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The Holy Grail

We hope that varieties X belong to two types:

• X is a minimal model: KX is nef. That is
KX · C ≥ 0, for every curve C in X .

• X is a Mori fibre space, π : X −→ Y . That is π is
extremal (−KX is relatively ample and π has
relative Picard one) and π is a contraction (the fibres
of π are connected) of dimension at least one.

To achieve this birational classification, we propose
to use the MMP.
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Two main Conjectures

To summarise To finish the proof of the existence of the
MMP, we need to prove the following two conjectures:

Conjecture. (Existence) Suppose that KX + ∆ is log
terminal. Let π : X −→ Y be a small extremal
contraction.
Then the flip of π exists.

Conjecture. (Termination) There is no infinite sequence
of log terminal flips.
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Shokurov’s Recent Contribution

In a recent paper, Shokurov gives a proof of the
existence of 4-fold flips.

For the first time in history, we have a completely
conceptual and straightforward proof of 3-fold flips.

His proof introduces some radically new ideas. It
seems as though many of his methods will
generalise to higher dimensions.

The first step of the proof, is to reduce the dimension
by one. Therefore we are free to use the MMP.

Many of the ideas in his paper will probably
influence other work in higher dimensional
geometry.
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Four fold flips

Shokurov’s proof of 4-fold flips has not been
completely absorbed.

In particular his proof of 4-fold flips is not as
conceptual, and it would seem hard to generalise
much of this part of the proof to higher dimensions.

Shokurov’s manuscript contains enough TLA s to
last a lifetime.

110, in a manuscript with 245 pages.
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Adjunction and Vanishing, I

In higher dimensional geometry, there are two basic
results, adjunction and vanishing.

(Adjunction) In its simplest form it states that given
a variety smooth X and a divisor S, the restriction of
KX + S to S is equal to KS .

(Vanishing) The simplest form is Kodaira vanishing
which states that if X is smooth and L is an ample
line bundle, then H i(KX + L) = 0, for i > 0.

Both of these results have far reaching
generalisations, whose form dictates the main
definitions of the subject.
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An illustrative example

Let S be a smooth projective surface and let E ⊂ S
be a −1-curve, that is KS · E = −1 and E2 = −1.
We want to contract E.

By adjunction, KE has degree −2, so that E ' P1.
Pick up an ample divisor H and consider
D = KS + G + E = KS + aH + bE.

Pick a > 0 so that KS + aH is ample.

Then pick b so that (KS + aH + bE) · E = 0. Note
that b > 0 (in fact typically b is very large).

Now we consider the rational map given by |mD|,
for m >> 0 and sufficiently divisible.
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Basepoint Freeness

Clearly the base locus of |mD| is contained in E.

So consider the restriction exact sequence

0 −→ OS(mD−E) −→ OS(mD) −→ OE(mD) −→ 0.

Now

mD − E = KS + G + (m − 1)D,

and G + (m − 1)D is ample.

So by Kawamata-Viehweg Vanishing

H1(S,OS(mD−E)) = H1(S,OS(KS+G+(m−1)D)) = 0.
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Castelnuovo’s Criteria

By assumption OE(mD) is the trivial line bundle.
But this is a cheat.

In fact by adjunction

(KS + G + E)|E = KE + B,

where B = G|E .

B is ample, so we have the start of an induction.

By vanishing, the map

H0(S,OS(mD)) −→ H0(E,OE(mD))

is surjective. Thus |mD| is base point free and the
resulting map S −→ T contracts E.

Recent advances in the MMP, after Shokurov, II – p.9



Castelnuovo’s Criteria

By assumption OE(mD) is the trivial line bundle.
But this is a cheat.

In fact by adjunction

(KS + G + E)|E = KE + B,

where B = G|E .

B is ample, so we have the start of an induction.

By vanishing, the map

H0(S,OS(mD)) −→ H0(E,OE(mD))

is surjective. Thus |mD| is base point free and the
resulting map S −→ T contracts E.

Recent advances in the MMP, after Shokurov, II – p.9



Castelnuovo’s Criteria

By assumption OE(mD) is the trivial line bundle.
But this is a cheat.

In fact by adjunction

(KS + G + E)|E = KE + B,

where B = G|E .

B is ample, so we have the start of an induction.

By vanishing, the map

H0(S,OS(mD)) −→ H0(E,OE(mD))

is surjective. Thus |mD| is base point free and the
resulting map S −→ T contracts E.

Recent advances in the MMP, after Shokurov, II – p.9



Castelnuovo’s Criteria

By assumption OE(mD) is the trivial line bundle.
But this is a cheat.

In fact by adjunction

(KS + G + E)|E = KE + B,

where B = G|E .

B is ample, so we have the start of an induction.

By vanishing, the map

H0(S,OS(mD)) −→ H0(E,OE(mD))

is surjective. Thus |mD| is base point free and the
resulting map S −→ T contracts E.Recent advances in the MMP, after Shokurov, II – p.9



The General Case

We want to try to do the same thing, but in higher
dimension. Unfortunately the locus E we want to
contract need not be a divisor.

Observe that if we set G′ = π∗G, then G′ has high
multiplicity along p, the image of E (that is b is
large).

In general, we manufacture a divisor E by picking a
point x ∈ X and then pick H with high multiplicity
at x.

Next resolve singularities X̃ −→ X and restrict to
an exceptional divisor E, whose centre has high
multiplicity w.r.t H (strictly speaking a log
canonical centre of KX + H).
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Singularities in the MMP

Let X be a normal variety. We say that a divisor
∆ =

∑
i ai∆i is a boundary, if 0 ≤ ai ≤ 1.

Let π : Y −→ X be birational map. Suppose that
KX + ∆ is Q-Cartier. Then we may write

KY + Γ = π∗(KX + ∆).

We say that the pair (X, ∆) is klt if the coefficients
of Γ are always less than one.

We say that the pair (X, ∆) is plt if the coefficients
of the exceptional divisor of Γ are always less than
or equal to one.
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Adjunction II

To apply adjunction we need a component S of
coefficient one.

So suppose we can write ∆ = S + B, where S has
coefficient one. Then

(KX + S + B)|S = KS + D.

Moreover if KX + S + B is plt then KS + D is klt.
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Vanishing II

We want a form of vanishing which involves
boundaries.

If we take a cover with appropriate ramification,
then we can eliminate any component with
coefficient less than one.

(Kawamata-Viehweg vanishing) Suppose that
KX + ∆ is klt and L is a line bundle such that
L − (KX + ∆) is big and nef. Then, for i > 0,

H i(X, L) = 0.
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General Set up

We are given an extremal small contraction,
π : X −→ Z, where D = −(KX + ∆) is relatively
π-ample. We want to construct the flip.

That is we want
a diagram

X
φ

- X+

@
@

@
@

@
@

@

π

R 	�
�

�
�

�
�

�

π+

Z.
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Reduction to pl Flips

Definition. A pl flip is a flip π : X −→ Z where
KX + ∆ = KX + S + B is plt and S is π-negative.

Theorem. (Shokurov 91) If every pl flips exists and any
sequence of pl flips terminates then every flip exists.

Theorem. Pl flips terminate in dimension four.
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Finite Generation

Let π : X −→ Z be a small contraction, of relative
Picard number one and let D be a line bundle, such
that −D is π-ample. Suppose that we want to
construct the flip.

Recall that the flip exists iff

R = R(X, D) =
⊕

n

H0(X, π∗OX(nD)),

is finitely generated.
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Criteria for finite generation

Note that there is a natural map

R(X, D) −→ R(X, D|S)

The image of R(X, D) is called the restricted
algebra, and is denoted resS R.

The kernel of this map is easily seen to be generated
by any function which defines S.

Thus R is finitely generated iff resS R is finitely
generated.

Recent advances in the MMP, after Shokurov, II – p.17



Criteria for finite generation

Note that there is a natural map

R(X, D) −→ R(X, D|S)

The image of R(X, D) is called the restricted
algebra, and is denoted resS R.

The kernel of this map is easily seen to be generated
by any function which defines S.

Thus R is finitely generated iff resS R is finitely
generated.

Recent advances in the MMP, after Shokurov, II – p.17



Criteria for finite generation

Note that there is a natural map

R(X, D) −→ R(X, D|S)

The image of R(X, D) is called the restricted
algebra, and is denoted resS R.

The kernel of this map is easily seen to be generated
by any function which defines S.

Thus R is finitely generated iff resS R is finitely
generated.

Recent advances in the MMP, after Shokurov, II – p.17



Criteria for finite generation

Note that there is a natural map

R(X, D) −→ R(X, D|S)

The image of R(X, D) is called the restricted
algebra, and is denoted resS R.

The kernel of this map is easily seen to be generated
by any function which defines S.

Thus R is finitely generated iff resS R is finitely
generated.

Recent advances in the MMP, after Shokurov, II – p.17



Function algebras

Set A = H0(Z,OZ).
Definition. A function algebra on X is a graded
A-subalgebra V of k(X)[T ].

In other words, a function algebra is a graded algebra
⊕

i

Vi,

where V0 = A, Vi ⊂ k(X) and ViVj ⊂ Vi+j

Definition. We say that a function algebra is bounded if
Vj ⊂ H0(X,OX(jD)).
It is easy to see that a restricted algebra is a bounded
function algebra.
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b-divisors

Definition. A b-divisor on a normal variety is an
element:

D ∈ lim
Y →X

Div Y,

where the limit runs over all proper birational maps
Y −→ X .
There are two ways to think of b-divisors.

A b-divisor D is something that assigns to every
Y −→ X an ordinary divisor DY on Y (the trace),
compatible with pushforward.
An infinite formal sum of valuations

∑
aEE. In this case

the trace is
DY =

∑

E is a divisor on Y

aEE
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Examples of b-divisors

A rational function φ determines a b-divisor in an
obvious way,

(φ) =
∑

νE(φ)E.

A Cartier divisor D on X determines a b-divisor D,
by

DY = f ∗D,

for any model f : Y −→ X .

Suppose we have a pair (X, ∆). The discrepancy
b-divisor A = A(X, ∆) is defined by

KY = f ∗(KX + ∆) + A(X, ∆)Y .
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Linear equivalence of b-divisors

Definition. We say to b-divisors D and D
′ are linearly

equivalent if there is a rational function φ such that

D = D
′ + (φ).

Here is a key example. Let X = P2. Pick a point p ∈ P2

and let E be the exceptional divisor of the blow up
π : Y −→ X . Let D = π∗((π∗L − E)). Then

|D|X ⊂ |DX |.

Indeed, DX = L, so that the rhs is P̂2, the space of lines

in P2. But the lhs is the subspace of lines through p.
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Saturation

Denote by Mob D, the mobile part of the linear system
|D|.

Definition. Let D and E be divisors on X . We say that
D is E-saturated if

Mob(D + E) ≤ Mob D.

That is, adding on E, does not make the linear system |D|

any larger.
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Saturation for b-divisors

We say that a property of b-divisors holds on all
sufficiently high models over X , if there is a model
Y −→ X and this property holds for all models over Y .

Definition. Let D and E be b-divisors on X . We say that
D is E-saturated if

Mob(DY + EY ) ≤ Mob DY ,

on all sufficiently high models over X .

For example, the b-divisor D defined on P2 is not satu-

rated with respect to the prime b-divisor E.
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Back to finite generation

Suppose we are given a function algebra V . Each
part Vi ⊂ k(X) determines a mobile b-divisor Mi.
Denote by M• the corresponding sequence.

Note that M• is convex, that is

Mi + Mj ≤ Mi+j.

Define D• by the rule

Di =
Mi

i
.
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Some basic results

Given a bounded function algebra V , by convexity,
the limit

D = lim Di,

exists (with R-coefficients).

Finite generation of V is equivalent to stating that

D = Di,

for i sufficiently large.

R = R(X, D), the flipping algebra, is exceptionally
saturated.

By Kawamata-Viehweg Vanishing, this means the
restricted algebra is asymptotically A-saturated.
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Shokurov algebras

Asymptotic means

MobpjDi + Aq ≤ jDj.

for all i and j.
Definition. Let (X, ∆) be a pair, such that −(KX + ∆)
if ample. We say that a function algebra V is a Shokurov
algebra if it is bounded, asymptotically
A(X, ∆)-saturated and X/Z is a Fano contraction.

Conjecture. Every Shokurov algebra is finitely
generated.
Theorem. (Shokurov) Every Shokurov algebra is finitely
generated, up to dimension two.
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Dimension One

By assumption X = P1, and we have a bounded
sequence D• of b-divisors, which are

A(X, ∆) = −∆ = −
∑

bmPm =
∑

amPm

assymptotically saturated, where 0 ≤ bm < 1, so that
−1 < am ≤ 0.

As we are on a curve, we can drop the reference to
b-divisors. We may write

Di =
∑

am,iPm.
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A Diophantine argument

Asymptotic Saturation becomes:

pjdm,i + amq ≤ jdm,j.

Boundedness says there are only finitely many
coefficients to worry about.

Take the limit as i → ∞,

pjdm + amq ≤ jdm,j ≤ jdm.

(Hwk). Use Diophantine approximation to conclude
that dm is rational, and thereby finish the proof.
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The surface Case

In fact, the Diophantine approximation argument
works in all dimensions, provided one can find a
single model Y , on which all the b-divisors D• and
D are simultaneously free.

The surface case is especially easy, because it is not
hard to show that we can take Y to be a terminal
model.

Shokurov has an appealing general conjecture,
known as CCS (our first TLA), which, if true, would
imply that every Shokurov algebra is finitely
generated.
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The big picture

Fano Varieties All Varieties
D big implies base point free.
Initially proved only for sur-
faces and threefolds

Base Point Free Theorem.
Proved in all dimensions,
using the X-method.

Shokurov algebras are
finitely generated.
Only known for curves and
surfaces.

??
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Some References

Shokurov: Prelimiting flips, Proc. Steklov Inst. of
Math.v. 240, 82-219.

Alessio Corti: 3-fold flips after Shokurov, see
http://www.dpmms.cam.ac.uk/~corti/flips_html/index.html

where there are further references.

Florin Ambro has produced some interesting work
based on Shokurov’s b-divisors, see
math.AG/0112282,
math.AG/0210271,
math.AG/0301305,
math.AG/0308143.
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