without the full unit group, Math. Comp. 69 (1997), 395–405.
HSS01 G. Hanrot, N. Saradha and T. N. Shorey, Almost perfect powers in consecutive integers, Acta Arith.

99 (2001), 13–25.
Kra97 A. Kraus, Majorations effectives pour l’équation de Fermat généralisée, Canad. J. Math. 49 (1997),
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d’interpolation, J. Number Theory 55 (1995), 285–321.
Mar05 G. Martin, Dimensions of the spaces of cusp forms and newforms on Γ0(N) and Γ1(N), J. Number

Theory 112 (2005), 298–331.
Mat00 E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of

algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180. (Engl. transl. Izv.
Math. 64 (2000), 1217–1269.)

Mig98 M. Mignotte, A corollary to a theorem of Laurent–Mignotte–Nesterenko, Acta Arith. 86 (1998),
101–111.

Mig M. Mignotte, A kit of linear forms in three logarithms, Publ. Inst. Rech. Math. Av. (Strasbourg),
to appear.

Mih04 P. Mihailescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. reine angew. Math.
572 (2004), 167–195.

Mor69 L. J. Mordell, Diophantine equations (Academic Press, London, 1969).
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