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ON THE DIOPHANTINE EQUATION |axn − byn| = 1

MICHAEL A. BENNETT AND BENJAMIN M. M. DE WEGER

Abstract. If a, b and n are positive integers with b ≥ a and n ≥ 3, then
the equation of the title possesses at most one solution in positive integers x
and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤
min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of
diophantine approximation techniques including those of rational approxima-
tion to hypergeometric functions, the theory of linear forms in logarithms and
recent computational methods related to lattice-basis reduction. Additionally,
we compare and contrast a number of these last mentioned techniques.

1. Introduction

In 1909, Thue [Th] used a result on rational approximation to algebraic numbers
to show that if F (x, y) is an irreducible binary form (in Z[x, y]) of degree at least
3, and m a nonzero integer, then the equation

F (x, y) = m(1)

has at most finitely many solutions in integers x and y. This fundamental relation-
ship between homogeneous (and related) diophantine equations and diophantine
approximation has been exploited in subsequent years in bounding the number of
solutions of given equations and even the size of such solutions. The equation

|axn − byn| = 1(2)

where a, b and n are nonzero integers and n ≥ 3, is, in a certain sense, the simplest
case of (1), and has been frequently studied both from the viewpoint of diophan-
tine approximation and from a more algebraic perspective. In particular, Delone
[De] and Nagell [N] independently showed that if n = 3, then equation (2) has at
most one solution in positive integers x and y, corresponding (if it exists) to the

fundamental unit of Q( 3
√
a/b) (see also [Lj1]). Later, paralleling this (primarily

algebraic) approach, Ljunggren [Lj1] (see also [DF] and [Ta]) proved a like result
for equations of the form

|ax4 − by4| = 1

(i.e. that they too possess at most one solution in positive integers for each pair
(a, b) of nonzero integers).
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In 1937, by extending Thue’s method and constructing explicit rational func-
tion (Padé) approximations to n

√
1− z, Siegel [Si] deduced that if c is a given real

number, then the inequality

|axn − byn| ≤ c(3)

has at most one (positive) integral solution (x, y), provided

|ab|n/2−1 ≥ 4

n∏
p|n

p
1

p−1

n

c2n−2.(4)

By refining this approach, Domar [Do] was able to prove that (2) has at most two
solutions in positive integers under the restriction that n ≥ 5, and that, if a = 1,
equation (2) possesses at most one positive solution, except possibly when b = 2
or n = 5 or 6 and b = 2n ± 1. In the special case when b = 2 in the above
equation, Darmon and Merel [DM] have shown that no solutions exist with xy > 1,
as a consequence of a much more general result extending Wiles’ remarkable work
on the Shimura-Taniyama-Weil conjecture. With a fundamental improvement of
Siegel’s gap principle (to prevent potential solutions to inequality (3) from being
too close together in size), Evertse [Ev1] significantly relaxed condition (4) (see also
Mueller [Mu] for a rather different treatment, closer to Thue’s original approach).
For a more detailed historical perspective of results on equation (2), the reader is
directed to [Mo] and [R].

In this paper, we combine the Thue-Siegel machinery (as used by Evertse) with
recent explicit bounds for rational approximation to algebraic numbers due to the
first author [Be2] (see also [Be1]), new estimates for linear forms in the logarithms of
two algebraic numbers due to Laurent, Mignotte and Nesterenko [LMN], somewhat
older estimates for linear forms in the logarithms of several algebraic numbers
due to Baker and Wüstholz [BW] and techniques from computational diophantine
approximation. We prove

Theorem 1.1. If a, b and n are integers with b > a ≥ 1 and n ≥ 3, then the
equation (2) has at most one solution in positive integers (x, y), except possibly for
the cases where b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347.

It should be noted that this approach combining the techniques of linear forms
in logarithms (the Gel′fond-Baker method, and, to be more precise in our usage in
Section 4, the Schneider-Waldschmidt method) with irrationality measures derived
from consideration of hypergeometric functions (the Thue-Siegel-Baker method)
has been utilized previously on similar problems, by, for example, Shorey [Sh] and
Shorey and Tijdeman [ST]. Additionally, Mignotte [Mi] has recently applied the
aforementioned bounds for linear forms in two logarithms to deduce a number of
results of a flavour reminiscent of the above (including that (2) has exactly one
positive solution for b = a+ 1 and n > 600). The advantage of Theorem 1.1 is that
it provides a very explicit bound upon both a and n and treats small values of n.
Further, the cases omitted above (which by Domar’s theorem may possess at most
two such solutions) may each be “effectively solved” via the theory of linear forms
in (several) logarithms (see e.g. [Ba3]). In reality, however, as one may observe
from a perusal of Section 3, this appears to be a rather difficult computational
problem.
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It was conjectured by Siegel and proved by Mueller and Schmidt [MS] that the
number of solutions to the general Thue equation (1) depends only upon m and
the number of monomials present in the form F (x, y). In this regard, equation (2)
is a minimal case. It appears that the techniques of this paper are not particularly
well suited to generalization to nonbinomial forms (unless n = 3; see [Ev3]).

This paper is organized as follows. In Section 2 we apply arguments based on
rational function approximation to hypergeometric functions (à la Thue-Siegel) to
prove Theorem 1.1 for “small” n relative to max{a, b}. In Section 3, we treat a
number of special cases with 5 ≤ n ≤ 13 where the aforementioned techniques fail
to apply. Here we use linear forms in several logarithms of algebraic numbers and
tools from computational diophantine approximation. Additionally, we compare
and contrast the efficiency of certain of these methods, relative to this problem.
Finally, in Section 4, we state a lower bound for linear forms in the logarithms of
pairs of algebraic numbers, due to Laurent, Mignotte and Nesterenko [LMN], and
use it to finish the proof of Theorem 1.1.

2. The method of Thue-Siegel

In [Ev1], refining Siegel’s result in [Si], Evertse proved

Theorem 2.1. If a, b and n are positive integers with n ≥ 3 and c is a positive real
number, then there is at most one positive integral solution (x, y) to the inequality

|axn − byn| ≤ c

with

max{|axn|, |byn|} > βnc
αn ,

where βn and αn are effectively computable positive constants satisfying β3 =
1152.2, β4 = 98.53 and βn < n2 for n ≥ 5.

While techniques from [Be1] and [Be2] enable us to sharpen this somewhat, the
above formulation is adequate for our purposes (as, for that matter, is an earlier
sharpening of Siegel’s result due to Hyrrö [H], at least for n ≥ 7). For details of
the proof of Theorem 2.1, which utilizes Padé approximants to n

√
1− z (à la Siegel)

together with an iterated gap principle, the reader is directed to [Ev1] (note: the
corresponding result in [Ev2] is significantly weaker if n = 3).

Let us take c = 1 in the above theorem and assume, without loss of generality,
that b > a ≥ 1. By the aforementioned results of Delone, Nagell and Ljunggren,
we may assume that n ≥ 5 so that

2n > n2 > βn

in Theorem 2.1. In these cases, we therefore have at most one solution to (2) with
max{|x|, |y|} > 1. It follows that we may restrict our attention to equations with
solution (x, y) = (1, 1), namely those of the form

|axn − (a+ 1)yn| = 1(5)

where a and n are positive integers with n ≥ 3 (and, from Darmon and Merel,
a ≥ 2). Suppose that (x, y) is a positive solution to (5). Then we have∣∣∣∣∣ n

√
1 +

1

a
− x

y

∣∣∣∣∣ < 1

anyn
(6)
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so that x/y is an exceptionally good rational approximation to n

√
1 + 1

a . To elimi-

nate this possibility for x > y > 1, at least with a handful of exceptions, we appeal
to the following special cases of two results of the first author (see [Be2]). Define

µn =
∏
p|n

p
1

p−1 .

We have

Theorem 2.2. For integer n, define the constant c(n) by

n c(n) n c(n) n c(n) n c(n) n c(n)

3 2.03 11 1.67 23 1.53 41 1.45 59 1.40

4 1.62 13 1.65 29 1.51 43 1.43 61 1.39

5 1.84 17 1.58 31 1.51 47 1.44 67 1.38

7 1.76 19 1.56 37 1.46 53 1.40 71 1.36

Suppose that a, n, p and q are positive integers with n occurring in the above table.
If, further, we have that(√

a+
√
a + 1

)2(n−2)
>

(
nµn
c(n)

)n

,

then we can conclude that∣∣∣∣∣ n
√

1 +
1

a
− p

q

∣∣∣∣∣ > a−1(1010 q)−λ1

with

λ1 = 1 +
log
(
nµn
c(n)

(√
a+

√
a+ 1

)2)
log
(
c(n)
nµn

(√
a+

√
a+ 1

)2) .
And we have

Theorem 2.3. If a, n, p and q are positive integers with n ≥ 3 and(√
a+

√
a+ 1

)2(n−2)
> (nµn)n,

then ∣∣∣∣∣ n
√

1 +
1

a
− p

q

∣∣∣∣∣ > (8nµna)
−1q−λ2

with

λ2 = 1 +
log
(
nµn

(√
a +

√
a+ 1

)2)
log
(

1
nµn

(√
a+

√
a + 1

)2) .
Both of these results follow from consideration of Padé approximants to the bi-

nomial function and differ, in essense, in that the former includes information about
the p-adic valuations of binomial coefficients appearing in the approximating poly-
nomials (see also [Ba1], [Ba2] and [Ch] for a detailed discussion of this approach).
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If we combine these two theorems with (6), we derive bounds upon solutions (x, y)
to (5), of the form

y <
(
1010λ1/n

) 1
n−λ1(7)

provided λ1 < n, or

y < (8µn)
1

n−λ2(8)

if λ2 < n. We use these inequalities to prove the following two lemmas which
summarize our refinements of Theorem 2.1 in the situation related to equation (5).

Lemma 2.4. If a and n are positive integers with n ≥ 3 such that equation (5) has
more than a single positive solution, then a < 0.3n.

Lemma 2.5. If a and n are positive integers with 3 ≤ n ≤ 16, then the only
solution to equation (5) in positive integers is given by x = y = 1.

To obtain these results, we further require:

Lemma 2.6. If (x, y) is a positive solution to equation (5), then either x = y = 1
or min{x, y} > an.

Proof of Lemma 2.6. If x ≤ y and y > 1, then

|axn − (a + 1)yn| ≥ yn > 1

so that if at least one of x or y exceeds 1, we may suppose that x ≥ y+ 1, whereby

axn − (a + 1)yn ≥ a(y + 1)n − (a+ 1)yn.

By the binomial theorem, this equals

anyn−1 − yn + a

n∑
k=2

(
n

k

)
yk

and since a
∑n

k=2

(
n
k

)
yk > 1, we require that anyn−1 < yn, whence y = min{x, y} >

an.

Noting that, if n = 3 or 4, Lemma 2.5 follows from the work of Delone, Nagell
and Ljunggren, it is clearly sufficient to prove Lemmas 2.4 and 2.5 for prime values
of n ≥ 5. First, let us suppose that n ≥ 79 is prime. Then if a ≥ 0.3n and (x, y) is
a positive solution to (5), we have from Theorem 2.3 and (8) that

y <
(
8n1/(n−1)

)1/(n−λ2)

where

λ2 < 1 +
log
(
nn/(n−1)(1.2n)

)
log
(
n−n/(n−1)(1.2n)

) < 16 logn+ 3 < n− 6.

Thus, y < 91/6 < 2, so that x = y = 1. Now, if n = 59, 61, 67, 71 or 73, we
apply Theorem 2.3 and (8) to deduce that y < an for a ≥ 18, 19, 20, 21 and 22
respectively. Together with Lemma 2.6 this implies that x = y = 1 for a ≥ 0.3n in
these cases as well. For smaller primes, we apply (7) and (8) to find bounds upon
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solutions (x, y) to (5) of the form y < c0 or better (where (?) indicates which of
inequalities (7) or (8) is used), as in the following table.

n a c0 (?) n a c0 (?) a n c0 (?)

5 3 ≤ a ≤ 6 1059 (7) 17 a ≥ 8 17a (8) 37 a = 12 106 (7)

5 a ≥ 7 5a (8) 19 6 ≤ a ≤ 7 1014 (7) 37 a ≥ 13 37a (8)

7 3 ≤ a ≤ 5 1043 (7) 19 a ≥ 8 19a (8) 41 a = 13 106 (7)

7 a ≥ 6 7a (8) 23 7 ≤ a ≤ 8 1012 (7) 41 a ≥ 14 41a (8)

11 3 ≤ a ≤ 6 10158 (7) 23 a ≥ 9 23a (8) 43 a = 13 106 (7)

11 a ≥ 7 11a (8) 29 9 ≤ a ≤ 10 108 (7) 43 a ≥ 14 43a (8)

13 4 ≤ a ≤ 6 1027 (7) 29 a ≥ 11 29a (8) 47 a ≥ 15 47a (8)

13 a ≥ 7 13a (8) 31 a = 10 107 (7) 53 a = 16 105 (7)

17 6 ≤ a ≤ 7 1012 (7) 31 a ≥ 11 31a (8) 53 a ≥ 17 53a (8)

By virtue of Lemma 2.6 and the above table, to complete the proofs of Lemmas
2.4 and 2.5 we need only consider the 27 cases above where we fail to obtain an
upper bound of the form y < an upon possible solutions to (5), as well as the pairs
(a, n) satisfying a = 2 (for n = 5, 7 and 11) or 2 ≤ a ≤ 3 (for n = 13). These
latter cases will be dealt with in detail in Section 3. In the former situation, we
observe from (6) that a positive solution to (5) corresponds to a convergent in the

continued fraction expansion to n

√
1 + 1

a . For such a convergent pi/qi, we have (see

e.g. [Le]) ∣∣∣∣∣ n
√

1 +
1

a
− pi

qi

∣∣∣∣∣ > 1

(ai+1 + 2)q2
i

where ai+1 is the (i+1)st partial quotient in the aforementioned continued fraction
expansion. It therefore follows from (6) that a solution (x, y) to (5) (with x/y =
pi/qi) induces a partial quotient ai+1 satisfying

ai+1 ≥ anqn−2
i − 1.(9)

For each of the 27 pairs (a, n) under consideration, we compute the initial terms

in the continued fraction expansion to n

√
1 + 1

a and verify in each case that none of

the first five convergents yields a solution to (5) other than with x = y = 1. Since we
always find that q5 ≥ 151 (where equality is obtained for (a, n) = (3, 11)), inequality
(9) implies that we require a partial quotient exceeding 107 in order to contradict
Theorem 1.1. The previously derived upper bounds upon the denominators of the
convergents allow us to further restrict our attention to, at most, the first 314
partial quotients in each expansion (corresponding, again, to (a, n) = (3, 11) where
we find precisely 313 convergents with qi < 10158). Since the largest partial quotient
we find in the ranges under consideration is a308 = 3397 (for (a, n) = (5, 11)), we
conclude as stated.

3. Some heavier computations

3.1. Introduction. In this section we complete the proof of Lemma 2.5 through
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Theorem 3.1. The diophantine equation

axn − (a+ 1)yn = 1(10)

with (n, a) = (5, 2), (7, 2), (11, 2), (13, 2) or (13, 3) has only x = y = −1 as solution
in rational integers x, y.

We obtain this result by the essentially routine method for solving Thue equa-
tions, following Tzanakis and de Weger [TW] (see also [dW]), using the lower bound
for linear forms in logarithms of algebraic numbers from Baker and Wüstholz [BW]
and a new variant of the computational diophantine approximation method, com-
bining ideas from Bilu and Hanrot [BH] and Mignotte and de Weger [MW].

3.2. The relevant field data. Using Pari 1.39.03 on a workstation and a Pentium
75 personal computer we computed the following data on the relevant algebraic
number fields.

3.2.1. The case (n, a) = (5, 2). Let θ be a root of t5 − 48, and put K = Q(θ). The
discriminant is 243455, an integral basis is{

1, θ, 1
2θ

2, 1
4θ

3, 1
8θ

4
}
,

the class group is trivial, the regulator is 49.089947 . . . , a system of fundamental
units (both of norm 1) is ε1, ε2, where the following table gives their coefficients in
terms of the integral basis:

1 θ 1
2θ

2 1
4θ

3 1
8θ

4

ε1 1 1 2 2 1

ε2 1 −29 −17 15 23

and the rational prime 2 ramifies as (2) = (ρ)5, where

ρ = 2 + θ +
1

2
θ2 +

1

4
θ3 +

1

8
θ4 =

2

θ − 2

is a prime of norm 2 (in fact, the only one up to multiplication by units).

3.2.2. The case (n, a) = (7, 2). Let θ be a root of t7− 192, and put K = Q(θ). The
discriminant is −263677, an integral basis is{

1, θ,
1

2
θ2,

1

4
θ3,

1

8
θ4,

1

16
θ5,

1

32
θ6

}
,

the class group is trivial, the regulator is 765.90150 . . . , a system of fundamental
units (all of norm 1) is ε1, ε2, ε3, where the following table gives their coefficients in
terms of the integral basis:

1 θ 1
2θ

2 1
4θ

3 1
8θ

4 1
16θ

5 1
32θ

6

ε1 7 4 2 4 3 2 3

ε2 −5 2 0 −2 2 −3 3

ε3 7 0 −1 −1 1 3 3

and the rational prime 2 ramifies as (2) = (ρ)7, where

ρ = 2 + θ + 1
2θ

2 + 1
4θ

3 + 1
8θ

4 + 1
16θ

5 + 1
32θ

6 =
2

θ − 2

is a prime of norm 2 (in fact, the only one up to multiplication by units).
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3.2.3. The case (n, a) = (11, 2). Let θ be a root of t11 − 3072, and put K = Q(θ).
The discriminant is −2103101111, an integral basis is{

1, θ,
1

2
θ2,

1

4
θ3,

1

8
θ4,

1

16
θ5,

1

32
θ6,

1

64
θ7,

1

128
θ8,

1

256
θ9,

1

512
θ10

}
,

the class group is trivial, the regulator is 410432.22 . . . , a system of fundamental
units (all of norm 1) is ε1, . . . , ε5, where the following table gives their coefficients
in terms of the integral basis:

1 θ 1
2θ

2 1
4θ

3 1
8θ

4 1
16θ

5 1
32θ

6 1
64θ

7 1
128θ

8 1
256θ

9 1
512θ

10

ε1 −5 −1 2 2 0 −2 −1 1 2 1 −1

ε2 1 2 0 1 0 −1 −1 −1 0 −1 1

ε3 −17 −1 −9 1 15 −3 −4 −3 −7 10 6

ε4 −5 −6 −5 0 2 2 4 5 2 −1 −1

ε5 −35 −24 −21 −10 3 15 21 20 15 6 −4

and the rational prime 2 ramifies as (2) = (ρ)11, where

ρ = 2 + θ +
1

2
θ2 +

1

4
θ3 +

1

8
θ4 +

1

16
θ5 +

1

32
θ6 +

1

64
θ7 +

1

128
θ8

+
1

256
θ9 +

1

512
θ10 =

2

θ − 2

is a prime of norm 2 (in fact, the only one up to multiplication by units).

3.2.4. The case (n, a) = (13, 2). Let θ be a root of t13 − 12288, and put K = Q(θ).
The discriminant is 2123121313, an integral basis is{

1, θ,
1

2
θ2,

1

4
θ3,

1

8
θ4,

1

16
θ5,

1

32
θ6,

1

64
θ7,

1

128
θ8,

1

256
θ9,

1

512
θ10,

1

1024
θ11,

1

2048
θ12

}
,

the class group is trivial, the regulator is 12465830. . . . , a system of fundamental
units (all of norm 1) is ε1, . . . , ε6, where the following table gives their coefficients
in terms of the integral basis:

1 θ 1
2θ

2 1
4θ

3 1
8θ

4 1
16θ

5 1
32θ

6 1
64θ

7 1
128θ

8 1
256θ

9 1
512θ

10 1
1024θ

11 1
2048θ

12

ε1 7 4 5 3 3 4 3 2 3 3 2 3 3

ε2 1 −1 0 1 0 2 0 0 1 −1 0 −1 −1

ε3 55 −8 −21 22 5 −24 12 15 −21 0 19 −13 −8

ε4 13 22 0 −20 −5 17 8 −15 −12 11 14 −7 −14

ε5 −41 13 −6 14 −13 7 −2 4 −4 −4 8 −3 4

ε6 −743 −970 122 941 105 −859 −300 737 454 −586 −563 419 627

and the rational prime 2 ramifies as (2) = (ρ)13, where

ρ = 2 + θ +
1

2
θ2 +

1

4
θ3 +

1

8
θ4 +

1

16
θ5 +

1

32
θ6 +

1

64
θ7 +

1

128
θ8

+
1

256
θ9 +

1

512
θ10 +

1

1024
θ11 +

1

2048
θ12 =

2

θ − 2

is a prime of norm 2 (in fact, the only one up to multiplication by units).
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3.2.5. The case (n, a) = (13, 3). Let θ be a root of t13 − 1458, and put K = Q(θ).
The discriminant is 2123121313, an integral basis is{

1, θ, θ2,
1

3
θ3,

1

3
θ4,

1

9
θ5,

1

9
θ6,

1

27
θ7,

1

27
θ8,

1

81
θ9,

1

81
θ10,

1

243
θ11,

1

243
θ12

}
,

the class group is trivial, the regulator is 12555373. . . . , a system of fundamental
units (all of norm 1) is ε1, . . . , ε6, where the following table gives their coefficients
in terms of the integral basis:

1 θ θ2 1
3θ

3 1
3θ

4 1
9θ

5 1
9θ

6 1
27θ

7 1
27θ

8 1
81θ

9 1
81θ

10 1
243θ

11 1
243θ

12

ε1 1 1 0 1 0 1 0 1 0 1 0 1 0

ε2 −5 4 1 4 2 −2 4 5 1 4 0 6 2

ε3 25 4 −11 3 4 −19 −2 15 −4 −5 11 2 −5

ε4 13 −6 0 14 −8 4 6 −12 4 2 −2 4 −1

ε5 −53 71 −43 95 −63 101 −67 86 −49 53 −17 13 14

ε6 409 −316 −178 238 206 −148 −221 52 224 40 −212 −130 191

and the rational prime 3 ramifies as (3) = (ρ)13, where

ρ = 3 + 2θ + θ2 +
2

3
θ3 +

1

3
θ4 +

2

9
θ5 +

1

9
θ6 +

2

27
θ7 +

1

27
θ8 +

2

81
θ9

+
1

81
θ10 +

2

243
θ11 +

1

243
θ12 =

3

θ2 − 3

is a prime of norm 3 (in fact, the only one up to multiplication by units).

3.3. Upper bounds. Each of our five fields K has one real embedding and 2r =
n− 1 non-real embeddings. Here r is the unit rank of the field K. We number the
conjugates as follows:

θ1 ∈ R,
θj = θ1 e

2πij/n for j = 2, 3, . . . , r + 1,

θj = θ̄j−r for j = r + 2, r + 3, . . . , n

and correspondingly for εi, ρ, etc. Here the bar denotes complex conjugation. In
the cases with a = 2 we put φ = θ and in the cases with a = 3 we put φ = θ2, so
that in all six cases NK/Q(φ) = an−1(a + 1).

For a solution x, y ∈ Z of equation (10) we write

β = ax− φy.

Then by (10) we have

NK/Q(β) = (ax)n − (NK/Q(φ)
)
yn = an−1 (axn − (a + 1)yn) = an−1,(11)

hence there are n1, n2, . . . , nr ∈ Z such that

β = ax− φy = ρn−1εn1
1 εn2

2 · · · εnrr .(12)

(Note that, a priori, β = −ρn−1εn1
1 εn2

2 · · · εnrr is also possible, but since all norms
are positive, this case does not occur.)
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By way of example, for the known solutions with x = y = −1 we have

β = −2 + θ = ρ4ε−2
1 ε2 in the case (n, a) = (5, 2),

β = −2 + θ = ρ6ε22ε
−1
3 in the case (n, a) = (7, 2),

β = −2 + θ = ρ10ε22ε
2
3ε
−1
4 ε−1

5 in the case (n, a) = (11, 2),

β = −2 + θ = ρ12ε−1
1 ε52ε

2
3ε
−2
4 ε−1

5 ε6 in the case (n, a) = (13, 2),

β = −3 + θ2 = ρ12ε−6
1 ε−2

2 ε−2
3 ε4ε

2
6 in the case (n, a) = (13, 3).

We start with showing that if |y| is large enough, then |β1| is extremely small,
whereas its conjugates |βj | with j = 2, 3, . . . , n are relatively large. Put

bj = |Imφj | for j = 2, 3, . . . , n, c1 = an−1

/
n∏

j=2

bj .

Lemma 3.2. We have

|β1| ≤ c1|y|−(n−1),

|βj | ≥ bj|y| for j = 2, 3, . . . , n.

Proof of Lemma 3.2. For j = 2, 3, . . . , n we have

|βj | = |ax− φjy| ≥ |Im (ax− φjy)| = |Imφj | |y| = bj |y|.
Equation (11) now at once leads to

|β1| = an−1

/
n∏

j=2

|βj | ≤ an−1

/
n∏

j=2

bj |y| = c1|y|−(n−1).

Notice that bj = bj−r for j = r + 2, r + 3, . . . , n, because the jth and the
(j+r)th conjugates are each others complex conjugates. It follows that we are only
interested in the bj for j = 2, 3, . . . , r + 1.

From the equation β = ax− φy we now take three conjugates, the real one and
two complex conjugated ones, and eliminate x and y from these three equations.
For each j = 2, 3, . . . , r + 1 we thus derive the so-called Siegel identity

(φj − φ̄j)β1 + (φ̄j − φ1)βj + (φ1 − φj)β̄j = 0,

which we write as

φ1 − φ̄j
φ1 − φj

βj

β̄j
− 1 =

φj − φ̄j
φ1 − φj

β1

β̄j
.(13)

Lemma 3.2 implies that the right hand side of this equation is extremely small in

absolute value. Notice that
φ1−φ̄j
φ1−φj

βj
β̄j

is on the unit circle, so if we put

Λj = −iLog
φ1 − φ̄j
φ1 − φj

βj

β̄j
,

then Λj ∈ R. Here Log denotes the principal branch of the complex logarithm,
with imaginary part in (−π, π]. We find that

eiΛj − 1 =
φ1 − φ̄j
φ1 − φj

βj

β̄j
− 1



ON THE DIOPHANTINE EQUATION |axn − byn| = 1 423

is extremely close to zero by Lemma 3.2, hence so is Λj for all j = 2, 3, . . . , r + 1.
To be precise, for j = 2, 3, . . . , r + 1 put

dj = 2n+1 arcsin

(
2−(n+1)

∣∣∣∣φj − φ̄j
φ1 − φj

∣∣∣∣ c1bj
)
.

Then we have the following result.

Lemma 3.3. If |y| ≥ 2 then for j = 2, 3, . . . , r + 1 we have

|Λj | < dj |y|−n.
Proof of Lemma 3.3. Put δj =

∣∣∣φj−φ̄jφ1−φj

∣∣∣ c1bj . Lemma 3.2 and equation (13) yield∣∣eiΛj − 1
∣∣ < δj |y|−n. By |y| ≥ 2 we find

∣∣eiΛj − 1
∣∣ < 2−nδj , hence by [dW, Lemma

2.3] we find |Λj| ≤ dj
δj
|eiΛj − 1|, and the result follows.

We will now derive from equation (12) useful estimates relating |y| to the expo-
nents ni. Define

U =


log |ε1,2| · · · log |εr,2|

...
. . .

...

log |ε1,r+1| · · · log |εr,r+1|

 ,

which, as a matrix with determinant 2−r times the regulator, is necessarily invert-
ible. We obtain by (12) that

n1

...

nr

 = U−1


log |β2/ρ

n−1
2 |

...

log |βr+1/ρ
n−1
r+1 |

 .(14)

Let us further define

U−1 =


u1,2 · · · u1,r+1

...
. . .

...

ur,2 · · · ur,r+1

 ,

and, for k = 1, 2, . . . , r, set

ξk =
r+1∑
j=2

uk,j log

∣∣∣∣∣φ1 − φj

ρn−1
j

∣∣∣∣∣ ,
ηk =

r+1∑
j=2

uk,j .

An interesting observation of Bilu and Hanrot [BH] is that nk is extremely close to
ξk + ηk log |y| for k = 1, 2, . . . , r. We make this precise in the following lemma. For
k = 1, 2, . . . , r let

ek = 2n

∣∣∣∣∣∣log

1− 2−n
c1

min
j=2,3,... ,r+1

|φ1 − φj |

∣∣∣∣∣∣
r+1∑
j=2

|uk,j |.

Lemma 3.4. If |y| ≥ 2, then for k = 1, 2, . . . , r we have

|nk − (ξk + ηk log |y|)| < ek|y|−n.
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Proof of Lemma 3.4. Note that βj is almost equal to y(φ1 − φj), namely

βj = ax− φjy = ax− φ1y + y(φ1 − φj) = β1 + y(φ1 − φj),

where β1 is extremely small by Lemma 3.2. It follows that

|nk − (ξk + ηk log |y|)| =

∣∣∣∣∣∣
r+1∑
j=2

uk,j log

∣∣∣∣ βj
y(φ1 − φj)

∣∣∣∣
∣∣∣∣∣∣

≤
r+1∑
j=2

|uk,j |
∣∣∣∣log

∣∣∣∣1 +
β1

y(φ1 − φj)

∣∣∣∣∣∣∣∣ .
Put δ = 2−n

c1
min

j=2,3,... ,r+1
|φ1 − φj | . Then by Lemma 3.2 we have

∣∣∣ β1

y(φ1−φj)
∣∣∣ ≤

2nδ|y|−n and by |y| ≥ 2 it follows that this is at most δ. By [dW, Lemma 2.2] we

find
∣∣∣log

∣∣∣1 + β1

y(φ1−φj)
∣∣∣∣∣∣ ≤ | log(1−δ)|

δ

∣∣∣ β1

y(φ1−φj)
∣∣∣, and the result follows at once.

We readily compute the following numerical values for the ηk and the ξk.

(n, a) (5, 2) (7, 2) (11, 2) (13, 2) (13, 3)

η1 = −0.58282108 . . . −0.21603507 . . . 0.15960187 . . . −0.41401237 . . . −1.3802655 . . .

η2 = 0.38913837 . . . 0.52412775 . . . 0.74643940 . . . 1.1392655 . . . −0.52417382 . . .

η3 = − −0.31443098 . . . 0.48137366 . . . 0.49790031 . . . −0.44133730 . . .

η4 = − − −0.097411241 . . . −0.23147615 . . . 0.082129902 . . .

η5 = − − −0.089777304 . . . −0.029527061 . . . 0.23665553 . . .

η6 = − − − −0.0067848669 . . . 0.45157277 . . .

ξ1 = −2.0228582 . . . −0.0058037263 . . . 0.0027937681 . . . −1.0062166 . . . −6.0149492 . . .

ξ2 = 1.0150570 . . . 2.0146875 . . . 2.0131235 . . . 5.0171804 . . . −2.0056462 . . .

ξ3 = − −1.0087836 . . . 2.0086302 . . . 2.0075213 . . . −2.0047788 . . .

ξ4 = − − −1.0018188 . . . −2.0035830 . . . 1.0009323 . . .

ξ5 = − − −1.0017135 . . . −1.0005334 . . . 0.0025110131 . . .

ξ6 = − − − 1.0002169 . . . 2.0048679 . . .

Note the remarkable fact that all ξk are almost integers, and that these integers are
just the exponents nj corresponding to the known solutions with x = y = −1.

Define N = max
k=1,2,... ,r

|nk|. An easy consequence of Lemma 3.4 is the following

result, estimating |y| in terms of N . Choose k0 such that |ηk| is maximal for k = k0

and let

f0 = n
|ηk0 | ,

g0 = exp
(
n
(
ξk0
ηk0

+
2−nek0
|ηk0 |

))
.

Further, define

Y0 = max

{
2,max

k

⌈
exp

(
− ξk
ηk

+
2−nek − 1

|ηk|
)⌉

,

max
k 6=k0

⌈
exp

(
− ξk0 − skξk
ηk0 − skηk

+
2−n(ek0 + ek)− 1

|ηk0 − skηk|
)⌉}

,

where sk is the sign of ηk0ηk.

Lemma 3.5. If |y| ≥ Y0, then we have

log |y| > f0

n
N − 1

n
log g0.
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Proof of Lemma 3.5. Since |y| ≥ 2, Lemma 3.4 yields |nk − (ξk + ηk log |y|)| <
2−nek for all k. Now the condition log |y| ≥ − ξk

ηk
+ 2−nek−1

|ηk| guarantees that nk

and ηk have the same sign, and the condition log |y| ≥ − ξk0−skξk
ηk0−skηk +

2−n(ek0+ek)−1

|ηk0−skηk|
guarantees that |nk0 | ≥ |nk|, so that N = |nk0 |. The result therefore follows easily
from Lemma 3.4 applied with k = k0.

Note that in all our cases we found Y0 = 2.
Now we can combine Lemmas 3.3 and 3.5, to find an upper bound for |Λj| in

terms of N . Put

fj = djg0 for j = 2, 3, . . . , r + 1.

Lemma 3.6. If |y| ≥ Y0, then for j = 2, 3, . . . , r + 1 we have

|Λj | < fj exp(−f0N).

Proof of Lemma 3.6. This is immediate from Lemmas 3.3 and 3.5.

On the other hand, using equation (12) we can write Λj as a linear form in
logarithms of algebraic numbers, viz.

Λj = −i
(

Logα0,j +

r∑
k=1

nkLogαk,j + n0,jLog (−1)

)
,

where

α0,j =
φ1 − φ̄j
φ1 − φj

ρn−1
j

ρ̄n−1
j

, αk,j =
εk,j
ε̄k,j

for k = 1, 2, . . . , r

and n0,j is an even integer, appearing because Log z1z2 = Log z1+Log z2 holds only
modulo 2πi, and all −iLog ’s, including Λj itself, are in (−π, π]. Transcendence
theory tells us that Λj cannot be too near to zero. Specifically, we apply the
recent explicit and very sharp result of Baker and Wüstholz [BW]. The algebraic
numbers αk,j occurring inside the logarithms of the linear forms Λj are all in the
field Q(θ1, θj , θ̄j), which is of degree at most (in fact, in our cases, equal to) d =
n(n− 1)(n− 2). The number of terms in the linear forms is r+ 2, at least a priori.
We can however win a little bit here, by noting that in fact there is a multiplicative
relation between, on the one hand, α0,j and, on the other hand, α1,j, α2,j , . . . , αr,j
(we found this relation in the reduction step described below, when we observed that
certain numbers occurring were very close to rational numbers with denominator
2n). In fact, we found that in all three cases

αn0,j = −
(

r∏
k=1

ανkk,j

)n−1

,

where νk is as in the table below (here ν = max
k
|νk|).
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(n, a) (5, 2) (7, 2) (11, 2) (13, 2) (13, 3)

ν1 = 2 0 0 1 6

ν2 = −1 −2 −2 −5 2

ν3 = − 1 −2 −2 2

ν4 = − − 1 2 −1

ν5 = − − 1 1 0

ν6 = − − − −1 −2

ν = 2 2 2 5 6

Note the remarkable fact that these numbers νk are exactly the negatives of the
exponents nj occurring for the known solution x = y = −1.

This shows that we can rewrite Λj as a form with one fewer term, considerably
reducing the upper bound and permitting a somewhat simpler reduction procedure.
Indeed, we write

nΛj = −i
(

r∑
k=1

n′kLogαk,j + m′
jLog (−1)

)
,

where we have n′k = nnk + (n − 1)νk, and m′
j an (odd) integer. With N ′ =

max
k=1,2,... ,r

|n′k| we have N ′ ≤ nN + (n − 1)ν. Further we have to estimate |m′
j | in

terms of N . Note that

|m′
j | =

1

π

∣∣∣∣∣inΛj −
r∑

k=1

n′kLogαk,j

∣∣∣∣∣ ≤ n+ rN ′ ≤ nrN + (n− 1)rν + n.

As a result we have linear forms with only m = r + 1 terms.
The result of Baker and Wüstholz, in our situation, implies the inequality

|Λj| > exp
(−C′ log max{N ′, |m′

j |}
)
,(15)

where

C ′ = C(m, d)

r∏
k=0

h′(αk,j)h′(−1)

for h′ a certain height function and

C(m, d) = 18(m+ 1)!mm+1(32d)m+2 log(2md).

It’s mainly these numbers that determine the sizes of the upper bounds to be
derived.

We need to compute upper bounds for the heights of the algebraic numbers. We
note that in our cases the height function h′(α) used by Baker and Wüstholz for
our αk,j ’s happens to coincide with the absolute logarithmic Weil height h(α). For
an algebraic integer α it is given by

h(α) =
1

[Q(α) : Q]
log
∏
σ

max{1, |σ(α)|},

where σ runs over the embeddings of Q(α) into C, and for a quotient of algebraic
integers α/β the logarithmic Weil height can be estimated by

h(α/β) ≤ h(α) + h(β).



ON THE DIOPHANTINE EQUATION |axn − byn| = 1 427

In this way we found upper bounds for h′(αk,j) (that are obviously independent
from j) and C′ (note that h(−1) = 0, but h′(−1) = 1

dπ).
Now we can prove the main result of this section. Define

N0 =



1.7681627× 1022 in the case (n, a) = (5, 2),

3.4856031× 1030 in the case (n, a) = (7, 2),

1.4191886× 1048 in the case (n, a) = (11, 2),

4.1035085× 1057 in the case (n, a) = (13, 2),

8.6956453× 1057 in the case (n, a) = (13, 3).

Lemma 3.7. We have |y| ≤ 1 or N < N0.

Proof of Lemma 3.7. Combining inequality (15) and Lemma 3.6, we find

N <
1

f0
log min

j
fj +

C′

f0
log (nrN + r(n− 1)ν + n) ,

from which we derive at once the absolute upper bounds N0 for N given above, by
working out all the constants bj , c1, dj , ej , k0, f0, g0, fj, h

′(αk,j), C′ for j = 2, 3, . . . ,
r + 1 and k = 1, 2, . . . , r.

3.4. Reduction of the upper bounds: classical method. In view of Lemma
3.7 there remains only a finite computation to complete the proof of Theorem
3.1. We describe four different techniques to carry out this task and compare their
efficiency. Three of these methods have already been described in the literature and
the fourth one, the only one that we’ll present in full detail, is a variant combining
ideas of the other methods.

The classical method, described by Tzanakis and de Weger [TW], tries to solve
the following problem. For a given j ∈ {2, 3, . . . , r + 1}, and for k = 1, 2, . . . , r
write

φk,j = −iLogαk,j .

These are known real numbers, that can be computed to the desired accuracy. We
now have 

nΛj =

r∑
k=1

n′kφk,j + m′
jπ,

N ′ = max
k=1,2,... ,r

|n′k|,

and we want to determine the solutions n′1, n
′
2, . . . , n

′
r,m

′
j in Z of

|Λj| < fj exp(−f0N),

N < N0,

N ′ ≤ nN + (n− 1)ν,

|m′
j | ≤ nrN + (n− 1)rν + n.

(16)

Here the constants f0, fj and N0 are given above in Lemmas 3.5, 3.6 and 3.7.
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The classical approach, as outlined in [TW], makes use of only one linear form at
a time, i.e. a Λj for only one j. As Λj is a homogeneous linear form with r+1 terms,
we define a lattice Γ of dimension r + 1, consisting of the Z-linear combinations of
the columns of the matrix

A =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

Φ1,j Φ2,j · · · Φr,j Ψ

 .

Here we take

Φk,j = [Cφk,j ] , Ψ = [Cπ] ,

where C is a large positive number, somewhat larger than Nr+1
0 , and [·] means

rounding to an integer. This means that we have to compute the numbers φk,j and
π to somewhat more than (r + 1) logN0/ log 10 decimal digits.

By the LLL-algorithm [LLL] we can compute reduced bases of the lattices. In
practice we use the functions lllintpartial and lllint of Pari-1.39.03. A reduced
basis enables us to find a lower bound for the length of any vector pointing to a
non-zero lattice point. By [LLL], this lower bound, denoted by d(Γ), is given by
2−r/2|b1|, where b1 is the first basis vector of the reduced basis. Heuristically
reasoning we expect that this length is of order (det Γ)1/ dimΓ, which, by our choice
of C, should be somewhat larger than N0. If this is not the case, the parameter C
should be enlarged a bit.

For a solution (n′1, n
′
2, . . . , n

′
r,m

′
j) of (16) we put x = (n′1, n

′
2, . . . , n

′
r,m

′
j)
>, and

look at the lattice point Ax, since it can be expected to be near the origin. Namely,
if we put

λj =
r∑

k=1

n′kΦk,j + m′
jΨ,

which is the last coordinate of Ax, then λj is approximately CnΛj, with a rounding
error of the size of N0. On the other hand, this number λj cannot be very small,
since we have an upper bound N0 for the other coordinates of Ax, and a lower
bound d(Γ) for its length, which is a bit larger than N0. So we obtain an explicit
lower bound for |Λj |, of the size of N0/C, and thus by Lemma 3.6 a reduced upper
bound N1 for N , that one expects to be of order size of 1

f0
logC/N0 ≈ r 1

f0
logN0.

Subsequent reduction steps can be made, with N0 replaced by N1, and C adapted
accordingly.

3.5. Reduction of the upper bounds: using more linear forms simultane-
ously. The main technique of the paper [MW], which was inspired by ideas of Yu.
Bilu, is to use the linear forms Λj for j = 2, 3, . . . r+1 simultaneously to solve (14).
This works as follows.
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We now define a lattice Γ of dimension 2r, incorporating all linear forms, namely
consisting of the Z-linear combinations of the columns of the matrix

A =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0

Φ1,2 · · · Φr,2 Ψ · · · 0
...

...
...

. . .
...

Φ1,r+1 · · · Φr,r+1 0 · · · Ψ


.

Here we take Φk,j and Ψ as above, but now it suffices to take a smaller value for

C, namely somewhat larger than N2
0 . The reason is that (det Γ)1/dim Γ is of the

same order as the expected minimal length of any non-zero vector pointing to a
lattice point, and we wish this to be essentially the same size as the upper bound
N0. So this means that we have to compute the numbers φk,j and π this time only
to somewhat more than 2 logN0/ log 10 decimal digits. Of course we pay a price,
namely we now have to do the LLL-algorithm for a lattice of dimension 2r instead
of r + 1.

For a solution (n′1, n′2, . . . , n′r,m′
2,m

′
3, . . . ,m

′
r+1) of (16) we put

x = (n′1, n
′
2, . . . , n

′
r,m

′
2,m

′
3, . . . ,m

′
r+1)

>,

and look at the lattice point Ax, since it can be expected to be near to the origin.
Namely, with

λj =
r∑

k=1

n′kΦk,j + m′
jΨ,

we have, just as before, that λj is approximately CnΛj and cannot be particularly
small. As above we obtain a reduced upper bound N1 for N that one expects to
be of the size of 1

f0
logC/N0, which this time is ≈ 1

f0
logN0.

3.6. Reduction of the upper bounds: using only two-dimensional lattices.
There is a third method of reducing the bound, introduced by Bilu and Hanrot in
their ground-breaking paper [BH]. In their paper they give two examples of Thue
equations of very high degree, with one of the corresponding algebraic number
fields being totally real, and the other one, like in our situation, has only one real
embedding and all other embeddings are non-real. Let’s see how their method
works in this setting.

Bilu and Hanrot do not work with the linear forms Λj, but rather start directly
from Lemma 3.4. Note that the linear forms Λj have not completely left the scene:
they still have been used to derive the upper bounds N0. They do not, however,
figure in the reduction step.

We now take k1, k2 ∈ {1, 2, . . . , r} with k1 6= k2. Eliminating log |y| from the
two inequalities given in Lemma 3.4

|nk1 − (ξk1 + ηk1 log |y|)| ≤ ek1 |y|−n,
|nk2 − (ξk2 + ηk2 log |y|)| ≤ ek2 |y|−n

and setting

γk1,k2 = ξk1ηk2 − ξk2ηk1 , gk1,k2 = ek1 |ηk2 |+ ek2 |ηk1 |



430 MICHAEL A. BENNETT AND BENJAMIN M. M. DE WEGER

and

Λk1,k2 = ηk2nk1 − ηk1nk2 − γk1,k2 ,

we thus have

|Λk1,k2 | < gk1,k2 |y|−n.(17)

Now we can apply the good old Baker-Davenport Lemma [BD], or, equivalently,
lattice base reduction in 2-dimensional lattices. This means that we do not have to
use the full power of the LLL-algorithm, but only the simple euclidean algorithm,
i.e. continued fraction expansions. For convenience we still use the Pari routine
lllint, which in this 2-dimensional case is equivalent to the euclidean algorithm.
Notice that the nice thing here is that the unknowns m′

j play no role at all.
We define a 2-dimensional lattice Γ, consisting of the Z-linear combinations of

the columns of the matrix

A =

(
1 0

Hk2 Hk1

)
and we define the point

y =

(
0

Kk1,k2

)
where we take Hk = [Cηk] for k = k1, k2, and Kk1,k2 = [Cγk1,k2 ]. It suffices to take
C somewhat larger than N2

0 to make sure that the distances in the lattice are of
the size of the upper bound N0.

By the euclidean algorithm we can compute reduced bases of the lattices for
the case (k1, k2) = (1, 2). From these bases it is easy to find the distance d(Γ,y)
between the point y and the nearest lattice point. For a solution (nk1 , nk2) of (17)
we put x = (nk1 ,−nk2)

> and consider the lattice point Ax which we expect to be
near y. As in the previous two subsections we obtain a reduced upper bound N1

for N that one expects to be of the size of 1
f0

logC/N0, this time again ≈ 1
f0

logN0.

3.7. The fourth variant. We finish with a new variant, based on combining the
ideas of the second and third methods, of Mignotte and de Weger [MW] and Bilu
and Hanrot [BH]. This time we make use of as many inequalities of the type (17)
as possible. Namely, we take k1 = 1 fixed, and let k2 run through {2, 3, . . . , r}. So
this is better than the original method of Bilu and Hanrot only if r ≥ 3, i.e. in our
cases only if n ≥ 7. For this variant we will present full details for our five Thue
equations (10).

This time we define a lattice Γ of dimension r, consisting of the Z-linear combi-
nations of the columns of the matrix

A =



1 0 0 · · · 0

H2 H1 0 · · · 0

H3 0 H1 · · · 0
...

...
...

. . .
...

Hr 0 0 · · · H1
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and we define the point

y =


0

K1,2

...

K1,r


where we take Hk and Kk1,k2 as above. Now it suffices to take C somewhat larger

than N
1+1/(r−1)
0 only, to make sure that the distances in the lattice are of the size

of the upper bound N0. So with this variant the needed precision is smallest.
In practice we took C as follows:

C = 1050 in the cases with n = 5, 7,

C = 1065 in the case with n = 11,

C = 1072 in the cases with n = 13.

We give the values of f0, g0, g1,k for k = 2, 3, . . . , r below.

(n, a) (5, 2) (7, 2) (11, 2) (13, 2) (13, 3)

f0 > 8.5789620 13.355522 14.736628 11.410859 9.4184775

g0 < 3.9739194 × 107 5.8915406 × 1011 1.0334327 × 1013 1.0394378 × 1025 4.0214207 × 1024

g1,2 < 0.41752317 1.0391846 19.907771 209.81907 1.8561913

g1,3 < − 0.62342017 12.838385 91.698532 1.5454583

g1,4 < − − 3.7738454 47.821515 0.54077517

g1,5 < − − 3.2535583 20.563430 0.84497512

g1,6 < − − − 14.006386 1.5813005

By the LLL-algorithm (again using lllintpartial and lllint) we compute
reduced bases for these lattices. From these bases it is easy to find the distance
d(Γ,y) between the point y and the nearest lattice point. Here are the results of
our computations.

d(Γ,y) ≥



8.1456649× 1024 in the case (n, a) = (5, 2),

5.3812421× 1032 in the case (n, a) = (7, 2),

1.1134613× 1051 in the case (n, a) = (11, 2),

3.2622236× 1060 in the case (n, a) = (13, 2),

5.4466343× 1059 in the case (n, a) = (13, 3).

The computation times for the LLL-algorithm were

� 1 sec. in the case (n, a) = (5, 2),

� 1 sec. in the case (n, a) = (7, 2),

3.02 sec. in the case (n, a) = (11, 2),

7.97 sec. in the case (n, a) = (13, 2),

7.41 sec. in the case (n, a) = (13, 3).

For a solution (n1, n2, . . . , nr) of the inequalities (17) we put

x = (n1,−n2,−n3, . . . ,−nr)>
and consider the lattice point Ax, which one anticipates will be near y. Setting

λ1,k = n1Hk − nkH1 −K1,k,
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we have

|λ1,k − CΛ1,k| ≤ 1 + 2N0.

On the other hand,

d(Γ,y)2 ≤ |Ax− y|2 = n2
1 +

r∑
k=2

λ2
1,k ≤ N2

0 + (r − 1)

(
max

k=2,3,... ,r
|λ1,k|

)2

,

so we obtain

|Λ1,k| > 1

C

(√
1

r − 1
d(Γ,y)2 − 1

r − 1
N2

0 − (1 + 2N0)

)
.

Combined with (17) and Lemma 3.5 we thus find a reduced upper bound N1 for
N , viz.

N1 =

 1

f0
log

Cg0 max
k=2,3,... ,r

g1,k√
1

r−1d(Γ,y)2 − 1
r−1N

2
0 − (1 + 2N0)

 .
This can in general, once again, be expected to be roughly 1

f0
logC/N0, which now

is ≈ 1
r−1

1
f0

logN0. This is better than in any of the other three methods. In practice

we find

N1 =



8 in the case (n, a) = (5, 2),

5 in the case (n, a) = (7, 2),

4 in the case (n, a) = (11, 2),

8 in the case (n, a) = (13, 2),

9 in the case (n, a) = (13, 3).

3.8. Comparing the variants. Below we give for the case (n, a) = (13, 3), with
N0 = 8.6956453× 1057 and r = 6, for the four reduction methods described above,
the parameter C (controlling the size of the numbers to be dealt with), the reduced
upper bound N1 reached in one reduction step, the dimension of the lattice and
the computation time used by Pari-1.39.03 on a Pentium 75 personal computer for
computing the reduced lattice bases.

method dim theory practice reduction time

C ≈ N1 ≈ C = N1 =

Tzanakis & dW r + 1 Nr+1
0 r 1

f0
logN0 10430 96 15.20 sec.

Mignotte & dW 2r N2
0

1
f0

logN0 10125 22 14 min. 41.06 sec.

Bilu & Hanrot 2 N2
0

1
f0

logN0 10125 21 � 1 sec.

fourth variant r N
1+ 1

r−1
0

1
r−1

1
f0

logN0 1072 9 7.41 sec.

So the fourth variant needs the smallest precision and obtains the best result in
one reduction step, whereas the Bilu-Hanrot method shows the fastest lattice basis
reduction. We believe that this is typical.
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3.9. Finding the small solutions. This is trivial. A good idea is to use Lemma
3.4, because it leaves really only small ranges to check, so that it is by no means
necessary to try all the possible r-tuples (n1, n2, . . . , nr) with N ≤ N1. In this way
we find that in all three cases there are no solutions with |y| ≥ 2. This completes
the proof of Theorem 3.1.

4. Linear forms in two logarithms

To show that equation (5) has precisely one positive solution for “large” n, we will
refer to the following result of Laurent, Mignotte and Nesterenko [LMN] (where, as
noted in [Mi], the conditions upon a1 and a2 may be relaxed to those stated here).

Theorem 4.1. Let α1 and α2 be two positive real algebraic numbers. Consider

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive rational integers. Put D = [Q(α1, α2) : Q] and suppose
that logα1 and logα2 are linearly independent over Q. For any ρ > 1, take

h ≥ max

{
D

2
, 5λ,D

(
log

(
b1
a2

+
b2
a1

)
+ logλ + 1.56

)}
,

ai ≥ (ρ− 1) |logαi|+ 2Dh(αi) (i = 1, 2),

a1 + a2 ≥ 4 max{1, λ},
1

a1
+

1

a2
≤ min{1, λ−1},

where λ = log ρ. Then

log |Λ| ≥ −a1a2

9λ
A2 − 2

3
(a1 + a2)A− 16

3

√
2a1a2B

3/2

− log
(a1a2

λ
B2
)
− 3

2
λ− 2h− 3

20

where

A =
4h

λ
+ 4 +

λ

h
and B = 1 +

h

λ
.

Here, the height function h(α) is as defined in Section 3.
Suppose that a and n are positive integers (a ≥ 2 and n ≥ 3) for which equation

(5) possesses a positive solution (x, y) 6= (1, 1). By Lemmas 2.4 and 2.6 we may
assume that

a < 0.3n and min{x, y} > an.(18)

Further, to prove Theorem 1.1 for 2 ≤ a ≤ 83, it suffices to consider n ≥ 349 while,
if a ≥ 84, careful application of Theorem 2.3 (and hence inequality (8)) along with
Lemma 2.6 allows us to restrict our attention to n ≥ 331. This implies, additionally,
that we have

x > max{(a+ 1)2, 662}.(19)

We apply Theorem 4.1 with α1 = x/y, α2 = 1 + 1/a, b1 = n, b2 = 1, and (as in
[Mi])

ρ =

{
5.8 if a = 2,

1 + log(a+1)
log(1+1/a) if a ≥ 3.
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We therefore have

|Λ| =
∣∣∣∣log

(
1 +

1

a

)
− n log

(
x

y

)∣∣∣∣ < 1

axn
,(20)

so that

n log

(
x

y

)
< log

(
1 +

1

a

)
+

1

axn
.

Taking λ = log ρ, we have, by calculus,

log(a+ 1) < λ < 1.365 log(a + 1),(21)

which, in conjunction with (18) and the fact that n ≥ 331, implies

(λ− 1) log(x/y) + 2 log x < 2.002 logx.

It follows that we may take

a1 = 2.002 logx,

a2 =

{
4.15 if a = 2,

3 log(a + 1) if a ≥ 3

and verify that a1 + a2 ≥ 4 max{1, λ} and a−1
1 + a−1

2 ≤ min{1, λ−1} (using (19)
and (21)). We further let

h = max {5λ, 1.2 logn}
and note that this is justified, since the inequality

log

(
n

a2
+

1

a1

)
+ logλ + 1.56 < 1.2 logn

is readily checked for a = 2 (using (19)) and follows from (19) and (21) for larger
a.

Suppose first that h = 1.2 logn > 5λ so that we may apply (18), n ≥ 331 and
(21) to deduce the inequality

n > max
{
(a + 1)4, 1500

}
.(22)

If a = 2, then (22) implies that we have (in the notation of Theorem 4.1) A <
3.4 logn and B < A/4. Applying Theorem 4.1 yields

log |Λ| > −6.1 log2 n log x− 4.6 logn log x− 18.6 log3/2 n log1/2 x

−11.9 logn− log(log2 n logx) − 4.2.

It follows, then, from x > 2n > 3000 that

log |Λ| > − (6.1 log2 n+ 23.2 logn + 13.3
)
log x

which, since n > 1500, contradicts

log |Λ| < −n logx.(23)

Similarly, if a ≥ 3 and h > 5λ, we have A < 5.81 logn/λ, B < 1.44 logn/λ and
thus (21) implies that

log |Λ| > −22.6λ−2 log2 n log x− 7.8λ−1 logn log x− 14.4 logn

−32.0λ−1 log3/2 n log1/2 x− log(λ−2 log2 n log x)− 2.7.
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Since λ > 1.76, (18) and (22) therefore give

log |Λ| > − (7.3 log2 n+ 22.7 logn + 15.4
)
log x

which again contradicts n > 1500 and (23).
It follows that we may assume that h = 5λ (so that A = 24.2 and B = 6) and

apply Theorem 4.1 to deduce lower bounds upon Λ of the form

log |Λ| > −c1 log x− c2
√

log x− log log x− c3(24)

for positive constants c1, c2 and c3 which depend only on a (i.e. not upon n).
Applying (21) allows us to take

c1 = 423.2, c2 = 271.7
√

log(a + 1) and c3 = 64.1 log(a + 1) + 5.6

which, together with (20), implies

log |Λ| > −648.5 logx

so that from (23) we may conclude that n < 649. This, with (18), implies that
a ≤ 194 and, arguing more precisely with Theorem 2.3 and (8), we may in fact
assume that a ≤ 166.

We now show that (5) has no nontrivial solutions if 84 ≤ a ≤ 166. Computing
c1, c2 and c3 in (24), we find that for each such a we have c1 ≤ 328.68, c2 ≤ 614.59
and c3 ≤ 330.58 (all obtained for a = 166). Combining (23) and (24), we find, for
n ≥ 557, that x < 84n, contradicting (18). Since there are no new solutions to (5)
with a ≥ 84 and n < 331, it follows that we need only consider prime values of
n with 331 ≤ n ≤ 547. Applying Theorem 2.3 and (8) for each such n, we may
restrict our attention to a with 84 ≤ a ≤ a0 with a0 given in the following table.

n a0 n a0 n a0 n a0 n a0

331 86 373 97 419 108 457 118 499 129

337 88 379 98 421 109 461 119 503 130

347 90 383 99 431 112 463 120 509 131

349 91 389 101 433 112 467 121 521 134

353 92 397 103 439 113 479 124 523 135

359 93 401 104 443 114 487 126 541 139

367 95 409 106 449 116 491 127 547 141

If 84 ≤ a ≤ 86, we may take c1 = 325.2, c2 = 574.2 and c3 = 290.0 in (24).
Combining this with (18) and (23) allows us to deduce the following upper bounds
upon a solution (x, y) to (5), for these values of a:

n = 331 x < 104302 n = 353 x < 10195

n = 337 x < 101051 n = 359 x < 10133

n = 347 x < 10314 367 ≤ n ≤ 523 x < 1088

n = 349 x < 10264 541 ≤ n ≤ 547 x < 84n

Similar arguments produce like bounds for the remaining a with 84 ≤ a ≤ 141. We
remark that the values c1, c2 and c3 increase monotonically with a in this range
and satisfy c1 < 327.81, c2 < 604.78 and c3 < 320.49. With this in mind, it is
easy to see that the upper bounds obtained upon solutions to (5) for larger values
of a are all rather smaller than the worst cases noted in the above table (i.e. of
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the form x < 101093 or better). To show that equation (5) has exactly the one
positive solution x = y = 1 for a ≥ 84, then, it remains to check beneath these
upper bounds, through examination of the relevant continued fraction expansions.
We once again apply Pari GP to compute the initial terms in the expansions to√

1 + 1
a , for the pairs (a, n) under consideration. Inequalities (9) and (18) imply

that a solution (x, y) 6= (1, 1) to (5) yields a partial quotient aj with

aj ≥ (an)n−1 > 101466(25)

and we find, after checking at most 8467 partial quotients (corresponding to (a, n) =
(86, 331) where we have 8466 convergents with denominators smaller than 104302),
that the largest one we encounter is a34 = 581420 (with (a, n) = (84, 461)).

The proof of Theorem 1.1 for 2 ≤ a ≤ 83 proceeds along similar lines, only with
more possibilities for the values of the exponent n (since we can no longer assume
that n is prime). We again compute c1, c2 and c3 in (24) for each choice of a and for
349 ≤ n < 649. Combining this with inequality (23) gives bounds upon solutions
to (5) at least as strong as x < 10553 (obtained for (a, n) = (3, 349)). Another
convergent check yields no new solutions to (5) (since the largest partial quotient
encountered is a31 = 942288 for (a, n) = (60, 433), contradicting (9)).

5. Conclusions

As we have noted, the remaining cases of equation (2) with b = a + 1, 2 ≤
a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347 may be “effectively” treated by arguments
analogous to those in Section 3. The main computational difficulty, at present,
appears to be the problem of finding fundamental units in the corresponding number
fields. Improvements in the hypergeometric method discussed in Section 2 or in the
theory of linear forms in logarithms (Sections 3 and 4) might enable one to the
complete the proof that (2) has at most one positive solution in all cases, though
it is not unlikely that a fundamentally new idea will be required.
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