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1.

Lower bounds for rational approximation to algebraic numbers have been studied
for many years, both for their intrinsic interest and for their applications to
Diophantine equations. At one end of the spectrum, we have the weak bound due
to Liouville who showed that if is an algebraic number of degree , then

for non-zero integers and . At the other end, we have the famous inequality
of Roth [ ] to the effect that, for 0,

again for any non-zero and . Unfortunately, while the first of these bounds
is effective in that the constant is computable from Liouville’s proof,
Roth’s theorem is not. Efforts to produce effective improvements upon Liouville’s
bound have centred about three lines of attack: the theory of linear forms in
logarithms (see for example, [ , , ]), the Thue principle (see [ , ]) and
the method of Baker and Siegel, using rational function approximation (see
[ , , , , , , , ]). While the first of these techniques is indisputably
more general, we restrict our attention in this paper to the last, which is
characterized by attractive and strong bounds in special settings. In [ ] and [ ],
via Padé approximation to the binomial function 1 , Baker was able to
obtain effective improvements upon Liouville’s theorem for restricted classes of
algebraic numbers. In particular, he showed that

2 10 1

for all positive integers and . This implies that solutions to the
Diophantine equation

2

satisfy

max 3 10
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3 2 03 11 1 67 23 1 53 41 1 45 59 1 40
4 1 62 13 1 65 29 1 51 43 1 43 61 1 39
5 1 84 17 1 58 31 1 51 47 1 44 67 1 38
7 1 76 19 1 56 37 1 46 53 1 40 71 1 36
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For integer n, define the constant c n as follows:

Suppose that a, N, s and n are integers with a N, s n, s n
and n occurring in the above table. If, further, we have

N N a a
a n

c n

then we can conclude that

a

N

p

q
N q

with

a n c n N N a

c n a a n N N a
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These results were subsequently sharpened by Chudnovsky [ ], who improved
inequality (1) to

2 2

for and positive integers and some effectively computable constant. The
value of , however, was left undetermined and, for technical reasons, is in fact
extremely difficult to compute. In [ ], though, the author used a variation upon
Chudnovsky’s approach to produce a completely explicit version of (2), of close
to the same strength, namely that

2 3

for integers and ( 0). This implies that

2

for all non-negative integers and . The essential ingredient of this approach, as
compared to that of [ ] and [ ], is that certain required estimates for primes in
arithmetic progressions may be replaced by sharper estimates over all primes in
given intervals. While, in the latter paper, we considered only examples of cubic
irrationalities, here we turn our attention to algebraic numbers of higher degree.
Defining, for positive integers and ,

where the product is over prime , we prove

T 1.1.
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If p and q are positive integers, then we have

p

q
c q

where we may take c and as in Table 1.

a s n

p

If n and N are positive integers with n and

N N n

then

N
p
q

n N q

with

n N N

n N N

5 0 03 2 77 18 0 21 4 29 10 0 38 5 17
14 0 06 3 78 22 0 14 4 91 11 0 40 3 34
15 0 03 3 27 28 0 05 3 41 12 0 42 3 88
17 0 03 3 24 30 0 02 3 04 13 0 44 4 91
18 0 05 3 67 31 0 01 2 83 17 0 03 5 20
37 0 33 3 34 33 0 01 2 82 23 0 43 6 03
39 0 005 2 52 34 0 02 3 02 45 0 27 5 10
3 0 24 3 61 37 0 05 3 48 48 0 42 5 05
6 0 43 3 33 39 0 08 2 91 6 0 14 4 22

10 0 41 3 92 40 0 09 3 90 20 0 25 5 87
11 0 38 4 23 42 0 11 4 19 50 0 25 6 96
15 0 28 4 27 5 0 25 4 43
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Through application of the above theorem, we may derive explicit irrationality
measures for certain with . For algebraic numbers of this form,
generating distinct number fields and satisfying 2 50, we have

C 1.2.

T 1.

For a forthcoming paper [ ] on Diophantine equations, we require a spe-
cialization of Theorem 1.1 to the cases where 1, valid for all 3.
Defining

we have

T 1.3. 3

1

1
1
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1
log 1

log 1 1
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Technical preliminaries

Suppose is real and that there exist positive real numbers c, d,
C and D D such that for each positive integer k with k k k , we
can find integers p l m with non-zero determinant,

p cC l m

and

p p dD l

Then, if t is any real number with t , we may conclude that

p

q
tcC

td

t
q

for all positive integers p and q with q D .
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I x
i

zx
z la z z a

dz l
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Before proceeding, we note that the restriction in Theorem 1.1 that 1
is unimportant since a non-trivial irrationality measure for 1 implies
one for 1 (the latter being a rational multiple of the reciprocal of
the former). We similarly exclude non-prime 6 from Theorem 1.1, since an
inequality of the form

1

with , implies

1

For this reason, in Corollary 1.2, we do not list irrationality measures for numbers
of the form (for example) . Applying our machinery directly with 6 fails
to yield new examples with 100 (though the related measures are on occasion
improved). Bounds for rational approximation to certain are given in [ ] and
will not be repeated here, though we mention that Theorem 1.1 slightly sharpens
the corresponding result in [ ]. This implies, for instance, an improvement of (3)
to

2

for all positive and .

2.

To deduce the aforementioned results, we appeal to the following lemma,
obtained from the proof of Lemma 2.1 of [ ]:

L 2.1.
1

0 1

0 1

0 1

1

max 1
1

As in [ ], to apply this result we require a sequence of good rational
approximations to numbers of the form 1 . To find these, we construct
the diagonal Padé approximants to 1 , from the contour integral

1
2

1
0 1
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where 1 and is a closed counter-clockwise contour enclosing 0 and .
Lemma 3.3 of [ ] implies, then, that

1 0 1

where

1
2 1

1

with 1 and the Kronecker delta (0 1). We prove

L 2.2.
0 1

1

i 1
5 2

ii 1 1 3

(i) For 3, the result follows from Lemma 2.1 of [ ], upon noting
that

3
2 03

implies that 4 (since and are integral). We may therefore assume that
4. Suppose that , and satisfy

where we will take or 1 as appropriate. If we fix , this
therefore yields

2 1 2 1 4

From the proof of Lemma 3.2 of [ ],

1
1

2 1 1 1

whence, for 4, we can use the inequalities

1
2

and
1

1

(where the latter is valid provided 0) to deduce that

1
1 1
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Write this last integral as

1 1 1 1

By calculus, the first of these is bounded by

4

while the second is bounded above by

1
5

for 4. From (4), we find that 2 for each 4 with either choice of
or 1. This implies that

5

in all cases under consideration, so that

1 1
5

which gives the desired result.
If 1, then we note that

1 1 1

which equals
1 3

2 2

Since 1 , this is less than and hence less than 1 1781. Now, from
(4), we have 5 for 4 and 23 (assuming ) and for all 4
(with 1). This implies that

4 4

and hence that

1
5 2

5

For 5 7 11 13 and 17, we compute

1

for each 1 , find explicit values for 1 and use (4) to derive
lower bounds upon the related ’s. In all cases, we verify that (5) is satisfied.

Finally, if 2 3, we use the inequality

1 1 1 1 1
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and check that the right-hand side is bounded above by 5 2 5 in both cases,
whence

1
5 2

for all , as desired.
(ii) Again, we may assume (via Lemma 2.3 of [ ]) that 4. Repeating the

arguments from that lemma, we have

1 2

From (4), in all cases except when 5 7 or 11 and , we have 3,
whence

2 2 1 3

If 5 7 or 11 and , then we have bounded below by , or ,
respectively. It follows that

2 2 1 3

in each remaining case, which completes the proof.

3. 1

As in [ , , , , ], we refine more classical estimates through a careful
analysis of the common factors present in the numerators of the (rational)
coefficients of the polynomials . Lemma 4.2 of [ ] implies that if , , ,

and are non-negative integers with 1 and 1, then

is an integer for each 0 (where [ ] denotes the greatest integer not greater
than ). We may thus define

gcd
2 1

: 0 1

and take
gcd 1

suppressing dependence on and . We prove

L 3.1.
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To obtain this result, we require
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L 3.2. 1 3
1 1 1

1

mod

1 1
6

(of Lemma 3.2). This is essentially just a slight generalization of
Lemma 3.1 of [ ]. Condition (6) implies that 1, and

1 which together are sufficient to guarantee that one of
ord or ord is positive for and 1 and 0 .

For 10 , Lemma 3.1 will follow from application of Chebyshev-like
estimates for primes, either in arithmetic progressions (due to Ramaré and Rumely
[ ]) or otherwise (due to Rosser and Schoenfeld [ ] and Schoenfeld [ ]), to
the sets described in Lemma 3.2. The reader is directed to [ ] for a more detailed
account in the case when 3. We illustrate the proof for 5.

Suppose 5, 1 or 2 and 10 . Lemma 3.2 implies that if
mod 5 and 1 5 6 5 1 for some positive integer

5, then divides . Similarly, if 2 mod 5 and 1
5 6 5 2 for some 5, then divides . We apply Corollary 2*

and the closing remarks of [ ] to derive a lower bound for the product of the
primes in

1 5 6
5 1

and then use Theorems 1 and 2 of [ ] to do likewise for the primes
2 mod 5 in

5 6
5 1

5 6
5 2

Regarding the first of these, if we further assume that 10 , then we can use
the fact that

log

for 10 , to conclude (by applying Corollary 2* of [ ] to the intervals
[ 1 5 6 5 1 ] for 1 24) that

log 0 36496 4 96911
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Since 10 , we may apply the results of Table 2 of [ ] to deduce that

log 0 24925 0 29912

whence

log 0 61421 5 26833 log 1 84

If we have 10 , then we use the inequality 1 000081 (valid for 0)
and Theorem 1 of [ ], in conjunction with the previously mentioned results, to
reach the same conclusion.

To deal with the values of 10 , we argue as in the proof of Lemma 4.2
of [ ]. Fixing and , we explicitly compute the product of the primes in ,
together with the primes congruent to 2 mod 5 in . If we denote this
product by , we find that

1 84 7

for all 1 10 and 1 2 with exactly 154 exceptions, the largest being
with 623 and 2. The arguments of Lemma 4.2 of [ ] allow us to reduce
this calculation from roughly two million values for to a few thousand. For the
remaining pairs which fail to satisfy (7), we compute directly from the
definition, verifying that

1 84

in all cases (with 1 84 minimal for 199 and 2).
We argue similarly for the other values of , only with replaced by

if 4. In all cases, we apply the estimates of [ ] and [ ] to deduce bounds
for 10 and then optimize the inequality for smaller . All these computations
were performed using Pari on Sparc IPC, Sparc 20 and Deck Alpha machines. In
Table 2, we list the total number and largest exceptions to the inequality

8

for 1 , where is defined in the same way as before and is if
4 and otherwise. We also include the values of and which minimize

.

4.

Define, for integral 0, 0 1 and , , and as in the hypotheses
of either Theorem 1.1 or 1.3,

1

The results of the previous section, then, show that each is integral and we
may apply Lemma 2.1 (Lemma 3.4 of [ ] implies the non-vanishing of det
for each positive integer ). To prove Theorem 1.1, we take 1 and 3 in
Lemma 2.1, whence by Lemmas 2.2 and 3.1, we have, for 4,

1
3 9 1
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exceptions to (8) minimal log

3 617 3702 1 13 36 369 1
4 352 3868 1 19 42 606 1
5 154 623 2 12 65 199 2
7 121 850 3 13 38 293 2

11 111 467 2 12 43 104 5
13 97 467 4 12 06 257 2
17 37 464 3 8 75 28 3
19 57 242 6 15 95 74 6
23 42 363 11 12 12 68 10
29 93 368 6 10 64 62 13
31 169 285 6 11 08 161 10
37 96 305 18 10 55 33 17
41 111 317 9 9 63 152 7
43 76 171 14 9 41 104 6
47 215 286 15 8 61 37 23
53 222 211 15 10 06 45 6
59 444 235 11 11 48 75 26
61 459 362 13 7 64 45 8
67 637 284 2 7 41 37 19
71 671 283 19 34 7 46 36 19
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T 2.

where

1

with and as in Theorem 1.1. The bound , derived from (4) and
valid for all , and the fact that 2, then, imply the stated result. For 4
(whence 1), we argue similarly only with the term 3 9 1 replaced by
1 95 and replaced by . It should be noted at this juncture that for specific
in the range under consideration here, the constant 10 appearing in the statement
of Theorem 1.1 may be reduced through application of the precise minima given
in Table 2. For instance, with 3, we may replace 10 by 3 23 10 .

To prove Theorem 1.3 for 14, we use Lemma 2.1 with 1 and
5 2 and set 1. Bounding by the trivial estimate that 1

and noting that the constant 1 3 in Lemma 2.2(ii) may in fact be replaced by

1
2

1
9

yields Theorem 1.3 for these , since

1

To deal with the remaining values of requires a more detailed analysis.
Specifically, we need a sharpened version of Lemma 2.2(i). Suppose that 2.
We show that

1 1 10
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where we may take 0 475 if 3 and 0 374 if 4 13. To prove
this, we note, as in the proof of Lemma 2.2, that

1
1

2 1 1 1 1
11

Explicitly computing

1
2

1

1

for 3 13, minimal satisfying the hypotheses of Theorem 1.3 and
2 25, we find that this quantity is bounded above by either 0 475 (if 3)
or 0 374 (if 4 13) in all cases, which proves (10) for 2 25. To handle

26, we first use (11) to deduce the bound

1
1

2
1

1 1 1

and evaluate this last integral in a similar fashion to Lemma 2.2, noting that it is
bounded by the sum of

1

1 1 1

and

1

This implies that

1 1 1

is bounded above by

3
2 1

1
2

2
9 1

Since the hypotheses of Theorem 1.3 for the values of in question force 6,
we have

1
4 327 12

so that 26 yields

1 1 1
2 5

1

Since further
1

2
1

0 146
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for 3 13, we have (10) as desired for these also (with 0 475 for
3 or 0 374 for 4 13). If we replace 1 3 in Lemma 2.2(ii) by (9),

this yields Theorem 1.3 for 3 13 with

1

through application of Lemma 2.1 with 1 905 ( 3) or 1 598 (4 13)
and 2 (where, again, we use the lower bounds upon derived from the
hypotheses of Theorem 1.3).

To complete the proof of Theorem 1.3, we need to show that the desired
inequality holds for all

1
(13)

with 3 13 and as previously. If 1, then the result obtains from
the mean value theorem, so we may assume that 1. If satisfies (13),
then

1
1

1

and the mean value theorem yields

1
1

1
1

so that

1
1

1

1

By (12), we therefore have

1
1

4 237
1 1

3

which easily implies Theorem 1.3.

5.

We will illustrate the proof of Corollary 1.2 with the example 5. Here
we take 80 and 1 in Theorem 1.1 and may thus conclude that

81 80
3
2

80 2 10

for

1
log 8 1 62 4 5 9

log 1 62 8 4 5 9
2 76457
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Some Diophantine consequences

ax by

x my x m y x m x y m y
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and any integers and (with 0). It follows that

5 5 120 2 10

whence

5 4 906267 10

holds for all non-zero and . This implies that

5 0 03 14

provided 10 . To deal with satisfying 1 10 , we note that a
rational which fails to satisfy (14) must be a convergent in the continued
fraction expansion to 5, say . We therefore have

5
1

2

where is the 1 th partial quotient in this continued fraction expansion
(see for example, [ ]). This implies that

33 2 15

Checking that the first forty convergents to 5 satisfy (14) and noting that
10 , implies, from (15), that we need only show that 10 for

12000 (since we verify that 10 ). Computing the desired partial
quotients via Pari (gp), we find that the largest of the first 12000 partial quotients
is equal to 4057, which enables us to conclude as desired.

Similar arguments apply for our other examples. The bounds in Corollary 1.2
follow from Theorem 1.1 with the choices of , , and noted in Table 3,
provided, in each case, 10 . Computing the first 12000 partial quotients for
each and the related convergents, we list the largest partial quotients in this
range. In every case, the 12000th convergent in the continued fraction expansion
to has denominator exceeding 10 and analogous bounds to (15) enable us
to conclude as in Corollary 1.2.

6.

In [ ], the author ( joint with B. M. M. de Weger) applies these techniques,
together with lower bounds for linear forms in logarithms of algebraic numbers, to
the problem of bounding the number of solutions to the binomial Thue equation

1. For special cases of this and related equations, Corollary 1.2, via
the factorization

provides a means for determining all solutions explicitly. By way of example, for
the equations considered in 5 of [ ], we have
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5 5 1 34

7 7 2 57

7 7 2 09

7 7 1 80

5 8 2 1

√ √
√ √
√ √
√ √
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If x and y are integers, then

x y x y

x y x y

x y x y

and

x y x y

m

N x x

N x x

m
abc

θ , , , θ , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , ,

max max

5 1 4 1 80 4057 34 1 5 1 16 61217
14 1 4 1 7 16353 37 1 5 5 32 91267
15 1 4 1 15 38166 39 2 5 10 3 37108
17 1 4 1 16 5301 40 1 5 1 4 6720
18 1 4 1 8 284610 42 1 5 5 16 23743
37 1 4 28 15 48324 5 2 7 3 125 58199
39 1 4 1 624 8611 10 3 7 7 25 180016
3 2 5 5 27 21171 11 3 7 7 121 76362
6 2 5 1 8 16724 12 3 7 1 8 6793

10 2 5 3 125 8835 13 2 7 10 3 31257
11 1 5 122 21 266282 17 1 7 11 2176 9333
15 2 5 2 25 64273 23 2 7 95 23 47970
18 2 5 1 3 19358 45 3 7 2 25 10659
22 1 5 5 11 295784 48 5 11 1 8 26741
28 1 5 1 7 7117 6 5 13 13 243 66846
30 1 5 1 15 7812 20 4 13 3 125 8300
31 1 5 1 31 45545 50 5 17 3 125 4130182
33 1 5 1 32 22143
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C 6.1.

3 max

5 max

13 max

17 max

It is easy to derive analogous bounds for the other examples in Corollary 1.2.
In general (see [ ] and [ ] for the cubic situation), when the Padé approximation
machinery of Theorem 1.1 may be applied to deduce an irrationality measure for
a particular , the resulting measure will almost certainly be stronger than that
obtained via the theory of linear forms in logarithms. On the other hand, the
latter theory applies for all algebraic numbers, while, arguing as in [ ], if one
defines to be the number of positive integers less than or equal to for
which Theorem 1.1 may be applied to produce a non-trivial effective measure of
irrationality, one has only

The arithmetic ‘flukes’ that enable one to appeal to Theorem 1.1 correspond to
exceptional convergents in the continued fraction expansion to . As noted in
[ ], these in turn are related to extreme examples in the -conjecture.
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7.

The fundamental improvement over [ ] and [ ] that one finds in [ , , , ]
and this paper obtains from lower bounds upon the quantity defined
in 3 (or related quantities in [ ] and [ ]). While asymptotically, our approach
and that of [ ] are equivalent (see [ ]), for approximation to algebraic numbers
of degrees 3, 4 and 6, we are able to avoid reference to primes in arithmetic
progressions, leading to sharper explicit results. In fact (again, see [ ]), for any

3 one can show that

lim
1

log
2

where is the Euler–Mascheroni constant, is Euler’s totient function and
is the derivative of the logarithm of . For 3, then, we have

lim 3 3 3 2 09807

which compares quite well with our lower bound given in Theorem 1.1 of
3 2 03. Denoting lim by , via Euler–Maclaurin summation,

one can show that

lim 1 76387

and even that if is prime. A comparison to Theorem 1.1 shows that
for larger (where we use the bounds for primes in arithmetic progressions due to
Ramaré and Rumely [ ]), we are increasingly unable to approach the asymptotic
results in strength. Improvements in these latter estimates would therefore be of
clear interest in this regard.
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