Recent advances in the MMP, after Shokurov, II

James M^{C} Kernan

UCSB

The Holy Grail

- We hope that varieties X belong to two types:

The Holy Grail

\square We hope that varieties X belong to two types:

- X is a minimal model: K_{X} is nef. That is $K_{X} \cdot C \geq 0$, for every curve C in X.

The Holy Grail

\square We hope that varieties X belong to two types:

- X is a minimal model: K_{X} is nef. That is $K_{X} \cdot C \geq 0$, for every curve C in X.
- X is a Mori fibre space, $\pi: X \longrightarrow Y$. That is π is
($-K_{X}$ is relatively ample and π has relative Picard one) and π is a
(the fibres of π are connected) of dimension at least one.

The Holy Grail

\square We hope that varieties X belong to two types:

- X is a minimal model: K_{X} is ne. That is
$K_{X} \cdot C \geq 0$, for every curve C in X.
- X is a Mori fibre space, $\pi: X \longrightarrow Y$. That is π is ($-K_{X}$ is relatively ample and π has relative Picard one) and π is a (the fibres of π are connected) of dimension at least one.
\square To achieve this birational classification, we propose to use the MMP.

Two main Conjectures

To summarise To finish the proof of the existence of the MMP, we need to prove the following two conjectures:

Two main Conjectures

To summarise To finish the proof of the existence of the MMP, we need to prove the following two conjectures:

Conjecture. (Evisence) Suppose that $K_{X}+\Delta$ is \log terminal. Let $\pi: X \longrightarrow Y$ be a small extremal contraction.
Then the flip of π exists.

Two main Conjectures

To summarise To finish the proof of the existence of the MMP, we need to prove the following two conjectures:

Conjecture. (Eviscence) Suppose that $K_{X}+\Delta$ is log terminal. Let $\pi: X \longrightarrow Y$ be a small extremal contraction.
Then the flip of π exists.

Conjecture. (
) There is no infinite sequence of log terminal flips.

Shokurov's Recent Contribution

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.

Shokurov's Recent Contribution

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.
- For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.

Shokurov's Recent Contribution

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.
- For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.
- His proof introduces some radically new ideas. It seems as though many of his methods will generalise to higher dimensions.

Shokurov's Recent Contribution

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.
- For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.
- His proof introduces some radically new ideas. It seems as though many of his methods will generalise to higher dimensions.
- The first step of the proof, is to reduce the dimension by one. Therefore we are free to use the MMP.

Shokurov's Recent Contribution

- In a recent paper, Shokurov gives a proof of the existence of 4-fold flips.
\square For the first time in history, we have a completely conceptual and straightforward proof of 3-fold flips.
- His proof introduces some radically new ideas. It seems as though many of his methods will generalise to higher dimensions.
\square The first step of the proof, is to reduce the dimension by one. Therefore we are free to use the MMP.
\square Many of the ideas in his paper will probably influence other work in higher dimensional geometry.

Four fold flips

- Shokurov's proof of 4-fold flips has not been completely absorbed.

Four fold flips

- Shokurov's proof of 4-fold flips has not been completely absorbed.
- In particular his proof of 4-fold flips is not as conceptual, and it would seem hard to generalise much of this part of the proof to higher dimensions.

Four fold flips

- Shokurov's proof of 4-fold flips has not been completely absorbed.
- In particular his proof of 4-fold flips is not as conceptual, and it would seem hard to generalise much of this part of the proof to higher dimensions.
- Shokurov's manuscript contains enough TLA s to last a lifetime.

Four fold flips

- Shokurov's proof of 4-fold flips has not been completely absorbed.
- In particular his proof of 4-fold flips is not as conceptual, and it would seem hard to generalise much of this part of the proof to higher dimensions.
- Shokurov's manuscript contains enough TLA s to last a lifetime.
$\square 110$, in a manuscript with 245 pages.

Adjunction and Vanishing, I

- In higher dimensional geometry, there are two basic results, adjunction and vanishing.

Adjunction and Vanishing, I

- In higher dimensional geometry, there are two basic results, adjunction and vanishing.
- (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_{X}+S$ to S is equal to K_{S}.

Adjunction and Vanishing, I

\square In higher dimensional geometry, there are two basic results, adjunction and vanishing.
\square (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_{X}+S$ to S is equal to K_{S}.
\square (Vanishing) The simplest form is Kodaira vanishing which states that if X is smooth and L is an ample line bundle, then $H^{i}\left(K_{X}+L\right)=0$, for $i>0$.

Adjunction and Vanishing, I

- In higher dimensional geometry, there are two basic results, adjunction and vanishing.
\square (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_{X}+S$ to S is equal to K_{S}.
\square (Vanishing) The simplest form is Kodaira vanishing which states that if X is smooth and L is an ample line bundle, then $H^{i}\left(K_{X}+L\right)=0$, for $i>0$.
\square Both of these results have far reaching generalisations, whose form dictates the main definitions of the subject.

An illustrative example

\square Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_{S} \cdot E=-1$ and $E^{2}=-1$. We want to contract E.

An illustrative example

- Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_{S} \cdot E=-1$ and $E^{2}=-1$. We want to contract E.
\square By adjunction, K_{E} has degree -2 , so that $E \simeq \mathbb{P}^{1}$. Pick up an ample divisor H and consider $D=K_{S}+G+E=K_{S}+a H+b E$.

An illustrative example

- Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_{S} \cdot E=-1$ and $E^{2}=-1$. We want to contract E.
\square By adjunction, K_{E} has degree -2 , so that $E \simeq \mathbb{P}^{1}$. Pick up an ample divisor H and consider $D=K_{S}+G+E=K_{S}+a H+b E$.
\square Pick $a>0$ so that $K_{S}+a H$ is ample.

An illustrative example

- Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_{S} \cdot E=-1$ and $E^{2}=-1$. We want to contract E.
\square By adjunction, K_{E} has degree -2 , so that $E \simeq \mathbb{P}^{1}$. Pick up an ample divisor H and consider $D=K_{S}+G+E=K_{S}+a H+b E$.
\square Pick $a>0$ so that $K_{S}+a H$ is ample.
\square Then pick b so that $\left(K_{S}+a H+b E\right) \cdot E=0$. Note that $b>0$ (in fact typically b is very large).

An illustrative example

\square Let S be a smooth projective surface and let $E \subset S$ be a -1-curve, that is $K_{S} \cdot E=-1$ and $E^{2}=-1$. We want to contract E.
\square By adjunction, K_{E} has degree -2 , so that $E \simeq \mathbb{P}^{1}$. Pick up an ample divisor H and consider $D=K_{S}+G+E=K_{S}+a H+b E$.
\square Pick $a>0$ so that $K_{S}+a H$ is ample.
\square Then pick b so that $\left(K_{S}+a H+b E\right) \cdot E=0$. Note that $b>0$ (in fact typically b is very large).
\square Now we consider the rational map given by $|m D|$, for $m \gg 0$ and sufficiently divisible.

Basepoint Freeness

\square Clearly the base locus of $|m D|$ is contained in E.

Basepoint Freeness

\square Clearly the base locus of $|m D|$ is contained in E.
\square So consider the restriction exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(m D-E) \longrightarrow \mathcal{O}_{S}(m D) \longrightarrow \mathcal{O}_{E}(m D) \longrightarrow 0 .
$$

Basepoint Freeness

- Clearly the base locus of $|m D|$ is contained in E.
- So consider the restriction exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(m D-E) \longrightarrow \mathcal{O}_{S}(m D) \longrightarrow \mathcal{O}_{E}(m D) \longrightarrow 0 .
$$

- Now

$$
m D-E=K_{S}+G+(m-1) D
$$

and $G+(m-1) D$ is ample.

Basepoint Freeness

- Clearly the base locus of $|m D|$ is contained in E.
- So consider the restriction exact sequence
$0 \longrightarrow \mathcal{O}_{S}(m D-E) \longrightarrow \mathcal{O}_{S}(m D) \longrightarrow \mathcal{O}_{E}(m D) \longrightarrow 0$.
- Now

$$
m D-E=K_{S}+G+(m-1) D
$$

and $G+(m-1) D$ is ample.
■ So by Kawamata-Viehweg Vanishing

$$
H^{1}\left(S, \mathcal{O}_{S}(m D-E)\right)=H^{1}\left(S, \mathcal{O}_{S}\left(K_{S}+G+(m-1) D\right)\right)=0
$$

Castelnuovo's Criteria

- By assumption $\mathcal{O}_{E}(m D)$ is the trivial line bundle. But this is a cheat.

Castelnuovo's Criteria

\square By assumption $\mathcal{O}_{E}(m D)$ is the trivial line bundle. But this is a cheat.

- In fact by adjunction

$$
\left.\left(K_{S}+G+E\right)\right|_{E}=K_{E}+B,
$$

where $B=\left.G\right|_{E}$.

Castelnuovo's Criteria

- By assumption $\mathcal{O}_{E}(m D)$ is the trivial line bundle. But this is a cheat.
- In fact by adjunction

$$
\left.\left(K_{S}+G+E\right)\right|_{E}=K_{E}+B,
$$

where $B=\left.G\right|_{E}$.
$\square B$ is ample, so we have the start of an induction.

Castelnuovo's Criteria

- By assumption $\mathcal{O}_{E}(m D)$ is the trivial line bundle. But this is a cheat.
- In fact by adjunction

$$
\left.\left(K_{S}+G+E\right)\right|_{E}=K_{E}+B,
$$

where $B=\left.G\right|_{E}$.
$\square B$ is ample, so we have the start of an induction.

- By vanishing, the map

$$
H^{0}\left(S, \mathcal{O}_{S}(m D)\right) \longrightarrow H^{0}\left(E, \mathcal{O}_{E}(m D)\right)
$$

is surjective. Thus $|m D|$ is base point free and the

The General Case

\square We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.

The General Case

- We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.
- Observe that if we set $G^{\prime}=\pi_{*} G$, then G^{\prime} has high multiplicity along p, the image of E (that is b is large).

The General Case

\square We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.

- Observe that if we set $G^{\prime}=\pi_{*} G$, then G^{\prime} has high multiplicity along p, the image of E (that is b is large).
- In general, we manufacture a divisor E by picking a point $x \in X$ and then pick H with high multiplicity at x.

The General Case

- We want to try to do the same thing, but in higher dimension. Unfortunately the locus E we want to contract need not be a divisor.
\square Observe that if we set $G^{\prime}=\pi_{*} G$, then G^{\prime} has high multiplicity along p, the image of E (that is b is large).
- In general, we manufacture a divisor E by picking a point $x \in X$ and then pick H with high multiplicity at x.
\square Next resolve singularities $\tilde{X} \longrightarrow X$ and restrict to an exceptional divisor E, whose centre has high multiplicity w.r.t H (strictly speaking a log canonical centre of $K_{X}+H$).

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.
\square Let $\pi: Y \longrightarrow X$ be birational map. Suppose that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then we may write

$$
K_{Y}+\Gamma=\pi^{*}\left(K_{X}+\Delta\right)
$$

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.
\square Let $\pi: Y \longrightarrow X$ be birational map. Suppose that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then we may write

$$
K_{Y}+\Gamma=\pi^{*}\left(K_{X}+\Delta\right)
$$

\square We say that the pair (X, Δ) is if the coefficients of Γ are always less than one.

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.
\square Let $\pi: Y \longrightarrow X$ be birational map. Suppose that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then we may write

$$
K_{Y}+\Gamma=\pi^{*}\left(K_{X}+\Delta\right) .
$$

\square We say that the pair (X, Δ) is if the coefficients of Γ are always less than one.
\square We say that the pair (X, Δ) is if the coefficients of the exceptional divisor of Γ are always less than or equal to one.

Adjunction II

\square To apply adjunction we need a component S of coefficient one.

Adjunction II

\square To apply adjunction we need a component S of coefficient one.

- So suppose we can write $\Delta=S+B$, where S has coefficient one. Then

$$
\left.\left(K_{X}+S+B\right)\right|_{S}=K_{S}+D .
$$

Adjunction II

\square To apply adjunction we need a component S of coefficient one.

- So suppose we can write $\Delta=S+B$, where S has coefficient one. Then

$$
\begin{aligned}
& \left.\quad\left(K_{X}+S+B\right)\right|_{S}=K_{S}+D \\
& \text { if } K_{X}+S+B \text { is plt then } K_{S}+D \text { is klt. }
\end{aligned}
$$

Vanishing II

- We want a form of vanishing which involves boundaries.

Vanishing II

- We want a form of vanishing which involves boundaries.
\square If we take a cover with appropriate ramification, then we can eliminate any component with coefficient less than one.

Vanishing II

- We want a form of vanishing which involves boundaries.
\square If we take a cover with appropriate ramification, then we can eliminate any component with coefficient less than one.
- (Kawamata-Viehweg vanishing) Suppose that $K_{X}+\Delta$ is klt and L is a line bundle such that $L-\left(K_{X}+\Delta\right)$ is big and nef. Then, for $i>0$,

$$
H^{i}(X, L)=0
$$

General Set up

We are given an extremal small contraction, $\pi: X \longrightarrow Z$, where $D=-\left(K_{X}+\Delta\right)$ is relatively π-ample. We want to construct the flip.

General Set up

We are given an extremal small contraction, $\pi: X \longrightarrow Z$, where $D=-\left(K_{X}+\Delta\right)$ is relatively π-ample. We want to construct the flip. That is we want a diagram

Reduction to pl Flips

Definition. A pl flip is a flip $\pi: X \longrightarrow Z$ where $K_{X}+\Delta=K_{X}+S+B$ is plt and S is π-negative.

Reduction to pl Flips

Definition. A pl flip is a flip $\pi: X \longrightarrow Z$ where $K_{X}+\Delta=K_{X}+S+B$ is plt and S is π-negative.

Theorem. (Shokurov 91) If every pl flips exists and any sequence of pl flips terminates then every flip exists.

Reduction to pl Flips

Definition. A pl flip is a flip $\pi: X \longrightarrow Z$ where $K_{X}+\Delta=K_{X}+S+B$ is plt and S is π-negative.

Theorem. (Shokurov 91) If every pl flips exists and any sequence of pl flips terminates then every flip exists.

Theorem. Pl flips terminate in dimension four.

Finite Generation

Let $\pi: X \longrightarrow Z$ be a small contraction, of relative Picard number one and let D be a line bundle, such that $-D$ is π-ample. Suppose that we want to construct the flip.

Finite Generation

\square Let $\pi: X \longrightarrow Z$ be a small contraction, of relative Picard number one and let D be a line bundle, such that $-D$ is π-ample. Suppose that we want to construct the flip.

- Recall that the flip exists iff

$$
R=R(X, D)=\bigoplus_{n} H^{0}\left(X, \pi_{*} \mathcal{O}_{X}(n D)\right)
$$

is finitely generated.

Criteria for finite generation

- Note that there is a natural map

$$
R(X, D) \longrightarrow R\left(X,\left.D\right|_{S}\right)
$$

Criteria for finite generation

- Note that there is a natural map

$$
R(X, D) \longrightarrow R\left(X,\left.D\right|_{S}\right)
$$

- The image of $R(X, D)$ is called the , and is denoted res ${ }_{S} R$.

Criteria for finite generation

- Note that there is a natural map

$$
R(X, D) \longrightarrow R\left(X,\left.D\right|_{S}\right)
$$

- The image of $R(X, D)$ is called the , and is denoted res ${ }_{S} R$.
- The kernel of this map is easily seen to be generated by any function which defines S.

Criteria for finite generation

\square Note that there is a natural map

$$
R(X, D) \longrightarrow R\left(X,\left.D\right|_{S}\right)
$$

- The image of $R(X, D)$ is called the , and is denoted res ${ }_{S} R$.
- The kernel of this map is easily seen to be generated by any function which defines S.
\square Thus R is finitely generated iff $\operatorname{res}_{S} R$ is finitely generated.

Function algebras

Set $A=H^{0}\left(Z, \mathcal{O}_{Z}\right)$.
Definition. A function algebra on X is a graded A-subalgebra V of $k(X)[T]$.

Function algebras

Set $A=H^{0}\left(Z, \mathcal{O}_{Z}\right)$.
Definition. A function algebra on X is a graded
A-subalgebra V of $k(X)[T]$.
In other words, a function algebra is a graded algebra

$$
\oplus v_{n}
$$

where $V_{0}=A, V_{i} \subset k(X)$ and $V_{i} V_{j} \subset V_{i+j}$

Function algebras

Set $A=H^{0}\left(Z, \mathcal{O}_{Z}\right)$.
Definition. A function algebra on X is a graded
A-subalgebra V of $k(X)[T]$.
In other words, a function algebra is a graded algebra

$$
\oplus{ }^{v_{n}}
$$

where $V_{0}=A, V_{i} \subset k(X)$ and $V_{i} V_{j} \subset V_{i+j}$
Definition. We say that a function algebra is
$V_{j} \subset H^{0}\left(X, \mathcal{O}_{X}(j D)\right)$.

Function algebras

Set $A=H^{0}\left(Z, \mathcal{O}_{Z}\right)$.
Definition. A function algebra on X is a graded
A-subalgebra V of $k(X)[T]$.
In other words, a function algebra is a graded algebra

$$
\oplus v_{n}
$$

where $V_{0}=A, V_{i} \subset k(X)$ and $V_{i} V_{j} \subset V_{i+j}$
Definition. We say that a function algebra is
$V_{j} \subset H^{0}\left(X, \mathcal{O}_{X}(j D)\right)$.
It is easy to see that a restricted algebra is a bounded function algebra.

b-divisors

Definition. A b-divisor on a normal variety is an element:

$$
D \in \lim _{Y \rightarrow X} \operatorname{Div} Y,
$$

where the limit runs over all proper birational maps $Y \longrightarrow X$.
There are two ways to think of b-divisors.

b-divisors

Definition. A b-divisor on a normal variety is an element:

$$
D \in \lim _{Y \rightarrow X} \operatorname{Div} Y,
$$

where the limit runs over all proper birational maps $Y \longrightarrow X$.
There are two ways to think of b-divisors.
A b-divisor \mathbf{D} is something that assigns to every $Y \longrightarrow X$ an ordinary divisor D_{Y} on Y (the), compatible with pushforward.

b-divisors

Definition. A b-divisor on a normal variety is an element:

$$
D \in \lim _{Y \rightarrow X} \operatorname{Div} Y,
$$

where the limit runs over all proper birational maps $Y \longrightarrow X$.
There are two ways to think of b-divisors.
A b-divisor \mathbf{D} is something that assigns to every
$Y \longrightarrow X$ an ordinary divisor D_{Y} on Y (the), compatible with pushforward.
An infinite formal sum of valuations $\sum a_{E} E$. In this case the trace is

$$
D_{Y}=\sum_{E \text { is a divisor on } Y} a_{E} E
$$

Examples of b-divisors

- A rational function ϕ determines a b-divisor in an obvious way,

$$
(\phi)=\sum \nu_{E}(\phi) E .
$$

Examples of b-divisors

\square A rational function ϕ determines a b-divisor in an obvious way,

$$
(\phi)=\sum \nu_{E}(\phi) E .
$$

- A Cartier divisor D on X determines a b-divisor \bar{D}, by

$$
\bar{D}_{Y}=f^{*} D,
$$

for any model $f: Y \longrightarrow X$.

Examples of b-divisors

\square A rational function ϕ determines a b-divisor in an obvious way,

$$
(\phi)=\sum \nu_{E}(\phi) E .
$$

- A Cartier divisor D on X determines a b-divisor \bar{D}, by

$$
\bar{D}_{Y}=f^{*} D
$$

for any model $f: Y \longrightarrow X$.

- Suppose we have a pair (X, Δ). The b-divisor $A=A(X, \Delta)$ is defined by

Linear equivalence of b-divisors

Definition. We say to b -divisors D and D^{\prime} are linearly equivalent if there is a rational function ϕ such that

$$
\mathbf{D}=\mathbf{D}^{\prime}+(\phi)
$$

Linear equivalence of b-divisors

Definition. We say to b -divisors D and D^{\prime} are linearly equivalent if there is a rational function ϕ such that

$$
\mathbf{D}=\mathbf{D}^{\prime}+(\phi)
$$

Here is a key example. Let $X=\mathbb{P}^{2}$. Pick a point $p \in \mathbb{P}^{2}$ and let E be the exceptional divisor of the blow up
$\pi: Y \longrightarrow X$. Let $D=\pi_{*}\left(\overline{\left(\pi^{*} L-E\right)}\right)$. Then

$$
|D|_{X} \subset\left|D_{X}\right| .
$$

Linear equivalence of b-divisors

Definition. We say to b -divisors D and D^{\prime} are linearly equivalent if there is a rational function ϕ such that

$$
\mathbf{D}=\mathbf{D}^{\prime}+(\phi)
$$

Here is a key example. Let $X=\mathbb{P}^{2}$. Pick a point $p \in \mathbb{P}^{2}$ and let E be the exceptional divisor of the blow up $\pi: Y \longrightarrow X$. Let $D=\pi_{*}\left(\overline{\left(\pi^{*} L-E\right)}\right)$. Then

$$
|D|_{X} \subset\left|D_{X}\right| .
$$

Indeed, $D_{X}=L$, so that the rhs is $\hat{\mathbb{P}}^{2}$, the space of lines in \mathbb{P}^{2}. But the lhs is the subspace of lines through p.

Saturation

Denote by Mob D, the mobile part of the linear system
$|D|$.

Saturation

Denote by Mob D, the mobile part of the linear system $|D|$.
Definition. Let D and E be divisors on X. We say that D is if
$\operatorname{Mob}(D+E) \leq \operatorname{Mob} D$.

Saturation

Denote by Mob D, the mobile part of the linear system $|D|$.
Definition. Let D and E be divisors on X. We say that D is if

$$
\operatorname{Mob}(D+E) \leq \operatorname{Mob} D .
$$

That is, adding on E, does not make the linear system $|D|$ any larger.

Saturation for b-divisors

We say that a property of b-divisors holds on all sufficiently high models over X, if there is a model $Y \longrightarrow X$ and this property holds for all models over Y.

Saturation for b-divisors

We say that a property of b-divisors holds on all sufficiently high models over X, if there is a model $Y \longrightarrow X$ and this property holds for all models over Y.
Definition. Let D and E be b-divisors on X. We say that D is E-saturated if

$$
\operatorname{Mob}\left(D_{Y}+E_{Y}\right) \leq \operatorname{Mob} D_{Y},
$$

on all sufficiently high models over X.

Saturation for b-divisors

We say that a property of b-divisors holds on all sufficiently high models over X, if there is a model $Y \longrightarrow X$ and this property holds for all models over Y.
Definition. Let D and E be b-divisors on X. We say that D is E-saturated if

$$
\operatorname{Mob}\left(D_{Y}+E_{Y}\right) \leq \operatorname{Mob} D_{Y},
$$

on all sufficiently high models over X.
For example, the b-divisor D defined on \mathbb{P}^{2} is not saturated with respect to the prime b-divisor E.

Back to fi nite generation

\square Suppose we are given a function algebra V. Each part $V_{i} \subset k(X)$ determines a mobile b-divisor M_{i}. Denote by M_{\bullet} the corresponding sequence.

Back to fi nite generation

\square Suppose we are given a function algebra V. Each part $V_{i} \subset k(X)$ determines a mobile b-divisor M_{i}. Denote by M_{\bullet} the corresponding sequence.

- Note that M_{\bullet} is
, that is

$$
M_{i}+M_{j} \leq M_{i+j} .
$$

Back to fi nite generation

\square Suppose we are given a function algebra V. Each part $V_{i} \subset k(X)$ determines a mobile b-divisor M_{i}. Denote by M_{\bullet} the corresponding sequence.
\square Note that M_{\bullet} is convex, that is

$$
M_{i}+M_{j} \leq M_{i+j} .
$$

- Define D_{\bullet} by the rule

$$
D_{i}=\frac{M_{i}}{i} .
$$

Some basic results

Given a bounded function algebra V, by convexity, the limit

$$
D=\lim D_{i},
$$

exists (with \mathbb{R}-coefficients).

Some basic results

- Given a bounded function algebra V, by convexity, the limit

$$
D=\lim D_{i},
$$

exists (with \mathbb{R}-coefficients).
\square Finite generation of V is equivalent to stating that

$$
D=D_{i},
$$

for i sufficiently large.

Some basic results

- Given a bounded function algebra V, by convexity, the limit

$$
D=\lim D_{i},
$$

exists (with \mathbb{R}-coefficients).
\square Finite generation of V is equivalent to stating that

$$
D=D_{i},
$$

for i sufficiently large.
$\square R=R(X, D)$, the flipping algebra, is exceptionally saturated.

Some basic results

- Given a bounded function algebra V, by convexity, the limit

$$
D=\lim D_{i},
$$

exists (with \mathbb{R}-coefficients).
\square Finite generation of V is equivalent to stating that

$$
D=D_{i},
$$

for i sufficiently large.
$\square R=R(X, D)$, the flipping algebra, is exceptionally saturated.

- By Kawamata-Viehweg Vanishing, this means the restricted algebra is

Shokurov algebras

Asymptotic means

$$
\operatorname{Mob}\left\ulcorner j D_{i}+A\right\urcorner \leq j D_{j} .
$$

for all i and j.
Definition. Let (X, Δ) be a pair, such that $-\left(K_{X}+\Delta\right)$
if ample. We say that a function algebra V is a
if it is bounded, asymptotically
$A(X, \Delta)$-saturated and X / Z is a Fano contraction.

Shokurov algebras

Asymptotic means

$$
\operatorname{Mob}\left\ulcorner j D_{i}+A\right\urcorner \leq j D_{j} .
$$

for all i and j.
Definition. Let (X, Δ) be a pair, such that $-\left(K_{X}+\Delta\right)$
if ample. We say that a function algebra V is a if it is bounded, asymptotically
$A(X, \Delta)$-saturated and X / Z is a Fano contraction.
Conjecture. Every Shokurov algebra is finitely
generated.

Shokurov algebras

Asymptotic means

$$
\operatorname{Mob}\left\ulcorner j D_{i}+A\right\urcorner \leq j D_{j} .
$$

for all i and j.
Definition. Let (X, Δ) be a pair, such that $-\left(K_{X}+\Delta\right)$
if ample. We say that a function algebra V is a if it is bounded, asymptotically
$A(X, \Delta)$-saturated and X / Z is a Fano contraction.
Conjecture. Every Shokurov algebra is finitely
generated.
Theorem. (Shokurov) Every Shokurov algebra is finitely generated, up to dimension two.

Dimension One

By assumption $X=\mathbb{P}^{1}$, and we have a bounded sequence D_{\bullet} of b-divisors, which are

$$
A(X, \Delta)=-\Delta=-\sum b_{m} P_{m}=\sum a_{m} P_{m}
$$

assymptotically saturated, where $0 \leq b_{m}<1$, so that $-1<a_{m} \leq 0$.

Dimension One

By assumption $X=\mathbb{P}^{1}$, and we have a bounded sequence D_{\bullet} of b-divisors, which are

$$
A(X, \Delta)=-\Delta=-\sum b_{m} P_{m}=\sum a_{m} P_{m}
$$

assymptotically saturated, where $0 \leq b_{m}<1$, so that $-1<a_{m} \leq 0$.
As we are on a curve, we can drop the reference to b-divisors. We may write

$$
D_{i}=\sum a_{m, i} P_{m} .
$$

A Diophantine argument

\square Asymptotic Saturation becomes:

$$
\left\ulcorner j d_{m, i}+a_{m}\right\urcorner \leq j d_{m, j} .
$$

Boundedness says there are only finitely many coefficients to worry about.

A Diophantine argument

- Asymptotic Saturation becomes:

$$
\left\ulcorner j d_{m, i}+a_{m}\right\urcorner \leq j d_{m, j} .
$$

Boundedness says there are only finitely many coefficients to worry about.
\square Take the limit as $i \rightarrow \infty$,

$$
\left\ulcorner j d_{m}+a_{m}\right\urcorner \leq j d_{m, j} \leq j d_{m} .
$$

A Diophantine argument

- Asymptotic Saturation becomes:

$$
\left\ulcorner j d_{m, i}+a_{m}\right\urcorner \leq j d_{m, j} .
$$

Boundedness says there are only finitely many coefficients to worry about.

- Take the limit as $i \rightarrow \infty$,

$$
\left\ulcorner j d_{m}+a_{m}\right\urcorner \leq j d_{m, j} \leq j d_{m} .
$$

- (Hwk). Use Diophantine approximation to conclude that d_{m} is rational, and thereby finish the proof.

The surface Case

\square In fact, the Diophantine approximation argument works in all dimensions, provided one can find a model Y, on which all the b-divisors D_{\bullet} and D are simultaneously free.

The surface Case

- In fact, the Diophantine approximation argument works in all dimensions, provided one can find a model Y, on which all the b-divisors D_{\circ} and D are simultaneously free.
- The surface case is especially easy, because it is not hard to show that we can take Y to be a terminal model.

The surface Case

- In fact, the Diophantine approximation argument works in all dimensions, provided one can find a model Y, on which all the b-divisors D_{\bullet} and D are simultaneously free.
- The surface case is especially easy, because it is not hard to show that we can take Y to be a terminal model.
\square Shokurov has an appealing general conjecture, known as CCS (our first TLA), which, if true, would imply that every Shokurov algebra is finitely generated.

The big picture

\author{

| Fano Varieties | All Varieties |
| :--- | :--- |
 D big implies base point free. Initially proved only for surfaces and threefolds

}

The big picture

Fano Varieties \quad All Varieties
D big implies base point free. Initially proved only for surfaces and threefolds
Base Point Free Theorem. Proved in all dimensions, using the X-method.

The big picture

Fano Varieties	All Varieties		
D big implies base point free.			
Initially proved only for sur-			
faces and threefolds			Base Point Free Theorem.
:---			
Proved in all dimensions,			
using the X-method.			

The big picture

Fano Varieties	All Varieties		
D big implies base point free.			
Initially proved only for sur-			
faces and threefolds			Base Point Free Theorem.
:---			
Proved in all dimensions,			
using the X-method.			

Some References

\square Shokurov: Prelimiting flips, Proc. Steklov Inst. of Math.v. 240, 82-219.

- Alessio Corti: 3-fold flips after Shokurov, see
http://www.dpmms.cam.ac.uk/~corti/flips_html/index.html where there are further references.
- Florin Ambro has produced some interesting work based on Shokurov's b-divisors, see math.AG/0112282, math.AG/0210271, math.AG/0301305, math.AG/0308143.

