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1 Introduction

An old problem of Ramanujan, solved first by Nagell [11], amounts to showing
that the Diophantine equation

x2 + 7 = 2n

has only the solutions in integers corresponding to n = 3, 4, 5, 7 and 15. This
rather curious seeming equation arises in a variety of settings, ranging from
coding theory to the classification of finite simple groups; surveys of work
in this area can be found in [8] and [1]. Numerous generalizations of this
problem may be found in the literature. Among the more recent along these
lines, we mention papers of Bugeaud, Mignotte and Siksek [7] and Herrmann,
Luca and Walsh [9], where equations of the shape

x2 + 7 = yn and x2 + 7y4 = 2n17n211n3 ,

respectively, are solved completely.
In this paper, we will present a rather different generalization of the

equation of Ramanujan-Nagell. Specifically, we prove

Theorem 1.1. If x, n and m are positive integers satisfying

x2 + 7 = 2nm, (1.1)

then either x ∈ {1, 3, 5, 11, 181} or m > x1/2.
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Our approach will be via a nontraditional application of the hypergeo-
metric method of Thue and Siegel, where we utilize rational function ap-
proximation to the binomial function, evaluated at integers in an imaginary
quadratic field. This, while combining some of the ingredients from earlier
work of Beukers [5], [6], is fundamentally quite different. Indeed, it is more
in the spirit of recent work of the authors [3], based upon approximation
to the binomial function with integral exponents, unlike that considered in
[5] and [6]. In [3], one finds, by way of example, lower bounds of the shape
m > x0.285 upon integer m satisfying

x2 + x = 2j3km,

with x > 8 integral and j, k ∈ Z. Theorem 1.1 treats a somewhat similar
situation where the primes p = 2 and q = 3 are replaced by p = (1+

√−7)/2
and q = (1 −√−7)/2.

Given ε > 0, it is possible (see e.g [10]) to obtain a lower bound for m in
equation (1.1) of the shape m > x1−ε, valid for suitably large x. Quantifying
such an ineffective statement, however, is a notoriously difficult problem in
Diophantine approximation. It is easy to show that there exist infinitely
many triples of positive integers (x,m, n) satisfying (1.1) with m < x.

2 Padé Approximants

Before we proceed with our proof, we need to state some basic results from the
theory of (diagonal) Padé approximation to the binomial function (1 − x)k,
for k integral. For our purposes, either [2] or [4] is a viable source; therein
we find the following:

Lemma 2.1. Let k and r be positive integers with k > r. There exist poly-
nomials Pr(x), Qr(x), and Er(x) in Z[x] satisfying:

(i) Qr(x) =
(k + r)!

(k − r − 1)! r! r!

∫ 1

0

(1 − t)rtk−r−1(1 − t + xt)r dt

(ii) Er(x) =
(k + r)!

(k − r − 1)! r! r!

∫ 1

0

(1 − t)rtr(1 − tx)k−r−1 dt

(iii) deg Pr = deg Qr = r and deg Er = k − r − 1

(iv) Pr(x) − (1 − x)kQr(x) = (−1)rx2r+1Er(x)
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(v) Pr(x)Qr+1(x) − Qr(x)Pr+1(x) = cx2r+1 for some non-zero constant c.

As is perhaps somewhat traditional, at this stage it is worth noting that
the quantity of importance here is the ratio k/r, which must be tailored to
the problem at hand. For our purposes, here and henceforth we will take

k = 5j, r = 4j − δ and x0 =
7 + 181

√−7

214
, (2.1)

where δ ∈ {0, 1} and j is a positive integer. For later use, we require bounds
upon |Er(x0)| and |Qr(x0)| :

Lemma 2.2. If j is a positive integer, δ ∈ {0, 1}, and k, r and x0 are as in
(2.1), then we have

|Qr(x0)| < 0.31 × 256.07j and |Er(x0)| < 0.22 × 23.1j.

Proof. We will present the proof for δ = 0; the case δ = 1 is similar. From
Lemma 4 of [2], we have that

(k + r)!

(k − r − 1)! r! r!
=

(9j)!

(j − 1)!((4j)!)2
<

3

8π

(
3182−16

)j
.

Since we have, for t ∈ [0, 1],

|1 − (1 − x0)t|2 = 1 − 16377

8192
t + t2

and since

max
t∈[0,1]

{
(1 − t)4t

(
1 − 16377

8192
t + t2

)2 }
= 0.04331533667 . . . ,

it follows that∣∣∣∣
∫ 1

0

(1 − t)rtk−r−1(1 − t + x0t)
r dt

∣∣∣∣
≤

∫ 1

0

(
(1 − t)4t

(
1 − 16377

8192
t + t2

)2)j−1

(1 − t)4

(
1 − 16377

8192
t + t2

)2

dt

< 0.0433154j−1

∫ 1

0

(1 − t)4

(
1 − 16377

8192
t + t2

)2

dt

< 2.566 × 0.0433154j.
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We deduce that
|Qr(x0)| < 0.31 · 256.07j.

From the fact that t ∈ [0, 1] implies

|1 − tx0|2 = 1 − 7

8192
t(1 − t) ≤ 1,

we have ∣∣∣∣
∫ 1

0

(1 − t)rtr(1 − tx0)
k−r−1 dt

∣∣∣∣ ≤
∫ 1

0

(1 − t)rtr dt < 256−j

and hence

|Er(x0)| <
3

8π

(
3182−24

)j
<

3

8π
× 23.1j.

The choice δ = 1 leads to a stronger upper bound for |Qr(x0)| and the slightly
weaker stated inequality for |Er(x0)|.

As a final note before we proceed, applying Lemma 1 of [2] or Lemma 3.1
of [3], with our slight variation in notation, we may write

Pr(x) = (−1)δ

4j−δ∑
i=0

(
9j − δ

i

)(
8j − 2δ − i

4j − δ

)
(−x)i

and

Qr(x) =

4j−δ∑
i=0

(
8j − 2δ − i

4j − δ

)(
j + δ − 1 + i

i

)
xi.

Defining

Gδ(j) = gcd
i∈{0,1,...,4j−δ}

((
8j − 2δ − i

4j − δ

)(
j + δ − 1 + i

i

))
,

it is clear that Gδ(j)
−1Qr(x) ∈ Z[x]. As a consequence of Lemma 2.1 (iv),

we also have that Gδ(j)
−1Pr(x) and Gδ(j)

−1Er(x) are in Z[x]. A special case
of Proposition 5.1 of [3] leads to the following

Lemma 2.3. If j > 50 is an integer and δ ∈ {0, 1}, then

Gδ(j) > 2.943j.
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3 Proof of Theorem 1.1 for Large n

Let us assume that x, n and m are positive integers satisfying (1.1) with, say,

n > 4000 and m ≤ x1/2. (3.1)

Write

α =
1 +

√−7

2
, β = α13 =

−181 −√−7

2
,

and γ = β − β (so that x0 = γ/β). The ring R = Z[(1 +
√−7)/2] is the

ring of algebraic integers in Q(
√−7). It is a Unique Factorization Domain,

so that primes and irreducibles are the same in R. We observe that

(
x +

√−7

2

)(
x −√−7

2

)
=

(
1 +

√−7

2

)n−2(
1 −√−7

2

)n−2

m, (3.2)

where each factor is in R, and (1 +
√−7)/2 and (1 − √−7)/2 are primes

in R. The difference of the two factors on the left of (3.2) is
√−7 which

has norm 7. Since αα = 2, it follows that the two factors cannot both be
divisible by α and that they cannot both be divisible by α. Furthermore,
since the two factors on the left of (3.2) are conjugates, if one is divisible by
α, then the other is divisible by α. We deduce that for some positive integer
j and, hence, k = 5j chosen appropriately, there is a µ in R such that

βkµ − β
k
µ = ±√−7. (3.3)

Here, µµ = 2`m where 0 ≤ ` ≤ 64; in particular, µ 6= 0. Also,

|βkµ| =

√
x2 + 7

2
> 0.7 · x.

Note that the first inequality in (3.1) implies that j ≥ 61 and k ≥ 305.
Furthermore, as x2 + 7 = 2nm ≥ 2n, we see that x > 22000.

In essence what equation (3.3) tells us is that the quotient (β/β)k is
well approximated by an algebraic number with, provided m is small, rather
modest height. We will use the hypergeometric method to deduce that, since
such an event occurs rather dramatically for k = 1, it cannot remain the case
for larger k.
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We use the polynomials of Lemma 2.1, after dividing by Gδ(j). Specifi-
cally, define

P ∗
r (x) = Gδ(j)

−1Pr(x), Q∗
r(x) = Gδ(j)

−1Qr(x)

and
E∗

r (x) = Gδ(j)
−1Er(x),

recalling that they have rational integer coefficients. Observe that x0 = γ/β
and (iii) of Lemma 2.1 imply βrP ∗

r (x0), βrQ∗
r(x0), and βk−r−1E∗

r (x0) are in
R. From (iv) of Lemma 2.1 and multiplying through by βr+k, we obtain

βkP − β
k
Q = E, (3.4)

where

P = βrP ∗
r (x0), Q = βrQ∗

r(x0), and E = (−1)rβk−r−1γ2r+1E∗
r (x0)

are in R.
Multiplying both sides of (3.3) by Q and both sides of (3.4) by µ and

subtracting, we obtain

βk
(
Qµ − Pµ

)
= ±Q · √−7 − Eµ.

Note that part (v) of Lemma 2.1 implies, for one of r = 4j or 4j − 1, the
expression on the left is non-zero. If a + b

√−7 ∈ R (so a and b are half-
integers and a + b ∈ Z), then |a + b

√−7| =
√

a2 + 7b2. It follows that
|Qµ − Pµ| ≥ 1. Thus,

|β|k ≤ |Q| ·
√

7 + |E||µ|.

This is our fundamental inequality; upper bounds upon |Q| and |E| lead to
a corresponding lower bound for |µ| and hence m. From Lemmata 2.2 and
2.3, we obtain

|Q| ·
√

7 <
(
5.84 · 109

)j
.

As j ≥ 18 and |β|k > (6.07 · 109)
j
, we deduce |Q| · √7 < |β|k/2. Hence,

1

2
· |β|k ≤ |β|k−r−1|γ|2r+1|E∗

r (x0)||µ|. (3.5)
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Observe that

|β|r+1

|γ|2r+1
≥ 2.64 · 27950j and |E∗

r (x0)| ≤ 0.22 · 7.85j,

where the latter inequality is a consequence of Lemmata 2.2 and 2.3. Hence,

|µ| ≥ 6 · 3560j.

One checks that
(|β|k)0.363 = (|β|5·0.363)j < 3560j.

We deduce that

|µ|1.363 ≥ 6 · 3560j · (|β|k)0.363

3560j
· |µ|0.363 ≥ 6(|β|k|µ|)0.363 > x0.363.

As x > 22000, we obtain

m ≥ |µ|2
264

>
x0.532

264
>

√
x,

contradicting (3.1).

4 Final computations

To complete the proof of Theorem 1.1, it remains to show that solutions
to equation (1.1) with n 6∈ {3, 4, 5, 7, 15} and n ≤ 4000 necessarily have
m > x1/2. This is obviously a finite computation, but it is worth observing
that it can in fact be carried out rather quickly. For a fixed choice of n in
the interval of interest, the idea is to look at the solutions of

x2 + 7 ≡ 0 (mod 2n).

For n ≥ 3, there are four in the interval [1, 2n − 1], and these are the only
ones we need consider. For each such solution x0, we can simply check
if m = (x2

0 + 7)/2n satisfies m < x1/2. However, computing the roots of
x2 + 7 ≡ 0 (mod 2n) for each n is unnecessary, and a program can be sped
up as follows. One keeps track of only two of the solutions for a given n,
say x1 = x1(n) and x2 = x2(n), having the property that (x2

j + 7)/2n is odd
for j ∈ {1, 2}. That two and only two such solutions exist in [1, 2n − 1] can
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be established by induction. Indeed, if it is true for some n, note that each
xj(n) is odd and the numbers

y1 = x1(n) + 2n−1, y2 = x1(n) − 2n−1,

y3 = x2(n) + 2n−1, y4 = x2(n) − 2n−1

are four incongruent solutions to x2 + 7 ≡ 0 (mod 2n+1). Also, (y2
1 + 7) −

(y2
2 + 7) and (y2

3 + 7)− (y2
4 + 7) are odd multiples of 2n+1 so that exactly one

of y2
1 + 7 and y2

2 + 7 is divisible by 2n+2 and exactly one of y2
3 + 7 and y2

4 + 7
is divisible by 2n+2. Thus, we can compute x1(n + 1) by determining which
of y2

1 + 7 and y2
2 + 7 is not divisible by 2n+2 and similarly compute x2(n + 1)

by determining which of y2
3 + 7 and y2

4 + 7 is not divisible by 2n+2. In this
manner, we are able to show that m < x1/2 for each n 6∈ {3, 4, 5, 7, 15} with
n ≤ 4000, completing the proof of Theorem 1.1.

5 Concluding remarks

The machinery we have presented here can be used with slightly more effort
to sharpen Theorem 1.1 to deduce an inequality of the shape m > x0.566

for suitably large x (where this statement can be made explicit). We will
not undertake this here. Additionally, similar arguments lead to results for
equations of the shape x2 + 4 = 5nm, for instance, where the analog of the
identity 1812 + 7 = 215 is provided by 112 + 4 = 53.
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