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SIMULTANEOUS RATIONAL APPROXIMATION

TO BINOMIAL FUNCTIONS

MICHAEL A. BENNETT

Abstract. We apply Padé approximation techniques to deduce lower bounds
for simultaneous rational approximation to one or more algebraic numbers. In
particular, we strengthen work of Osgood, Fel′dman and Rickert, proving, for
example, that

max
{∣∣√2− p1/q

∣∣ , ∣∣√3− p2/q
∣∣} > q−1.79155

for q > q0 (where the latter is an effective constant). Some of the Diophantine
consequences of such bounds will be discussed, specifically in the direction of
solving simultaneous Pell’s equations and norm form equations.

0. Introduction

In 1964, Baker [1, 2] utilized the method of Padé approximation to hypergeomet-
ric functions to obtain explicit improvements upon Liouville’s theorem on rational
approximation to algebraic numbers. By way of example, he showed that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 10−6q−2.955(0.1)

for all positive integers p and q and used such bounds to solve related Diophantine
equations. Chudnovsky [6] subsequently refined Baker’s results, primarily through
a detailed analysis of the arithmetical properties of certain Padé approximants.
Analogous to (0.1), he proved that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > q−2.42971(0.2)

for all integers p and q with q greater than some effectively computable constant
q0. By working out the implicit constants in (0.2), Easton [8] deduced∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 6.6× 10−6q−2.795

for positive integers p and q (as well as related bounds for other cubic irrationalities).
Similar results exist for simultaneous approximation to several algebraic num-

bers. In particular, Baker [3] derived bounds of the form

max
1≤u≤m

{∣∣∣∣θu − pu
q

∣∣∣∣} > q−λ(0.3)
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for certain algebraic numbers θ1, θ2, . . . , θm with 1, θ1, θ2, . . . , θm linearly indepen-
dent over the rationals, λ = λ(θ1, . . . , θm) an explicit real number and p1, . . . , pm, q
positive integers with q greater than an effective q0(λ, θ1, . . . , θm). To be precise,
he considered

(θ1, θ2, . . . , θm) = (rν1 , rν2 , . . . , rνm)(0.4)

with r, ν1, ν2, . . . , νm rational, via approximation to the system of binomial func-
tions

1, (1 + x)ν1 , . . . , (1 + x)νm .

Chudnovsky [6], generalizing his approach from the case of a single approximation,
sharpened these inequalities. Along somewhat different lines, Osgood [13], Fel′dman
[9] and Rickert [15] obtained results like (0.3) with

(θ1, θ2, . . . , θm) = (rν1 , r
ν
2 , . . . , r

ν
m)(0.5)

for r1, r2, . . . , rm and ν rational. These also utilized Padé approximation, this time
to the functions

1, (1 + a1x)ν , . . . , (1 + amx)ν

where a1, . . . , am are distinct integers. Through use of an elegant contour integral
representation for the desired Padé approximants, Rickert proved the inequality

max

{∣∣∣∣√2− p1

q

∣∣∣∣ , ∣∣∣∣√3− p2

q

∣∣∣∣} > 10−7q−1.913(0.6)

for p1, p2 and q integral.
In this paper, we will strengthen the work of Osgood, Fel′dman and Rickert on

simultaneous approximation to algebraic numbers satisfying (0.5), in analogy to
Chudnovsky’s results for those with (0.4). This is primarily accomplished through
careful estimation of both “analytic” and “arithmetic” asymptotics (in the same
sense as Chudnovsky [6]) of Padé approximants to binomial functions. A particu-
larly striking result along these lines (with rather different approximating forms) is
due to Hata [11] who proved that∣∣∣∣π − p

q

∣∣∣∣ ≥ q−8.0161

for sufficiently large positive integers p and q.
In the special case m = 1, we obtain Chudnovsky’s Theorem 5.3 of [6] on ap-

proximation to a single algebraic number (see §7). For larger values of m, we can
prove, for example, that

max

{∣∣∣∣√2− p1

q

∣∣∣∣ , ∣∣∣∣√3− p2

q

∣∣∣∣} > q−1.79155

for p1 and p2 integral and q ≥ q0 effectively computable (compare to (0.6)). Simi-
larly, we have

max

{∣∣∣∣√3− p1

q

∣∣∣∣ , ∣∣∣∣√5− p2

q

∣∣∣∣} > q−1.82227

for q ≥ q1 effective. Optimally, one would like to derive (0.3) for any λ > 1 + 1/m.
Theorems of Roth [16] (m = 1) and Schmidt [17] (m > 1) assert that such bounds
exist for any independent algebraic θ1, . . . , θm, but are ineffective in that they do
not permit the explicit calculation of q0. For specific classes of algebraic numbers,
however, we will be able to obtain effective bounds with λ arbitrarily close to
1 + 1/m. These correspond to the situations described by previous authors where
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the rationals r or r1, r2, . . . , rm in (0.4) or (0.5), respectively, are suitably close to
1. We will also prove a theorem on linear forms, of the type

|x0 + x1θ1 + · · ·+ xmθm| > X−λ1(0.7)

for x0, . . . , xm integers, θ1, . . . , θm as in (0.5) and X = max
0≤i≤m

|xi| satisfying X ≥
X0(λ1, θ1, . . . , θm). Standard transference arguments (see e.g. Cassels [5]) ensure
that (0.3) implies (0.7) with exponent

λ1 =
m(λ− 1)

m(−λ+ 1) + λ

provided λ < 1 + 1/(m − 1). Our result, however, is somewhat stronger. These
results have direct applications to Diophantine equations which we will address in
§8 and §9. For example, they permit solution of the norm form equation

NK/Q

(
x+ y 4

√
M4 − 1 + z 4

√
M4 + 1

)
= u

(where K = Q(4
√
M4 − 1, 4

√
M4 + 1), x, y and z are integers and u is constant) for

M ≥ 6.

1. A pair of theorems on rational approximation

Henceforth, we will suppose that a0, a1, . . . , am are distinct integers (m ≥ 1)
with one of them equal to zero, satisfying

a0 < a1 < . . . < am.

Let us also assume that N is a positive integer with

N > max
0≤u≤m

|au|

and that s and n are integers with 1 ≤ s < n and (s, n) = 1. Define

c1 = lcm


m∏
l=0

l 6= v

|al − av| : 0 ≤ v ≤ m

 ,(1.1)

c2 = lcm {|al − av| : 0 ≤ v < l ≤ m},(1.2)

c3 =
∏
p|n

pmax{ordp(n/c2)+ 1
p−1 ,0,}(1.3)

and
c4 = c1 · c2 · c3.

If, following Rickert [15], we set A(z) =
m∏
u=0

(z − au), then the polynomial

A(z)− (z +N)A′(z)(1.4)

(where we write A′(z) for dA(z)/dz) is readily seen to have m + 1 real zeros, one
of them, say z0, satisfying z0 < −N and the remaining m, say z1, z2, . . . , zm, lying
between successive values of the ai’s. Without loss of generality, we suppose that
au−1 < zu < au (1 ≤ u ≤ m) and define

c5 = |A′(z0)|,
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c6(v) =

 |A
′(z1)| if v = 0,

min{|A′(zv)|, |A′(zv+1)|} if 1 ≤ v < m,
|A′(zv)| if v = m,

c7 = min
1≤u≤m

|A′(zu)|

and

c8 = exp

−γ − 1

φ(n)

∑
1≤r<n

(r,n)=1

ψ

(
max

{
nm− r
nm

,
r

n

})
where γ is Euler’s constant, φ(n) is Euler’s totient function and ψ(z) = d log Γ(z)/dz
is the digamma function. We may conclude

Theorem 1.1. Let a0, a1, . . . , am be distinct integers with ar = 0 for some r and
N > max

0≤u≤m
|au| an integer. If, further, s and n are relatively prime with 1 ≤ s <

n, ε > 0 and c7 · c8 < c4 < c5 · c8, then

max
0≤u≤m
au 6=0

{∣∣∣∣(1 +
au
N

)s/n
− pu

q

∣∣∣∣} > q−λ−ε

for all integers p0, . . . , pm and with q ≥ q0(ε, s, n, a0, . . . , am, N), where λ = 1 +
log(c4/c7 · c8)

log(c5 · c8/c4)
and q0 is effectively computable.

As mentioned previously, in §7 we will show that, in the case m = 1, the above
theorem implies Chudnovsky’s result [6, Theorem 5.3] (see also Heimonen, et al.
[12]).

For linear forms, we will prove

Theorem 1.2. If a0, . . . , am, N, s and n are integers satisfying the hypotheses of
the previous theorem, x0, . . . , xm integers, X = max

0≤u≤m
|xu|, ε > 0, and

m∏
v=1

c6(v) < (c4/c8)m < c5 · min
1≤l≤m

m∏
v=1

v 6=l

c6(v),

then ∣∣∣∣∣
m∑
u=0

xu ·
(

1 +
au
N

)s/n∣∣∣∣∣ > X−λ1−ε

for all X ≥ X0(ε, s, n, a0, . . . , am, N), where

λ1 =

m log(c4/c8)−
∑

1≤v≤m
log(c6(v))

m log(c8/c4) + log(c5) + min
1≤l≤m

∑
1≤v≤m
v 6=l

log(c6(v))

and X0 is effectively computable.

Examples and applications of this result will be briefly described in §8 and §9.
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2. The nature of the approximating forms

To construct our approximants to the system of binomial functions (0.3), we
consider the contour integral

Iu(x) =
1

2πi

∫
γ

(1 + zx)k(1 + zx)ν

(z − au)(A(z))k
dz (0 ≤ u ≤ m).(2.1)

Here, k is some fixed positive integer, ν a nonintegral positive rational, γ a closed,
counter-clockwise contour enclosing the poles of the integrand and x a real satisfying

|x|−1 > max
0≤u≤m

|au|.(2.2)

By application of Cauchy’s residue theorem, we can write

Iu(x) =
m∑
v=0

Puv(x)(1 + avx)ν (0 ≤ u ≤ m)(2.3)

where the Puv(x) are polynomials with rational coefficients and degree at most k
in x. Explicitly, from Rickert [15, Lemma 3.3], we have

Puv(x) =
∑ (

k + ν
hv

)
(1 + avx)k−hvxhv

∏
0≤l≤m
l 6= v

(
−kul
hl

)
(av − al)−kul−hl

(2.4)

where
∑

denotes summation over all nonnegative integers h0, . . . , hm with sum
kuv − 1, for kab = k+ δab and δab the Kronecker delta. To guarantee the “indepen-
dence” of the approximants, we require that det

0≤u,v≤m
(Puv(x)) does not vanish for

nonzero x, a consequence of Rickert’s Lemma 3.4. To be precise, one may write

det
0≤u,v≤m

(Puv(x)) =

(
m−1∏
v=−1

(
ν − vk
k

))
·

 m∏
l=0

m∏
s=0

s 6= l

(as − al)−k

x(m+1)k.

In the sections that follow, we will find asymptotics for |Puv(1/N)| and |Iu(1/N)|
and then study the arithmetic properties of the coefficients of Puv(x).

3. Contour integral estimates

To begin, we note that the value Puv(x)(1 +avx)ν (0 ≤ u ≤ m) is obtained from
the integral (2.1), only with the contour γ changed so as to enclose the integer av
and no other al’s (for l 6= v). Setting x = 1/N , one sees that (2.2) is satisfied and it
follows that the integrand of (2.1) is analytic in a suitable deleted neighbourhood
of av. Following Hata [11], we may apply the saddle-point method as described in

Dieudonné [7, chapter IX] to estimate the principal part of Puv

(
1

N

)
(1 + av/N)ν

for large values of k. Explicitly, we set

F (z) = log
(

1 +
z

N

)
− log (|A(z)|)

and

G(z) =
(

1 +
z

N

)ν
(z − au)−1
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so that

Puv

(
1

N

)
(1 + av/N)ν =

∫
γ

G(z)ekF (z)dz.(3.1)

The saddles of the surface |F (z)| are given by the zeros of the derivative of F (z)
which, since x = 1/N, are the zeros of the polynomial (1.4) (say z0, z1, . . . , zm as
in §1). Since G(z)ekF (z) vanishes as z tends to −N or ∞ (avoiding the real branch
cut from −N to −∞), the saddle-point method yields

Lemma 3.1. As k→∞, the principal part of is given by

Puv

(
1

N

)(
1 +

av
N

)ν
∼

∑
v≤t≤v+1

ekF (zt) G(zt)

√
−2π

kF ′′(zt)
,

where the summation is restricted to t ∈ [1,m]. In particular, since the roots of
satisfy

eF (zl) = |NA′(zl)|−1 (0 ≤ l ≤ m)

we may conclude that

lim
k→∞

1

k
log

∣∣∣∣Puv ( 1

N

)∣∣∣∣ = − log(c6(v) ·N) ≤ − log(c7 ·N)

for all 0 ≤ u, v ≤ m.

To find asymptotics for |Iu(1/N)| requires a more delicate analysis. Since the
integrand of (2.1) has a branch point at z = −N , we cannot simply apply the
saddle-point method for the saddle z0 without justification (recall that z0 < −N
is real). If, however, we make the change of variables 1 +

z

N
→ −w, then we may

write

Iu

(
1

N

)
=

(−1)mkeπiν

2πiN (m+1)k

∫
γ′

wkwνdw

(w + 1 + au
N )(B(w))k

(3.2)

where B(w) =
m∏
l=0

(
w + 1 +

al
N

)
and γ′ = γ1 + γ2 + γ3 + γ4 is a contour containing

the poles of the integrand of (3.2) while avoiding a branch cut along the nonnegative
real axis (see Figure 1).

Since∣∣∣∣∫
γl

wkwνdw

(w + 1 + au
N )(B(w))k

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣ wkwν

(w + 1 + au
N )(B(w))k

∣∣∣∣ dθ , l = 2 or 4

(where w = Reiθ or reiθ respectively), we have that the contribution to (3.2)
associated with the arcs γ2 and γ4 becomes negligible as r → 0 and R → ∞.
Therefore, from

wkwν

(w + 1 + au
N )(B(w))k

=


xkxν

(x+ 1 + au
N )(B(x))k

on γ1,

e2πiνxkxν

(x+ 1 + au
N )(B(x))k

on γ3,
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Figure 1

we may conclude, letting r → 0 and R→∞, that

Iu

(
1

N

)
=

(−1)mkeπiν(1− e2πiν)

2πiN (m+1)k

∫ ∞
0

xkxνdx(
x+ 1 + au

N

)
(B(x))k

.

This is readily evaluated for large k via Laplace’s method (see e.g. Dieudonné [7,
Chapter IV, §2]). Since the function x/B(x) has only one critical point on the
positive real axis, say x0, and vanishes as x→ 0+ or x→∞, we conclude that

lim
k→∞

1

k
log

∣∣∣∣Iu ( 1

N

)∣∣∣∣ = log

∣∣∣∣ x0

Nm+1B(x0)

∣∣∣∣ .(3.3)

Changing variables back to our original z, we find that∣∣∣∣ x0

Nm+1B(x0)

∣∣∣∣ =

∣∣∣∣1 + z0/N

A(z0)

∣∣∣∣ =

∣∣∣∣ 1

NA′(z0)

∣∣∣∣
for z0 as in §1. Combining this with (3.3) yields

Lemma 3.2. lim
k→∞

1

k
log

∣∣∣∣Iu ( 1

N

)∣∣∣∣ = − log(c5 ·N) (0 ≤ u ≤ m).

4. Coefficients of the approximating polynomials

We wish to determine certain arithmetic properties of the coefficients of the
polynomials Puv(x) defined in §2. Let us write

Pv =
∏

0≤l≤m
l 6= v

(
k + hl − 1

hl

)
(al − av)−k−hl .

From (2.4), if u = v, then

Puv(x) = (−1)mk
∑(

k + ν
hv

)
(1 + avx)k−hvxhvPv(4.1)
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where
∑

implies the sum over nonnegative h0, . . . , hm satisfying
m∑
l=0

hl = k. If,

however, u 6= v, we have

Puv(x) = (−1)mk
∑(

k + ν
hv

)
(1 + avx)k−hvxhv

(
k + hu

k(au − av)

)
Pv

(4.2)

where in this latter case, the summation is over nonnegative h0, . . . , hm with
m∑
l=0

hl = k − 1. From here on we will fix ν = s/n. The following elementary

lemma concerning primes dividing binomial coefficients will be the chief tool in
determining our “arithmetic” asymptotics. It enables us to identify certain classes
of prime numbers which are guaranteed to divide the numerators of the coefficients
of the polynomials Puv(x) defined in (2.4). Similar results have been utilized by
Chudnovsky [6], Hata [11] and Heimonen, et al. [12], amongst others, in the pur-
suit of irrationality and linear independence measures. Suppressing dependence on
m,n, s and k, let

S(r) =
{
p prime : p >

√
nk + s, (p, nk) = 1 (and, if m = 1,

(p, nk − s− n) = 1) and

{
k − 1

p

}
> max

(
nm− r
nm

,
r

n

)
for r with 1 ≤ r < n and pr ≡ s (mod n)}

(4.3)

where we adopt the notation {x} = x− [x] for the fractional part of a real number
x.

Lemma 4.1. If p ∈ S(r), then

ordp

((
k + s/n
h0

)(
k + h1 − 1

h1

)
· · ·
(
k + hm − 1

hm

))
≥ 1

for all nonnegative integers h0, . . . , hm with
m∑
l=0

hl = k or k − 1.

Proof. Suppose that p ∈ S(r) does not divide the product(
k + h1 − 1

h1

)
· · ·
(
k + hm − 1

hm

)
.

Then it follows that {
hl
p

}
< 1−

{
k − 1

p

}
(1 ≤ l ≤ m)

and thus, since p 6 | k, that{
hl
p

}
≤ 1−

{
k

p

}
(1 ≤ l ≤ m).(4.4)

From (4.3), we may therefore write

m∑
l=1

{
hl
p

}
≤ m

(
1−

{
k

p

})
< m

(
r

nm
− 1

p

)
=
r

n
− m

p
.(4.5)
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Hence
m∑
l=0

hl = k or k − 1 in conjunction with

{
k − 1

p

}
>
r

n
>

m∑
l=1

{
hl
p

}
yields {

k − h0

p

}
≤

m∑
l=1

{
hl
p

}
+

1

p
.(4.6)

We wish to show that ordp

(
k + s/n
h0

)
≥ 1. Since p 6 | n, we have

ordp

(
k + s/n
h0

)
= ordp

(
(nk + s)(n(k − 1) + s) · · · (n(k − h0) + n+ s)

h0!

)
and so by a result of Chudnovsky [6, Lemma 4.5] (recalling that p >

√
nk + s)

ordp

(
k + s/n
h0

)
=

{
k − θ − h0

p

}
+

{
h0

p

}
−
{
k − θ
p

}
(4.7)

where θ =
pr − s
n

. We thus have that ordp

(
k + s/n
h0

)
≥ 1 exactly when

{
h0

p

}
>{

k − θ
p

}
or, equivalently, when{

k − h0

p

}
<
r

n
− s

pn
.(4.8)

Now, combining (4.5) and (4.6) gives{
k − h0

p

}
≤ r

n
− (m− 1)

p
(4.9)

which for m ≥ 2 implies

{
k − h0

p

}
≤ r

n
− 1

p
<
r

n
− s

pn
, as desired (since 1 ≤ s < n).

It remains to consider the case m = 1. If we have strict inequality in (4.4), then{
h1

p

}
≤ 1−

{
k

p

}
− 1

p
<
r

n
− 2

p

whence {
k − h0

p

}
≤
{
h1

p

}
+

1

p
<
r

n
− 1

p

which again implies (4.8). Similarly, we attain the inequality (4.8) if h0 + h1 = k.

If

{
h0

p

}
<

{
k − θ
p

}
, then{

k − h0

p

}
≥ r

n
− s

pn
+

1

p
>
r

n

contradicting (4.9). To complete the proof of the lemma, we have only to show that
the simultaneous equalities {

h1

p

}
= 1−

{
k

p

}
,
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h0

p

}
=

{
k − θ
p

}
and

h0 + h1 = k − 1

produce a contradiction. Well, the first of these implies that p|k + h1, while the
second yields p|n(k − h0) + s. But these together with h0 + h1 = k − 1 imply that
p divides nk − s− n, contradicting our initial assumptions.

Now if by π(x, n, s) we denote the number of primes p ≤ x in the arithmetic
progression bn + s, then, analogous to the standard prime number theorem, we
have

π(x, n, s) =
x

φ(n) log x

(
1 +O

(
1

logx

))
.

It follows that if β > α > 0, then

lim
k→∞

1

k
log
∏

p =
β − α
φ(n)

(4.10)

where the product is over all primes p in the interval αk < p < βk and satisfying

p ≡ a (mod n). The inequality

{
k − 1

p

}
> max

(
nm− r
nm

,
r

n

)
defines a collection

of open intervals for primes p in S(r), of the form(
k

l + 1
,min

(
nmk

(l + 1)nm− r ,
nk

ln+ r

)
+O

(√
k
))

, l = 0, 1, 2, . . . ,

where the shape of the error term follows from the assumption that p >
√
nk + s.

From(4.10), we may therefore write

lim
k→∞

1

k
log

∏
p∈S(r)

p =
1

φ(n)

∞∑
l=0

(
min

(
nm

(l + 1)nm− r ,
n

ln+ r

)
− 1

l + 1

)
.

Since, from Bateman and Erdélyi [4], the function ψ(z) =
d log Γ(z)

dz
satisfies

ψ(β)− ψ(α) =
∞∑
l=0

(
1

l+ α
− 1

l + β

)
,

we may conclude that

lim
k→∞

1

k
log

∏
p∈S(r)

p =
1

φ(n)

(
ψ(1)− ψ

(
max

{
nm− r
nm

,
r

n

}))
whence, recalling the equality ψ(1) = −γ,

lim
k→∞

1

k
log

∏
1≤r<n

(r,n)=1

∏
p∈S(r)

p = −γ − 1

φ(n)

∑
1≤r<n

(r,n)=1

ψ

(
max

{
nm− r
nm

,
r

n

})
.

(4.11)

We thus have
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Lemma 4.2. For each k, there is a rational number Ck such that

CkPuv

(
1

N

)
∈ Z for all 0 ≤ u, v ≤ m

and

lim supk→∞
1

k
log |Ck| ≤ log(c4N/c8)

for c4 and c8 as in §1.

Proof. If we define µn,r =
∏
p|n

p[r/(p−1)], then by Chudnovsky [6, Lemma 4.1], we

have

µn,r · nr
(
k + s/n

r

)
∈ Z(4.12)

for k ≥ r ≥ 0. Let

α = max
0≤l<v≤m

ordp(al − av)

and

βv(h0, . . . , hm) = µn,hv · nhv
∏

0≤l≤m
l 6=v

(al − av)hl

where
∑

0≤l≤m
hl = k or k − 1.

If p is prime and p does not divide n, then

ordp(βv(h0, . . . , hm)) = ordp
∏

0≤l≤m
l 6=v

(al − av)hl

=
∑

0≤l≤m
l 6= v

hl ordp(al − av) ≤
∑

0≤l≤m
αhl ≤ αk.

On the other hand, if p|n, then

ordp (βv(h0, . . . , hm)) ≤
[
hv
p− 1

]
+ hv ordp n+

∑
0≤l≤m
l 6= v

hl ordp(al − av)

≤ hv
(

ordp n+
1

p− 1

)
+
∑

0≤l≤m
l 6= v

αhl

≤ max

(
ordp n+

1

p− 1
, α

) ∑
0≤l≤m

hl

≤ max

(
ordp n+

1

p− 1
, α

)
k.

Since hl ≤ k for 0 ≤ l ≤ m, (1.1) and (1.2) yield that

βv(h0, . . . , hm)−1 · (c2 · c3)k(4.13)

is an integer for all 0 ≤ v ≤ m and nonnegative integers h0, . . . , hm with sum k−1,
or k.
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From (4.1), (4.2), (4.12), (4.13) and Lemma 4.1, we therefore have that

(c4 ·N)k · c2 · k

 ∏
1≤r≤n

(r,n)=1

∏
p∈S(r)

p


−1

Puv

(
1

N

)

is also an integer for 0 ≤ u, v ≤ m (using the fact that Puv(x) has degree at most
k). The lemma then follows from equality (4.11).

5. Proof of Theorem 1.1

To apply the results of the previous sections, we first state a lemma that connects
our approximating polynomials with bounds of the form (0.1). Let θ0, θ1, . . . , θm
be distinct real numbers with θr = 1 for some r. Then

Lemma 5.1. Suppose there are positive real numbers P and Q such that, for ε > 0
and each positive integer k greater than an effective constant k0, we can find integers
Puvk (0 ≤ u, v ≤ m) with nonzero determinant,

1

k
log |Puvk| ≤ P + ε (0 ≤ u, v ≤ m)

and

1

k
log

∣∣∣∣∣
m∑
v=0

Puvk θv

∣∣∣∣∣ ≤ −Q+ ε (0 ≤ u ≤ m).

Then (0.1) holds for any λ > 1+
P

Q
and q ≥ q0(θ0, . . . , θm, λ) effectively computable.

Proof. This follows directly from Lemma 2.1 in [14].

To complete the proof of Theorem 1.1, we write

θl =
(

1 +
al
N

)s/n
(0 ≤ l ≤ m)

and

Puvk = CkPuv

(
1

N

)
(0 ≤ u, v ≤ m)

where Ck is as in Lemma 4.2. Then from Lemmas 3.1 and 4.2, we may take

P = log

(
c4

c7 · c8

)
and

Q = log

(
c5 · c8
c4

)
in Lemma 5.1. If c7 · c8 < c4 < c5 · c8, then both of these quantities are positive
and, recalling that det

0≤u,v≤m
(Puv(1/N)) is nonzero, we can utilize this last lemma to

obtain the desired result. Since we can make Lemma 5.1 effective, the same is true
for Theorem 1.1.
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6. Proof of Theorem 1.2

Let x0, . . . , xm, a0, . . . , am, s, n,N and X be as in §1, Ck and Puvk as in §4 and
§5 and write

L =
m∑
u=0

xu ·
(

1 +
au
N

)s/n
.

Then the fact that det
0≤u,v≤m

(Puv(1/N)) 6= 0 implies that we can find m of the

CkIu(1/N) (0 ≤ u ≤ m), say CkI1(1/N), . . . , CkIm(1/N) with

L,CkI1

(
1

N

)
, . . . , CkIm

(
1

N

)
(6.1)

independent forms in the numbers (1 + a0/N)s/n, . . . , (1 + am/N)s/n. Following
Fel′dman [9], we consider the determinant

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 x1 . . . xm
P10k P11k . . . P1mk

· · ·
· · ·
· · ·
· · ·
Pm0k Pm1k . . . Pmmk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= L ·∆k,0 +

m∑
l=1

CkIl

(
1

N

)
∆k,l

(6.2)

where ∆k,l (0 ≤ l ≤ m) are the cofactors of the elements of the first column of
∆k. Since the Puvk’s and xv’s are integers, the independence of the forms in (6.1)
ensures that |∆k| ≥ 1 and thus (6.2) implies that

|L| · |∆k,0|+
m∑
l=1

|CkIl(1/N)| · |∆k,l| ≥ 1.(6.3)

Define, for σ ∈ Sm (i.e. σ a permutation on {1, 2, . . . ,m}) and v = 1, 2, . . . ,m,

P (σ) = Pσ(1)1k Pσ(2)2k . . . Pσ(m)mk

and

Pv(σ) = Pσ(1)1k . . . Pσ(v−1)(v−1)k Pσ(v+1)(v+1)k . . . Pσ(m)mk.

Since

∆k,0 =

∣∣∣∣∣∣∣∣∣∣∣∣

P11k . . . P1mk

· ·
· ·
· ·
· ·
Pm1k . . . Pmmk

∣∣∣∣∣∣∣∣∣∣∣∣
we have that

|∆k,0| ≤ m! ·max {|P (σ)| : σ ∈ Sm}
and thus Lemmas 3.1 and 4.2 yield

lim supk→∞
1

k
log |∆k,0| ≤ m log

(
c4
c8

)
−

m∑
v=1

log(c6(v)).(6.4)
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Similarly, if 1 ≤ l ≤ m, then ∆k,l satisfies

|∆k,l| ≤ (m− 1)! ·
m∑
v=1

|xv| ·max{|Pv(σ)| : σ ∈ Sm}

and Lemmas 3.2 and 4.2 imply (for 1 ≤ v, l ≤ m) that

lim supk→∞
1

k
log

(
CkIl

(
1

N

)
max{|Pv(σ)| : σ ∈ Sm}

)

≤ m log

(
c4
c8

)
− log(c5)− min

1≤l≤m

m∑
v=1

v 6=l

log(c6(v)).(6.5)

Let us denote the right-hand side of (6.4) by D1 and the right-hand side of (6.5)
by D2. Given ε1 > 0, from (6.4) we can find a k0 = k0(ε1) for which

|∆k,0| ≤
1

2
· e(D2+ε1)k(6.6)

for k ≥ k0. Inequality (6.5) implies that for X ≥ X0(ε1), we may find a k = k(X)
with both

m! ·
m∑
l=1

|CkIl
(

1

N

)
| ·max {|Pv(σ)| : σ ∈ Sm, 1 ≤ v ≤ m} ≤

1

2X

(6.7)

and

X ≤ e−(D1−ε1)k.(6.8)

Now (6.3) and (6.7) yield |L| · |∆k,0| ≥ 1/2 whence

|L| ≥ 1

2|∆k,0|
≥ e−(D2+ε1)k

via (6.6). Applying (6.8), then, gives

|L| ≥ X
D2+ε1
D1−ε1 ≥ XD2/D1+ε

for suitably small ε1 relative to ε and X ≥ X0(ε). This completes the proof of
Theorem 1.2.

7. The case of a single binomial function

In the following analysis, we specialize Theorem 1.1 by fixing m = 1, and writing
a1 = a (the ordering of the au’s, as given in §1, is unimportant here). Further, take
n ≥ 3 and define

c9 =
∏
p|n

pmin{ordpa,ordpn+ 1
p−1}

and

c10 = exp

 1

φ(n)

∑
1≤r<n/2

(r,n)=1

(
ψ

(
n− r
n

)
− ψ

( r
n

)) .

We then obtain the following result of Chudnovsky [6, Theorem 5.3] as a corollary
to Theorem 1.1:
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Theorem 7.1. If a,N, s and n are integers with N > |a|, 1 ≤ s < n, (s, n) = 1, ε >

0 and
(√

N + a−
√
N
)2

· c10 < c9, then∣∣∣∣(1 +
a

N

)s/n
− p

q

∣∣∣∣ > q−λ−ε(7.1)

for p and q integers with q ≥ q0(ε, a,N, s, n) and

λ = 1−
log

{(√
N + a+

√
N
)2

· c10/c9

}
log

{(√
N + a−

√
N
)2

· c10/c9

} .

Proof. From (1.1) and (1.2), we have that c1 = c2 = a. Since A(z) = z(z − a),
the zeros of polynomial (1.4) are given by z0 = −N −

√
N2 + aN and z1 = −N +√

N2 + aN . It follows that

c5 = 2N + a+ 2
√
N2 + aN =

(√
N + a+

√
N
)2

and

c7 =
∣∣∣2N + a− 2

√
N2 + aN

∣∣∣ =
(√

N + a−
√
N
)2

and so we may apply Theorem 1.1 to deduce a bound of the form (7.1) with

λ = 1 +
log(c4/c7 · c8)

log(c5 · c8/c4)

= 1 +
log
(
a2 · c3/(

√
N + a−

√
N )2 · c8

)
log

((√
N + a+

√
N
)2

· c8/a2 · c3
)

= 1−
log

((√
N + a+

√
N
)2

· c3/c8
)

log
(

(
√
N + a−

√
N )2 · c3/c8

)
provided (√

N + a−
√
N
)2

· c3 < c8 <
(√

N + a+
√
N
)2

· c3.

It remains to show that c3/c8 = c10/c9 or, equivalently, that

log(c8 · c10) = log(c3 · c9).(7.2)

Recalling the various definitions of our constants, the left-hand side of equa-
tion (7.2) becomes

2

φ(n)

∑
1≤r<n/2

(r,n)=1

(
ψ(1)− ψ

(
n− r
n

))
+

1

φ(n)

∑
1≤r<n/2

(r,n)=1

(
ψ

(
n− r
n

)
− ψ

( r
n

))

=
1

φ(n)

∑
1≤r<n/2

(r,n)=1

(
2ψ(1)− ψ

( r
n

)
− ψ

(
n− r
n

))
.(7.3)
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In order to express ψ(z) with rational arguments as a finite combination of
elementary functions, we appeal to a result of Gauss (see e.g. [4]):

ψ
( r
n

)
= −γ − logn− 1

2
π cot

(πr
n

)
+

′∑
1≤k≤n/2

cos(2πkr/n) log(2− 2 cos(2πk/n)).

Here the prime over the summation indicates that only half the value associated
with k = n/2 is applied to the sum. The finite sum in (7.3) thus may be written
as (again recalling that ψ(1) = −γ)

logn− 1

φ(n)

∑
1≤r<n

(r,n)=1

′∑
1≤k≤n/2

cos(2πkr/n) log(2− 2 cos(2πk/n)).(7.4)

Now, if we let q(n) =
∏
p|n

p, then

∑
1≤r<n/2

(r,n)=1

cos

(
2πkr

n

)
= φ∗

(
(n, k)

n
q(n)

)
· µ
(

n

(n, k)

)
· n

q(n)
(7.5)

where φ∗ is the Euler totient for integer arguments, zero otherwise, and µ is the
Möbius function. To see this, express the above sum in terms of primitive n/(n, k)th
roots of unity. Also, if d > 2 is a fixed divisor of n,

∏
1≤k<n/2

(n,k)=n/d

(
2− 2 cos

(
2kπ

n

))
=

∏
1≤j<d/2

(j,d)=1

(
2− 2 cos

(
2jπ

d

))

=
∏

1≤j<d
(j,d)=1

(1− e2πij/d).

If d is prime, then this is the product of the roots of the polynomial

(x+ 1)d − 1

x
= xd−1 + dxd−2 + · · ·+ d

and hence equal to d. If, however, d has at least two distinct prime factors, then it
is not difficult to show (see e.g. Washington [19, Prop. 2.8]) that∏

1≤j<d
(j,d)=1

(1− e2πij/d) = 1.

Collecting these facts together with (7.5) yields
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∑
1≤r<n

(r,n)=1

∑
1≤k<n/2

cos

(
2πkr

n

)
log(2− 2 cos(2πk/n))

=
∑

2<d≤n
d|n

φ∗(q(n)/d) · µ(d) · n

q(n)
· log

 ∏
1≤k<n/2

(n,k)=n/d

(
2− 2 cos

(
2kπ

n

))
= −

∑
p|n
p>2

φ(q(n)/p)
n

q(n)
log(p)

= −
∑
p|n
p>2

φ(n)

p− 1
· log(p)

where these last two sums are over p prime.
This, with (7.3) and (7.4), implies that

log(c8 · c10) = logn+
∑
p|n

log p

p− 1
= log(nµn)

where µn =
∏
p|n

p1/(p−1) (the contribution from p = 2, for even n, is obtained by

taking k = n/2 in (7.4)). Now c3 · c9 satisfies

c3 · c9 =
∏
p|n

pmax{ordp(n/a) + 1
p−1 ,0}+min{ordp(a),ordp(n)+ 1

p−1}

=
∏
p|n

pordp(n)+ 1
p−1 = nµn

whence equality (7.2) holds, finishing the proof.

Application of this result with n = 3, s = 1, a = 3 and N = 125 enables one to
obtain the bound (0.2) while other choices lead to a variety of examples, including
those discussed in [6] and [12].

8. Some applications

As the previous section indicates, it is possible to obtain versions of Theorem 1.1
(and Theorem 1.2, for that matter), for certainm, which are more explicit than that
stated in §1. Though we will not explore these aspects here, we note that Rickert’s
Theorem of [15] (compare to Theorem 1.1 with n = m = 2 and au ∈ {−1, 0, 1})
essentially follows from the fact that the zeros z0, z1 and z2 of polynomial (1.4) are
well approximated by −3N/2,−1/

√
3 and 1/

√
3, respectively.

In the case n = m = 2, we obtain nontrivial bounds from Theorem 1.1 whenever
λ < 2. For larger values of n or m, however, we require not only that λ < n, but also
that λ is smaller than that induced by any proper subset of the related numbers θi
in (0.1) (1 ≤ i ≤ m). By way of example, direct application of Theorem 1.1 with
n = 3,m = 2, N = 8, and ai ∈ {−2,−1, 0} yields

max

{∣∣∣∣ 3
√

6− p1

q

∣∣∣∣ , ∣∣∣∣ 3
√

7− p2

q

∣∣∣∣} > q−2.66985(8.1)
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Table 1: Cases of Theorem 1.1 for m = 2 :

θ1, θ2 N, ai 6= 0 λ

√
2,
√

3 72,−1, 1 1.79155√
2,
√

7 822, 3, 4 1.88908√
2,
√

11 102,−2,−1 1.74788√
2,
√

17 42, 1, 2 1.89813√
2,
√

23 242,−1, 2 1.97500√
2,
√

29 1402, 2, 4 1.62588√
2,
√

51 72, 1, 2 1.79008√
3,
√

5 1232,−6,−4 1.82227√
3,
√

23 52,−2, 2 1.94595√
3,
√

26 52, 1, 2 1.84700√
3,
√

29 52, 2, 4 1.93291√
3,
√

35 712,−1, 2 1.83947√
3,
√

47 72,−2,−1 1.79307√
5,
√

11 1992,−1, 4 1.90617√
5,
√

47 72,−4,−2 1.85791√
5,
√

79 92,−2,−1 1.75964√
5,
√

82 92,−1, 1 1.75893√
5,
√

93 292,−4, 4 1.82863√
6,
√

23 52,−2,−1 1.85558√
6,
√

26 52,−1, 1 1.85115√
6,
√

59 1692,−5, 5 1.79760√
7,
√

38 372,−1, 3 1.99312√
7,
√

55 372, 3, 6 1.84857√
7,
√

62 82,−2,−1 1.77425√
7,
√

65 82,−1, 1 1.77324√
7,
√

83 822,−1, 3 1.88907

θ1, θ2 N, ai 6= 0 λ

√
10,
√

11 32, 1, 2 1.98873√
10,
√

22 1362,−6, 6 1.76160√
10,
√

31 222, 6, 12 1.99858√
10,
√

38 62, 2, 4 1.88331√
14,
√

15 42,−2,−1 1.91627√
15,
√

17 42,−1, 1 1.90671√
19,
√

22 612,−3, 3 1.79694√
21,
√

23 52,−4,−2 1.96101√
23,
√

47 482,−4,−1 1.95362√
34,
√

35 62,−2,−1 1.81853√
34,
√

38 62,−2, 2 1.89037√
35,
√

37 62,−1, 1 1.81607√
37,
√

38 62, 1, 2 1.81372
3
√

3, 3
√

21 33,−6,−3 2.57831
3
√

3, 3
√

30 33,−3, 3 2.50876
3
√

5, 3
√

9 33,−3,−2 2.52360
3
√

7, 3
√

9 23,−1, 1 2.57831
3
√

22, 3
√

43 143, 6, 8 2.22145
3
√

23, 3
√

25 33,−4,−2 2.78961
3
√

25, 3
√

26 33,−2,−1 2.13916
3
√

25, 3
√

29 33,−2, 2 2.73786
3
√

26, 3
√

28 33,−1, 1 2.13097
3
√

28, 3
√

29 33, 1, 2 2.12328
3
√

29, 3
√

30 33, 2, 3 2.48614
3
√

29, 3
√

31 33, 2, 4 2.69341
3
√

30, 3
√

33 33, 3, 6 2.45379

for q ≥ q0 effective. If we instead consider n = 3,m = 1, N = 101847558 and
a1 = 5, we find (see Chudnovsky [6, Table 1])∣∣∣∣ 3

√
6− p

q

∣∣∣∣ > q−2.32056

for q ≥ q1 effectively computable, so that (8.1) is in fact weaker than the latter
result.

In Table 1, we collect examples of bounds of the form (0.1) for pairs of square
roots and cube roots of fairly small integers. We find these examples by considering
integers “close” to squares (or cubes) which themselves possess “large” square (or
cubic) factors. For instance, we obtain a simultaneous measure for (

√
3,
√

5) because
1232 = 3 ·712 +6 = 5 ·552 +4. It is not difficult to show that if Theorem 1.1 provides

a bound for (θ1, θ2) =
(√

A,
√
B
)
, then it yields like bounds for

(√
A,
√
AB
)

and(√
B,
√
AB
)

with the same value for λ. For example, we have, taking N = 49, and

ai ∈ {−1, 0, 1},
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max

{∣∣∣∣√2− p1

q

∣∣∣∣ , ∣∣∣∣√3− p2

q

∣∣∣∣} > q−1.79155 (q ≥ q0)

while N = 100 and ai ∈ {−4,−2, 0} gives

max

{∣∣∣∣√2− p1

q

∣∣∣∣ , ∣∣∣∣√6− p2

q

∣∣∣∣} > q−1.79155 (q ≥ q1)

and N = 144 and ai ∈ {0, 3, 6} yields

max

{∣∣∣∣√3− p1

q

∣∣∣∣ , ∣∣∣∣√6− p2

q

∣∣∣∣} > q−1.79155 (q ≥ q2).

We will restrict ourselves in Table 1 to listing only examples which are “primitive”
in this sense (to avoid duplication). Analogous results to this hold for other values
of n and m and it is of interest to note that while the measure produced from
Theorem 1.1 (taking N = 8 and ai ∈ {0, 1, 2}) for (θ1, θ2) =

(
3
√

9, 3
√

10
)

is weaker

than that obtained for 3
√

10 alone, the same is not known to be the case for the
related pair

(
3
√

3, 3
√

30
)
.

For larger values of m, a couple of interesting examples are

max

{∣∣∣∣√2− p1

q

∣∣∣∣ , ∣∣∣∣√3− p2

q

∣∣∣∣ , ∣∣∣∣√47− p3

q

∣∣∣∣ , ∣∣∣∣√51− p4

q

∣∣∣∣} > q−1.67429

for q ≥ q0, and

max

{∣∣∣∣ 3
√

25− p1

q

∣∣∣∣ , ∣∣∣∣ 3
√

26− p2

q

∣∣∣∣ , ∣∣∣∣ 3
√

28− p3

q

∣∣∣∣ , ∣∣∣∣ 3
√

29− p4

q

∣∣∣∣} > q−1.86545

for q ≥ q1, where both q0 and q1 are effective. These follow by taking N = 49, au ∈
{−2,−1, 0, 1, 2}, n = 2 and N = 27, au ∈ {−2,−1, 0, 1, 2}, n = 3, respectively, in
Theorem 1.1.

It appears to be rather harder to find “attractive” examples of the utility of
Theorem 1.2. Part of the difficulty is that if θ1, . . . , θm are elements of a real field
of degree m+ 1 over Q with 1, θ1, . . . , θm linearly independent over Q, then

|x0 + x1θ1 + · · ·+ xmθm| > X−m

for sufficiently large X = max
0≤j≤m

|xi|, via consideration of norms (see e.g. Cassels [5,

Chapter V]). We are therefore only interested in bounds upon linear forms which
sharpen this. One such result follows from Theorem 1.2 with n = m = 2, N = 8162

and ai ∈ {0, 2, 4}, whence

|x+ y
√

2 + z
√

985| > X−2.89514

for x, y and z integers, X = max {|x|, |y|, |z|} and X ≥ X0 effectively computable.
We may also attain this bound via transference from Theorem 1.1 (from which one
obtains λ = 1.59144 as a simultaneous irrationality measure for (

√
2,
√

985)), with
direct application of Theorem 1.2 providing an improvement only noticeable in the
sixth decimal place of λ1. In general, Theorem 1.2 represents only a slight sharp-
ening of the corresponding transference result if the ai’s are “evenly” distributed,
but is more effective otherwise.

The problem of solving simultaneous Pell’s equations is discussed in [14], moti-

vated by the desire to find elliptic curves overQ(
√

5) with good reduction away from
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the prime 2, and in [18], related to solutions of Thue equations. Results obtained
from Theorem 1.1 may be applied to this problem. For instance, to solve

x2 − 3z2 = u, y2 − 5z2 = v(8.2)

we use the bound

max

{∣∣∣∣√3− p1

q

∣∣∣∣ , ∣∣∣∣√5− p2

q

∣∣∣∣} > q−1.82227

(q ≥ q0) from Table 1. Arguing as in [15], one may deduce that

max{|x|, |y|, |z|} ≤ k0(max{|u|, |v|})5.62652

for an effectively computable absolute constant k0. For fixed u and v, this enables
us to find all solutions to (8.2). The examples considered by Rickert [15] are the
pair of simultaneous equations

x2 − 2z2 = u, y2 − 3z2 = v

and

x2 − 2z2 = u, y2 − 58z2 = v.

For these, we obtain

max{|x|, |y|, |z|} ≤ k1(max{|u|, |v|})4.79732

and

max{|x|, |y|, |z|} ≤ k2(max{|u|, |v|})2.67294

respectively, where k1 and k2 are effective. Similar results for simultaneous Pell-
type equations (of greater degree) may also be readily produced.

9. Norm form equations

In [10], Fel′dman considers norm form equations

NK/Q(x0w0 + · · ·+ xmwm) = f(x0, . . . , xm)

where w0, . . . , wm are certain algebraic numbers, f a polynomial of small degree and
K = Q(w0, . . . , wm). To solve these, he essentially utilizes a version of Theorem 1.2
to simultaneously approximate the wi’s. We will show that a slight refinement of
his techniques, utilizing both Theorems 1.1 and 1.2, enables one to effectively solve
the equation (u constant)

NK/Q

(
x+ y 4

√
M4 − 1 + z 4

√
M4 + 1

)
= u(9.1)

for all M ≥ 6. Similarly, we find all solutions to

NK/Q

(
x+ y 6

√
M6 − 1 + z 6

√
M6 + 1

)
= u(9.2)

for M ≥ 4.
Let us concentrate on equation (9.1); the argument is essentially unchanged

for (9.2). We will require the observation that Theorems 1.1 and 1.2 remain valid if
p0, . . . , pm, q and x0, . . . , xm are taken to be integers in a fixed imaginary quadratic
field (see Fel′dman [9]). Let

L = x+ y 4
√
M4 − 1 + z 4

√
M4 + 1
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for x, y and z integers, not all zero, and let Ls,t (0 ≤ s, t ≤ 3) be the conjugates of

L associated with the extension K = Q(4
√
M4 − 1, 4

√
M4 + 1), as given by

Ls,t = x+ y 4
√
M4 − 1 is + z 4

√
M4 + 1 it.(9.3)

Reasoning as in [10, §3], all but four of these conjugates satisfy

|Ls,t| ≥ c0X(9.4)

for c0 effective, X = max{|x|, |y|, |z|}. Let Li (1 ≤ i ≤ 4) be the remaining
conjugates, ordered so that

|L1| ≤ |L2| ≤ |L3| ≤ |L4|.(9.5)

We apply Theorem 1.2 (with x, y, z ∈ Z[i]) to estimate the smallest conjugate,
finding that

|L1| > X−6.35740(9.6)

for X ≥ X0 and M ≥ 6. It follows from (9.3) that

|L2| ≥
1

2
|L2 − L1| =

1

2
|y 4
√
M4 − 1 (is1 − is2) + z 4

√
M4 + 1 (it1 − it2)|.

(9.7)

Applying Theorem 1.1 (more specifically, Theorem 7.1 with p, q ∈ Z[i]), we have∣∣∣∣∣ 4

√
1 +

2

M4 − 1
− p

q

∣∣∣∣∣ > |q|−2.49951

for |q| ≥ q0 and M ≥ 6. Thus (9.7) implies

|L2| > X−1.49952(9.8)

for X ≥ X1 and M ≥ 6. Inequalities (9.4), (9.5), (9.6) and (9.8) combine to yield

|NK/Q(x+ y 4
√
M4 − 1 + z 4

√
M4 + 1)| = |

∏
0≤s,t≤3

Ls,t| > X1.14405

for X ≥ X2 and M ≥ 6, which enables one to solve (9.1) as desired.
If we replace the constant u in equation (9.1) or (9.2) by a polynomial in Z[x, y, z]

of fixed degree, then the preceding argument may permit solution of the resulting
equation, provided M is large enough. For example, to solve

NK/Q(x + y 4
√
M4 − 1 + z 4

√
M4 + 1) = f(x, y, z)

we require only that M be bounded as follows.

degree f 0 M ≥ 6
1 6
2 8
3 10
4 16
5 41
6 777

In essence, in this situation, we are dealing with a Diophantine inequality of the
form ∣∣∣NK/Q(x+ y 4

√
M4 − 1 + z 4

√
M4 + 1)

∣∣∣ < Xδ

which we may solve provided δ < 7.
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max

{∣∣∣∣θ1 −
p1

q

∣∣∣∣ , ∣∣∣∣θ2 −
p2

q

∣∣∣∣} > q−λ

for q ≥ q0(θ1, θ2, λ).

Note added in proof. It has come to the author’s attention that an analogous
result to our Theorem 1.2 has appeared in a paper by A. Dubitskas (Estimation of
a linear form in algebraic numbers, Lithuanian Math. J. 31 (1991), 56–61).
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