Recent advances in the MMP, after Shokurov, II

James M^cKernan

UCSB

Recent advances in the MMP, after Shokurov, II - p.1

• We hope that varieties X belong to two types:

• We hope that varieties X belong to two types:

• X is a minimal model: K_X is nef. That is $K_X \cdot C \ge 0$, for every curve C in X.

- We hope that varieties X belong to two types:
- X is a minimal model: K_X is nef. That is $K_X \cdot C \ge 0$, for every curve C in X.
- X is a Mori fibre space, $\pi: X \longrightarrow Y$. That is π is extremal ($-K_X$ is relatively ample and π has relative Picard one) and π is a contraction (the fibres of π are connected) of dimension at least one.

- We hope that varieties X belong to two types:
- X is a minimal model: K_X is nef. That is $K_X \cdot C \ge 0$, for every curve C in X.
- X is a Mori fibre space, $\pi: X \longrightarrow Y$. That is π is extremal ($-K_X$ is relatively ample and π has relative Picard one) and π is a contraction (the fibres of π are connected) of dimension at least one.
- To achieve this birational classification, we propose to use the MMP.

Two main Conjectures

To summarise To finish the proof of the existence of the MMP, we need to prove the following two conjectures:

To summarise To finish the proof of the existence of the MMP, we need to prove the following two conjectures:

Conjecture. (*Existence*) Suppose that $K_X + \Delta$ is log terminal. Let $\pi \colon X \longrightarrow Y$ be a small extremal contraction. Then the flip of π exists. To summarise To finish the proof of the existence of the MMP, we need to prove the following two conjectures:

Conjecture. (*Existence*) Suppose that $K_X + \Delta$ is log terminal. Let $\pi \colon X \longrightarrow Y$ be a small extremal contraction. Then the flip of π exists.

Conjecture. (*Termination*) *There is no infinite sequence* of log terminal flips.

In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.

In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.

For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.

In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.

- For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.
- His proof introduces some radically new ideas. It seems as though many of his methods will generalise to higher dimensions.

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.
- For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.
- His proof introduces some radically new ideas. It seems as though many of his methods will generalise to higher dimensions.
- The first step of the proof, is to reduce the dimension by one. Therefore we are free to use the MMP.

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.
- For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.
- His proof introduces some radically new ideas. It seems as though many of his methods will generalise to higher dimensions.
- The first step of the proof, is to reduce the dimension by one. Therefore we are free to use the MMP.
- Many of the ideas in his paper will probably influence other work in higher dimensional geometry.

Shokurov's proof of 4-fold flips has not been completely absorbed.

Shokurov's proof of 4-fold flips has not been completely absorbed.

In particular his proof of 4-fold flips is not as conceptual, and it would seem hard to generalise much of this part of the proof to higher dimensions.

Shokurov's proof of 4-fold flips has not been completely absorbed.

- In particular his proof of 4-fold flips is not as conceptual, and it would seem hard to generalise much of this part of the proof to higher dimensions.
- Shokurov's manuscript contains enough TLA s to last a lifetime.

Shokurov's proof of 4-fold flips has not been completely absorbed.

- In particular his proof of 4-fold flips is not as conceptual, and it would seem hard to generalise much of this part of the proof to higher dimensions.
- Shokurov's manuscript contains enough TLA s to last a lifetime.
- 110, in a manuscript with 245 pages.

In higher dimensional geometry, there are two basic results, adjunction and vanishing.

In higher dimensional geometry, there are two basic results, adjunction and vanishing.

• (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_X + S$ to S is equal to K_S .

In higher dimensional geometry, there are two basic results, adjunction and vanishing.

- (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_X + S$ to S is equal to K_S .
- (Vanishing) The simplest form is Kodaira vanishing which states that if X is smooth and L is an ample line bundle, then $H^i(K_X + L) = 0$, for i > 0.

In higher dimensional geometry, there are two basic results, adjunction and vanishing.

- (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_X + S$ to S is equal to K_S .
- (Vanishing) The simplest form is Kodaira vanishing which states that if X is smooth and L is an ample line bundle, then $H^i(K_X + L) = 0$, for i > 0.
- Both of these results have far reaching generalisations, whose form dictates the main definitions of the subject.

Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_S \cdot E = -1$ and $E^2 = -1$. We want to contract E.

Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_S \cdot E = -1$ and $E^2 = -1$. We want to contract E.

By adjunction, K_E has degree -2, so that $E \simeq \mathbb{P}^1$. Pick up an ample divisor H and consider $D = K_S + G + E = K_S + aH + bE$.

- Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_S \cdot E = -1$ and $E^2 = -1$. We want to contract E.
- By adjunction, K_E has degree -2, so that $E \simeq \mathbb{P}^1$. Pick up an ample divisor H and consider $D = K_S + G + E = K_S + aH + bE$.
- Pick a > 0 so that $K_S + aH$ is ample.

- Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_S \cdot E = -1$ and $E^2 = -1$. We want to contract E.
- By adjunction, K_E has degree -2, so that $E \simeq \mathbb{P}^1$. Pick up an ample divisor H and consider $D = K_S + G + E = K_S + aH + bE$.
- Pick a > 0 so that $K_S + aH$ is ample.
- Then pick b so that $(K_S + aH + bE) \cdot E = 0$. Note that b > 0 (in fact typically b is very large).

- Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_S \cdot E = -1$ and $E^2 = -1$. We want to contract E.
- By adjunction, K_E has degree -2, so that $E \simeq \mathbb{P}^1$. Pick up an ample divisor H and consider $D = K_S + G + E = K_S + aH + bE$.
- Pick a > 0 so that $K_S + aH$ is ample.
- Then pick b so that $(K_S + aH + bE) \cdot E = 0$. Note that b > 0 (in fact typically b is very large).
- Now we consider the rational map given by |mD|, for m >> 0 and sufficiently divisible.

Basepoint Freeness

Clearly the base locus of |mD| is contained in E.

Basepoint Freeness

Clearly the base locus of |mD| is contained in E.
 So consider the restriction exact sequence
 0 → O_S(mD−E) → O_S(mD) → O_E(mD) → 0.

Clearly the base locus of |mD| is contained in E.
So consider the restriction exact sequence
0 → O_S(mD−E) → O_S(mD) → O_E(mD) → 0.
Now

 $mD - E = K_S + G + (m - 1)D,$ and G + (m - 1)D is ample. Clearly the base locus of |mD| is contained in E.
So consider the restriction exact sequence
0 → O_S(mD−E) → O_S(mD) → O_E(mD) → 0.
Now

$$mD - E = K_S + G + (m - 1)D,$$

and G + (m - 1)D is ample. So by Kawamata-Viehweg Vanishing $H^1(S, \mathcal{O}_S(mD-E)) = H^1(S, \mathcal{O}_S(K_S+G+(m-1)D)) = 0$

By assumption $\mathcal{O}_E(mD)$ is the trivial line bundle. But this is a cheat.

By assumption $\mathcal{O}_E(mD)$ is the trivial line bundle. But this is a cheat.

In fact by adjunction

$$(K_S + G + E)|_E = K_E + B,$$

where $B = G|_E$.

By assumption $\mathcal{O}_E(mD)$ is the trivial line bundle. But this is a cheat.

In fact by adjunction

$$(K_S + G + E)|_E = K_E + B,$$

where $B = G|_E$.

 $\blacksquare B$ is ample, so we have the start of an induction.

By assumption $\mathcal{O}_E(mD)$ is the trivial line bundle. But this is a cheat.

In fact by adjunction

$$(K_S + G + E)|_E = K_E + B,$$

where $B = G|_E$.

B is ample, so we have the start of an induction.By vanishing, the map

 $H^0(S, \mathcal{O}_S(mD)) \longrightarrow H^0(E, \mathcal{O}_E(mD))$

is surjective. Thus |mD| is base point free and the resulting map $S \longrightarrow T$ contracts $E_{\text{Recent advances in the MMP, after Shokurov, II - p.9}$

The General Case

We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.

The General Case

We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.

Observe that if we set $G' = \pi_* G$, then G' has high multiplicity along p, the image of E (that is b is large).

The General Case

- We want to try to do the same thing, but in higher dimension. Unfortunately the locus *E* we want to contract need not be a divisor.
- Observe that if we set $G' = \pi_* G$, then G' has high multiplicity along p, the image of E (that is b is large).
- In general, we manufacture a divisor E by picking a point $x \in X$ and then pick H with high multiplicity at x.

The General Case

- We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.
- Observe that if we set $G' = \pi_* G$, then G' has high multiplicity along p, the image of E (that is b is large).
- In general, we manufacture a divisor E by picking a point $x \in X$ and then pick H with high multiplicity at x.
- Next resolve singularities $\tilde{X} \longrightarrow X$ and restrict to an exceptional divisor E, whose centre has high multiplicity w.r.t H (strictly speaking a log canonical centre of $K_X + H$).

Let X be a normal variety. We say that a divisor $\Delta = \sum_i a_i \Delta_i$ is a boundary, if $0 \le a_i \le 1$.

Let X be a normal variety. We say that a divisor $\Delta = \sum_{i} a_i \Delta_i$ is a boundary, if $0 \le a_i \le 1$.

Let $\pi: Y \longrightarrow X$ be birational map. Suppose that $K_X + \Delta$ is Q-Cartier. Then we may write

 $K_Y + \Gamma = \pi^* (K_X + \Delta).$

Let X be a normal variety. We say that a divisor $\Delta = \sum_{i} a_i \Delta_i$ is a boundary, if $0 \le a_i \le 1$.

Let $\pi: Y \longrightarrow X$ be birational map. Suppose that $K_X + \Delta$ is Q-Cartier. Then we may write

$$K_Y + \Gamma = \pi^* (K_X + \Delta).$$

We say that the pair (X, Δ) is klt if the coefficients of Γ are always less than one.

Let X be a normal variety. We say that a divisor $\Delta = \sum_i a_i \Delta_i$ is a boundary, if $0 \le a_i \le 1$.

Let $\pi: Y \longrightarrow X$ be birational map. Suppose that $K_X + \Delta$ is Q-Cartier. Then we may write

$$K_Y + \Gamma = \pi^*(K_X + \Delta).$$

- We say that the pair (X, Δ) is klt if the coefficients of Γ are always less than one.
- We say that the pair (X, Δ) is **plt** if the coefficients of the exceptional divisor of Γ are always less than or equal to one.

Adjunction II

To apply adjunction we need a component S of coefficient one.

Adjunction II

To apply adjunction we need a component S of coefficient one.

So suppose we can write $\Delta = S + B$, where S has coefficient one. Then

$$(K_X + S + B)|_S = K_S + D.$$

Adjunction II

To apply adjunction we need a component S of coefficient one.

So suppose we can write $\Delta = S + B$, where S has coefficient one. Then

$$(K_X + S + B)|_S = K_S + D.$$

• Moreover if $K_X + S + B$ is plt then $K_S + D$ is klt.

Vanishing II

We want a form of vanishing which involves boundaries.

Vanishing II

 We want a form of vanishing which involves boundaries.

If we take a cover with appropriate ramification, then we can eliminate any component with coefficient less than one.

Vanishing II

- We want a form of vanishing which involves boundaries.
- If we take a cover with appropriate ramification, then we can eliminate any component with coefficient less than one.
- (Kawamata-Viehweg vanishing) Suppose that $K_X + \Delta$ is klt and L is a line bundle such that $L (K_X + \Delta)$ is big and nef. Then, for i > 0,

 $H^i(X,L) = 0.$

General Set up

We are given an extremal small contraction, $\pi: X \longrightarrow Z$, where $D = -(K_X + \Delta)$ is relatively π -ample. We want to construct the flip.

General Set up

We are given an extremal small contraction, $\pi: X \longrightarrow Z$, where $D = -(K_X + \Delta)$ is relatively π -ample. We want to construct the flip. That is we want a diagram

Reduction to pl Flips

Definition. A *pl flip* is a flip $\pi \colon X \longrightarrow Z$ where $K_X + \Delta = K_X + S + B$ is plt and S is π -negative.

Reduction to pl Flips

Definition. A *pl flip* is a flip $\pi : X \longrightarrow Z$ where $K_X + \Delta = K_X + S + B$ is plt and S is π -negative.

Theorem. (Shokurov 91) If every pl flips exists and any sequence of pl flips terminates then every flip exists.

Reduction to pl Flips

Definition. A *pl flip* is a flip $\pi \colon X \longrightarrow Z$ where $K_X + \Delta = K_X + S + B$ is plt and S is π -negative.

Theorem. (Shokurov 91) If every pl flips exists and any sequence of pl flips terminates then every flip exists.

Theorem. *Pl flips terminate in dimension four.*

Finite Generation

Let $\pi: X \longrightarrow Z$ be a small contraction, of relative Picard number one and let D be a line bundle, such that -D is π -ample. Suppose that we want to construct the flip. Let $\pi: X \longrightarrow Z$ be a small contraction, of relative Picard number one and let D be a line bundle, such that -D is π -ample. Suppose that we want to construct the flip.

Recall that the flip exists iff

$$R = R(X, D) = \bigoplus_{n} H^{0}(X, \pi_{*}\mathcal{O}_{X}(nD)),$$

is finitely generated.

■ Note that there is a natural map

$$R(X,D) \longrightarrow R(X,D|_S)$$

Note that there is a natural map

$$R(X,D) \longrightarrow R(X,D|_S)$$

The image of R(X, D) is called the restricted algebra, and is denoted res_S R.

Note that there is a natural map

$$R(X,D) \longrightarrow R(X,D|_S)$$

- The image of R(X, D) is called the restricted algebra, and is denoted res_S R.
- The kernel of this map is easily seen to be generated by any function which defines S.

Note that there is a natural map

$$R(X,D) \longrightarrow R(X,D|_S)$$

- The image of R(X, D) is called the restricted algebra, and is denoted res_S R.
- The kernel of this map is easily seen to be generated by any function which defines S.
- Thus R is finitely generated iff $res_S R$ is finitely generated.

Function algebras

Set $A = H^0(Z, \mathcal{O}_Z)$. **Definition.** A function algebra on X is a graded A-subalgebra V of k(X)[T].

Function algebras

Set $A = H^0(Z, \mathcal{O}_Z)$. **Definition.** A function algebra on X is a graded A-subalgebra V of k(X)[T]. In other words, a function algebra is a graded algebra

 $\bigoplus_i V_i,$

where $V_0 = A$, $V_i \subset k(X)$ and $V_i V_j \subset V_{i+j}$

Set $A = H^0(Z, \mathcal{O}_Z)$. **Definition.** A function algebra on X is a graded A-subalgebra V of k(X)[T]. In other words, a function algebra is a graded algebra

 $\bigoplus_i V_i,$

where $V_0 = A$, $V_i \subset k(X)$ and $V_i V_j \subset V_{i+j}$ **Definition.** We say that a function algebra is bounded if $V_j \subset H^0(X, \mathcal{O}_X(jD)).$ Set $A = H^0(Z, \mathcal{O}_Z)$. **Definition.** A function algebra on X is a graded A-subalgebra V of k(X)[T]. In other words, a function algebra is a graded algebra

 $\bigoplus_i V_i,$

where $V_0 = A$, $V_i \subset k(X)$ and $V_i V_j \subset V_{i+j}$ **Definition.** We say that a function algebra is bounded if $V_j \subset H^0(X, \mathcal{O}_X(jD)).$ It is easy to see that a restricted algebra is a bounded function algebra.

Definition. A *b*-divisor on a normal variety is an *element*:

 $D \in \lim_{Y \to X} \operatorname{Div} Y,$

where the limit runs over all proper birational maps $Y \longrightarrow X$.

There are two ways to think of *b*-divisors.

b-divisors

Definition. A *b*-divisor on a normal variety is an *element*:

 $D \in \lim_{Y \to X} \operatorname{Div} Y,$

where the limit runs over all proper birational maps $Y \longrightarrow X$.

There are two ways to think of *b*-divisors. A *b*-divisor D is something that assigns to every $Y \longrightarrow X$ an ordinary divisor D_Y on Y (the trace), compatible with pushforward.

b-divisors

Definition. A *b*-divisor on a normal variety is an *element*:

 $D \in \lim_{Y \to X} \operatorname{Div} Y,$

where the limit runs over all proper birational maps $Y \longrightarrow X$.

There are two ways to think of *b*-divisors. A *b*-divisor **D** is something that assigns to every $Y \longrightarrow X$ an ordinary divisor D_Y on Y (the trace), compatible with pushforward. An infinite formal sum of valuations $\sum a_E E$. In this case the trace is

$$D_Y = \sum_{E} a_E E$$

E is a divisor on Y

Examples of b-divisors

A rational function ϕ determines a *b*-divisor in an obvious way,

$$(\phi) = \sum \nu_E(\phi) E.$$

Examples of b-divisors

A rational function ϕ determines a *b*-divisor in an obvious way,

$$(\phi) = \sum \nu_E(\phi) E.$$

A Cartier divisor D on X determines a b-divisor \overline{D} , by

 $\overline{D}_Y = f^*D,$

for any model $f: Y \longrightarrow X$.

Examples of b-divisors

• A rational function ϕ determines a *b*-divisor in an obvious way,

$$(\phi) = \sum \nu_E(\phi) E.$$

A Cartier divisor D on X determines a b-divisor \overline{D} , by

$$\overline{D}_Y = f^* D,$$

for any model $f: Y \longrightarrow X$.

Suppose we have a pair (X, Δ) . The discrepancy b-divisor $A = A(X, \Delta)$ is defined by

 $K_Y = f^*(K_X + \Delta) + A(X, \Delta)_Y$, Recent advances in the MMP, after Shokurov, II –

Linear equivalence of b-divisors

Definition. We say to b-divisors D and D' are linearly equivalent if there is a rational function ϕ such that

 $\mathbf{D} = \mathbf{D}' + (\phi).$

Definition. We say to b-divisors D and D' are linearly equivalent if there is a rational function ϕ such that

 $\mathbf{D} = \mathbf{D}' + (\phi).$

Here is a key example. Let $X = \mathbb{P}^2$. Pick a point $p \in \mathbb{P}^2$ and let E be the exceptional divisor of the blow up $\pi \colon Y \longrightarrow X$. Let $D = \pi_*((\pi^*L - E))$. Then

 $|D|_X \subset |D_X|.$

Definition. We say to b-divisors D and D' are linearly equivalent if there is a rational function ϕ such that

 $\mathbf{D} = \mathbf{D}' + (\phi).$

Here is a key example. Let $X = \mathbb{P}^2$. Pick a point $p \in \mathbb{P}^2$ and let E be the exceptional divisor of the blow up $\pi: Y \longrightarrow X$. Let $D = \pi_*(\overline{(\pi^*L - E)})$. Then $|D|_X \subset |D_X|$.

Indeed, $D_X = L$, so that the rhs is $\hat{\mathbb{P}}^2$, the space of lines in \mathbb{P}^2 . But the lhs is the subspace of lines through p.

Saturation

Denote by Mob D, the mobile part of the linear system |D|.

Recent advances in the MMP, after Shokurov, II – p.22

Saturation

Denote by Mob D, the mobile part of the linear system |D|. Definition. Let D and E be divisors on X. We say that D is E-saturated if

 $\operatorname{Mob}(D+E) \le \operatorname{Mob} D.$

Denote by Mob *D*, the mobile part of the linear system |*D*|.
Definition. Let *D* and *E* be divisors on *X*. We say that *D* is *E*-saturated if

 $\operatorname{Mob}(D+E) \le \operatorname{Mob} D.$

That is, adding on E, does not make the linear system |D| any larger.

Saturation for *b***-divisors**

We say that a property of *b*-divisors holds on all sufficiently high models over X, if there is a model $Y \longrightarrow X$ and this property holds for all models over Y.

Saturation for *b***-divisors**

We say that a property of *b*-divisors holds on all sufficiently high models over *X*, if there is a model $Y \longrightarrow X$ and this property holds for all models over *Y*. **Definition.** Let *D* and *E* be *b*-divisors on *X*. We say that *D* is *E*-saturated if

 $\operatorname{Mob}(D_Y + E_Y) \le \operatorname{Mob} D_Y,$

on all sufficiently high models over X.

Saturation for *b***-divisors**

We say that a property of *b*-divisors holds on all sufficiently high models over *X*, if there is a model $Y \longrightarrow X$ and this property holds for all models over *Y*. **Definition.** Let *D* and *E* be *b*-divisors on *X*. We say that *D* is *E*-saturated if

 $\operatorname{Mob}(D_Y + E_Y) \le \operatorname{Mob} D_Y,$

on all sufficiently high models over X.

For example, the *b*-divisor *D* defined on \mathbb{P}^2 is not saturated with respect to the prime *b*-divisor *E*.

Back to fi nite generation

Suppose we are given a function algebra V. Each part V_i ⊂ k(X) determines a mobile b-divisor M_i.
 Denote by M_• the corresponding sequence.

Back to finite generation

Suppose we are given a function algebra V. Each part V_i ⊂ k(X) determines a mobile b-divisor M_i.
 Denote by M_• the corresponding sequence.

Note that M_{\bullet} is convex, that is

 $M_i + M_j \le M_{i+j}.$

Back to fi nite generation

Suppose we are given a function algebra V. Each part V_i ⊂ k(X) determines a mobile b-divisor M_i. Denote by M_• the corresponding sequence.

Note that M_{\bullet} is convex, that is

 $M_i + M_j \le M_{i+j}.$

Define *D*, by the rule

$$D_i = \frac{M_i}{i}.$$

Some basic results

 Given a bounded function algebra V, by convexity, the limit

 $D = \lim D_i,$

exists (with \mathbb{R} -coefficients).

 Given a bounded function algebra V, by convexity, the limit

 $D = \lim D_i,$

exists (with \mathbb{R} -coefficients).

Finite generation of V is equivalent to stating that

 $D = D_i,$

for *i* sufficiently large.

 Given a bounded function algebra V, by convexity, the limit

 $D = \lim D_i,$

exists (with \mathbb{R} -coefficients).

Finite generation of V is equivalent to stating that

 $D=D_i,$

for *i* sufficiently large.

R = R(X, D), the flipping algebra, is exceptionally saturated.

 Given a bounded function algebra V, by convexity, the limit

 $D = \lim D_i,$

exists (with \mathbb{R} -coefficients).

Finite generation of V is equivalent to stating that

 $D=D_i,$

for *i* sufficiently large.

R = R(X, D), the flipping algebra, is exceptionally saturated.

By Kawamata-Viehweg Vanishing, this means the restricted algebra is asymptotically *A*-saturated.

Shokurov algebras

Asymptotic means

$$\operatorname{Mob} \lceil jD_i + A \rceil \le jD_j.$$

for all *i* and *j*. **Definition.** Let (X, Δ) be a pair, such that $-(K_X + \Delta)$ *if ample.* We say that a function algebra V is a Shokurov algebra if it is bounded, asymptotically $A(X, \Delta)$ -saturated and X/Z is a Fano contraction.

Shokurov algebras

Asymptotic means

$$\operatorname{Mob} \lceil jD_i + A \rceil \le jD_j.$$

for all i and j.

Definition. Let (X, Δ) be a pair, such that $-(K_X + \Delta)$ if ample. We say that a function algebra V is a Shokurov algebra if it is bounded, asymptotically $A(X, \Delta)$ -saturated and X/Z is a Fano contraction. **Conjecture.** Every Shokurov algebra is finitely generated.

Shokurov algebras

Asymptotic means

$$\operatorname{Mob} \lceil jD_i + A \rceil \le jD_j.$$

for all i and j.

Definition. Let (X, Δ) be a pair, such that $-(K_X + \Delta)$ if ample. We say that a function algebra V is a Shokurov algebra if it is bounded, asymptotically $A(X, \Delta)$ -saturated and X/Z is a Fano contraction. **Conjecture.** Every Shokurov algebra is finitely generated. **Theorem.** (Shokurov) Every Shokurov algebra is finitely generated, up to dimension two.

Dimension One

By assumption $X = \mathbb{P}^1$, and we have a bounded sequence D_{\bullet} of *b*-divisors, which are

$$A(X,\Delta) = -\Delta = -\sum b_m P_m = \sum a_m P_m$$

assymptotically saturated, where $0 \le b_m < 1$, so that $-1 < a_m \le 0$.

Dimension One

By assumption $X = \mathbb{P}^1$, and we have a bounded sequence D_{\bullet} of *b*-divisors, which are

$$A(X, \Delta) = -\Delta = -\sum b_m P_m = \sum a_m P_m$$

assymptotically saturated, where $0 \le b_m < 1$, so that $-1 < a_m \le 0$. As we are on a curve, we can drop the reference to *b*-divisors. We may write

$$D_i = \sum a_{m,i} P_m.$$

A Diophantine argument

Asymptotic Saturation becomes:

$$jd_{m,i} + a_m \urcorner \le jd_{m,j}.$$

Boundedness says there are only finitely many coefficients to worry about.

Asymptotic Saturation becomes:

$$\lceil jd_{m,i} + a_m \rceil \le jd_{m,j}.$$

Boundedness says there are only finitely many coefficients to worry about.

Take the limit as $i \to \infty$,

$$\lceil jd_m + a_m \rceil \le jd_{m,j} \le jd_m.$$

Asymptotic Saturation becomes:

$$\lceil jd_{m,i} + a_m \rceil \le jd_{m,j}.$$

Boundedness says there are only finitely many coefficients to worry about.

Take the limit as $i \to \infty$,

$$\lceil jd_m + a_m \rceil \le jd_{m,j} \le jd_m.$$

(Hwk). Use Diophantine approximation to conclude that d_m is rational, and thereby finish the proof.

The surface Case

In fact, the Diophantine approximation argument works in all dimensions, provided one can find a single model Y, on which all the b-divisors D, and D are simultaneously free.

- In fact, the Diophantine approximation argument works in all dimensions, provided one can find a single model Y, on which all the b-divisors D, and D are simultaneously free.
- The surface case is especially easy, because it is not hard to show that we can take Y to be a terminal model.

- In fact, the Diophantine approximation argument works in all dimensions, provided one can find a single model Y, on which all the b-divisors D, and D are simultaneously free.
- The surface case is especially easy, because it is not hard to show that we can take Y to be a terminal model.
- Shokurov has an appealing general conjecture, known as CCS (our first TLA), which, if true, would imply that every Shokurov algebra is finitely generated.

Fano	Varieties	All Varieties
Initia	, implies base point free. Ily proved only for sur- and threefolds	

Fano	Varieties	All Varieties
Initia	y implies base point free. Ily proved only for sur- and threefolds	Base Point Free Theorem. Proved in all dimensions, using the X -method.

Fano Varieties	All Varieties
<i>D</i> big implies base point free.	Base Point Free Theorem.
Initially proved only for sur-	Proved in all dimensions,
faces and threefolds	using the X-method.
Shokurov algebras are	
finitely generated.	
Only known for curves and	
surfaces.	

Fano	Varieties	All Varieties
	, implies base point free.	Base Point Free Theorem.
Initially proved only for sur-		Proved in all dimensions,
faces and threefolds		using the X-method.
Shok	urov algebras are	
finite	y generated.	$\begin{array}{c} 22 \\ \end{array}$
Only	known for curves and	
surfac	ces.	

Some References

 Shokurov: Prelimiting flips, Proc. Steklov Inst. of Math.v. 240, 82-219.

Alessio Corti: 3-fold flips after Shokurov, see

http://www.dpmms.cam.ac.uk/~corti/flips_html/index.html
where there are further references.

 Florin Ambro has produced some interesting work based on Shokurov's *b*-divisors, see math.AG/0112282, math.AG/0210271, math.AG/0301305, math.AG/0308143.