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Abstract

For an mxn (0,1)-matrix with no repeated columns and no submatrix which is
a row and column permutation of any matrix in some set &F, we attempt to
determine the maximum number of columns n. We consider for example & as
the set of square (0,1)-matrices with row and column sums 2 and order at least 4
and obtain the asymptotically exact bound: n is O(m?2). We also consider &
consisting of a single 2x2k matrix of k copies of the identity of order 2 and get the
asymptotically exact bound: n is O(m). These examples are improvements on the
general bounds determined by results of Sauer, Perles and Shelah and others.



Section 1 Introduction.

A number of combinatorial objects can be encoded as (0,1)-matrices often defined
via forbidden substructures. We will use the term configuration (the combinatorial
equivalent of a submatrix) as follows. For a matrix B, we say a matrix A has no
configuration B if A has no submatrix which is a row and column permutation
of B. Let Ky bea kx2k (0,1)-matrix of all possible (0,1)-columns on k rows.
Define a matrix to be simple if it is a (0,1)-matrix and has no repeated columns. The
following result is a basic extremal result for forbidden configurations and gives the
form of the results we seek in this paper.

Theorem 1.1 (Sauer [7], Perles and Shelah [8]) Let A be an mxn (0,1)-matrix with
no configuration Ky. Then

m m m
n s(k-l)+ (k-2)+ +( 0 ) (1.1

and (1.1) is best possible. o

Now for any kx{ matrix F we see that Ky, [logy 27 contains F as a
configuration, the extra [log,2] coming from possible repeated columns in F.
This yields that if F is forbidden as a configuration as in Theorem 1.1 that n is

O(mk+[log227-1) but we can do better. Let A denote the matrix consisting of t
copies of A.

Theorem 1.2. Let A be an mxn (0,1)-matrix with no configuration t-Ky. Then n

is O(mk) or more precisely (with t>1)

m m m t-2 {m
ns(k)+(k-l)+'"+(0)+k71{k) (1.2)

and this is asymptotically exact namely we can find such an A with
m m m t-2 (m
n=(k)~x—(k_l)~t-...+(0)+(1-0(1))k+1 k)’ (1.3)

Proof. The bound O(mk) is due to Fiiredi [6]. An expression for the exact bound is
in [4] but it reduces to the maximum p so that there is an mxp simple matrix with
no kxt submatrix of 1's and so we apply [Lemma 3.1, 1]. O

Now when forbidding F, we get that n is O(mk). Often it is of interest to study
families of forbidden configurations. Let Cy denote a kxk (0,1)-matrix of the
vertex-edge incidence matrix of a cycle of length k. A mxn (0,1)-matrix A is
balanced (respectively totally balanced) if it has no configuration Cy for k >3 and
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k odd (resp. for all k>3). Now if A is simple then

wo(3)+ (7))

the bound simply arising from forbidding Cj alone. That the bound is best possible
is somewhat remarkable [2]. Partly motivated by the fact that the row and column
sums of Cy are all two, Section 2 studies the bounds arising from forbidding square
submatrices of constant row and column sums k. The most intriguing result is a
bound of O(m?2) from forbidding the 4x4 (0,1)-matrix which is a direct sum of C,
with itself where the bound O(m#4) might be expected via Theorem 1.2. But such is
the preliminary state of our knowledge that asymptotically exact bounds are not
known for Cg orsay C, direct sum with Cs.

Section 3 was motivated by (but does not solve) the problem of forbidding 2.Cs.
In particular, the construction of an mxQ(m¥k) simple matrix for Theorem 1.2 relies
on avoiding the kxt matrix of 1's, t > 1.

Problem 1.3. Let F bea kx{® (0,1)-matrix with at most one column of 0’s and at
most one column of 1’s. If A is an mxn simple matrix with no configuration F,
then is it true that nis O(mk-1)? o

A result to support this is given as well as two other results when the general
bounds discussed above are not accurate. As the answers about forbidden
configurations become more detailed, we are given the ability to ask more detailed
questions.

Section 2. Forbidden submatrices of constant line sums

We wish to consider the bounds resulting from forbidding a structured family of
configurations. Let

T2 ={Al Aisa(0,1)-matrix of order t >  and all row
and column sums are k}. 2.1

Obviously k< & and Fy 9,1 C Fy g. Let Ji, denote the matrix of all 1's of order
m and I, denote the identity matrix of order m. Now J e Frk and Jiyq-Igyp €

Fxk+1- To obtain bounds for Ji use Theorem 1.2 to get asymptotically exact
results. For Ji,1-Ix,1 consider the following.

Proposition 2.1 (Theorem 3.4[3]) Let A
simple matrix(e.g. Jx+1 - Ix41). Assume

_a__ mxn simple matrix and let F be a txs

has no configuration F. Then

be an
Ah



m + m + + m |
ne ot len)* =+ ) 2.2)

Proof. This follows from Theorem 1.1 since F is a configuration in K. o

Note that for k < &, there is always an Fe & 3 of order & which is simple. To

obtain constructions of matrices with no configuration in ¥y 3 note the following.

Proposition 2.2. Let Fe &y 3. For 2 >k, any row and column permutation of

F contains the (k+1)x1 and (2-k+1)x1 submatrices

0 1
1 1o
( 1 0
kﬁ N PEETY (2.3)
1] 0

Proof. For the first (k+1)x1 column note that each row of F contains a zero (2 > k)
and so choose a column in F with a 0 in row 1 which then has k 1's below. For
the second (2-k+1)x1 column choose a column in F witha 1 inrow 1 which
then has 2-k 0's below. o

In certain cases other columns can be shown to be submatrices but they are of no
use in the following construction.

Proposition 2.3 ([1]). Let o¢be a px1 (0,1)-column. Then there is an mxn simple
matrix A with no submatrix of with

m m m
n=(p-l)+(p-2)+"'+(0) ] (2.4)

Combine to obtain the following.

Theorem 2.4. Let A be an mxn simple matrix and k < & given. Assuming A

has no _configuration Fe &y y. Then

S . +(m 25
Pt le2) o @3

ie. n is O(m!-1) and there exists such an A with, for p = max {k+1, 8-k+1},
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nz(;‘_‘l)+(;‘2)+ o (n(;) 2.6)

ie. n is Q (mmax(L-k,k)y

Proof. Proposition 2.1 and the note following it give (2.5). Propositions 2.2 and 2.3
yield (2.6). ]

Note that for & =k + 1 or k = 1 we have exact solutions ( the case k = 1 would

follow from Furedi and Quinn [5]). Perhaps the constructions are best possible. We
now consider some cases not solved by Theorem 2.4, in particulark = £ =2, k=0
in general and k =2, § = 4 for which an asymptotic result is obtained.

Theorem 2.5. Let A be an mxn simple matrix with no configuration in F oo
Then n<2m and this is best possible.

Proof. Delete from A th columns with zero or one 1 (up to m+1). Consider the
remaining columns of A as edges of a hypergraph H. We get a forest structure (a
minimal cycle in H will yield a matrix F € &5 5 of the same order as the cycle)
which can be built inductively by adding edges that overlap the previously
constructed tree in zero or one vertex. Thus it has the maximum number of edges
if they are all of size 2 in which case H has at most m-1 edges (achievable by the
mx(m-1) vertex-edge incidence matrix of a tree on m vertices). Now (m+1) + (m-1)
yield the bound. O

What about Fy j for k>2 where Theorem 2.4 is not helpful. Perhaps the
matrix

ml

0_ k-1 11...1
[Kme | Kk'l ] (2‘7)

is extremal in that case, where Kg denotes the pX(g) simple matrix of all columns

of g 1's. We now present a forbidden configuration result for a certain Fe & 4
given in (2.8) that gives the asymptotically correct bound for ¥4 of O(m?2); the
construction of Q(m2) being given in Theorem 2.4.

Theorem 2.6. Let A be an mxn simple matrix with no configuration

1100

1100
0011} 2.8

0011




Then n is O(m2) and this is best possible asymptotically.

Proof. We will use induction on m and Lemma 2.7 which follows. Decompose A
by permuting columns to obtain

11...100...0

by deleting the first row of A and identifying B, as the repeated columns on m-1
rows. Now B, is simple and has no configurations F; , F, as given in (2.10) below,
since either forces (2.8) in A. By Lemma 2.7, B, has at most 9(m-1) columns. Now
[B1B2B3] is also simple and has no configuration (2.8) and so we may apply
induction to get that [B1B,B3] has at most k(m-1)2 columns for some k > 41/,. But
then A has at most k(m-1)2 + 9(m-1) < k(m2) columns, establishing the result.

Noting that the configuration (2.8) is in &, 4, then (2.6) in Theorem 2.4
establishes that the bound is asymptotically exact. O

Lemma 2.7 Let A be an mxn simple matrix with no configurations

10
10 1100
01 0011

Then n < 9m.

Proof We ignore in A the column of 0's and the column of 1's and for columns
of column sum k (I <k < m-1) we may ignore up to three more (two of which are
chosen in a special way below). A total of 3m-1 might be ignored in this way.

Let Ay denote the columns of column sum k. We will assume Ay has at least 4
columns. In view of F; being forbidden we get either that all columns in Aj have
k-1 1'sin a (k-1)-subset of rows (which we call type 1 pattern) or all columns in Ay
have m-k-1 0's in an (m-k-1)-subset of the rows (which we call a type 2 pattern) and
is the (0,1)-complement of type 1. For Ay having 3 or more columns this
classification is unique.

Now we will restrict attention to columns of column sums yielding type 1
patterns. The bound for type 2 patterns will be the same since it is just the (0,1)-
complement. Let column sums sy <8 < ... < 8¢ yield type 1 patterns. For each s;.
Let B; denote the (k-1)-subset of the rows which has all 1's in columns of column
sum s; and let S; be those rows containing a 1 in exactly one column of column
sum s;. Note that IS5 > 4. Now for s; <s;, we deduce that B; C B;. For s; =1,B; =
4> so this is trivial. For s; > 1,if B;j\B;= 4> then we get the configuration F, with
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the first row from B;\B; and the second two rows from B;\B; and the first two
columns from those of column sum s; (we might need four to choose from) and
the second two columns from those of column sum s; (we might need three to
choose from).

Reorder the rows so that for each i, B; = {1,2,...,5;-1}. Now we choose two of the

three columns of column sum s; to delete to ensure that when S; denotes those

rows containing a 1 in exactly one of the remaining columns of columns sum s;,

then s;, s;,1 € S; We can show that for each p =5,6,....m, there are at most 3 5;'s

1 1)

containing it. Otherwise let p €5, Sj, Sy Sy with i<j<k< L. Then Sj+2<sy <

p- But now we get the configuration F, in rows Sj/ sj+1, p and in the two columns

putting p in S; and S; and in the two columns of column sum sy not putting p

e S g - This shows

t
)y I5;1 < 3(m-4) (2.11)
i=1

We get a similar bound for type 2 patterns and have not considered up to 3m-1
other columns. Thus the bound is

n < 3(m-4) + 3(m-4) + 3m-1 < 9m n] (2.12)

Note that same argument will give n is O(m) when forbidding F; and t-F,.
The lemma is surely not best possible but note that the best construction for
Theorem 2.6 has B, being an identity matrix of order m-1.

Section 3. Beating the general bounds.

Let F bea kx2 (0,1)-matrix and let A be an mxn simple matrix with no
configuration F. Now from Section 1 we have seen that n is O(mk) and if F is
simple we get n is O(mk-1) from Proposition 2.1. Can we do better? This section
offers three examples.

The following result provides some evidence for Problem 1.3 but it is premature
to make a conjecture. Let I, denote the 2x2 identity matrix.

Theorem 3.1. Let A be an mxn simple matrix with no 2x2k configuration k-I,.
Then nis O(m).

Proof. We will actually show n < (2k-2)m+1 for k>2, and use induction on m. Itis
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true for m=1,2. For SC {1,2,...m}, let A|g be the submatrix of A of those rows
indexed by S. Now for i <j assume that the number of columns in A i) that are

either

1 . .
0] or [(1)] is at most 2k-2. Then we can delete row i of A and those columns o of

1
A which have o i,j) = H or [(1)], to obtain a simple matrix B on m-1 rows and at

Oin
1

Form a tournament T whose vertices are the rows of A as follows. For i<},

least n-(2k-2) columns and no configuration k-I,. Then induction yields n <

(2k-2)m+1. Thus we may assume for i < j, that the number of columns [(1)] or

A‘{i,j} is at least 2k-1.

the forbidden configuration k-I forces that either A| G, has at most k-1 [é]'s

and so at least k[(l)}'s in which case we define in T that i»] or A| ) has at most

1
k-1 [(1)]'5 and so at least k [ 0]'5 in which case we definein T that j»i. Now Tis a

tournament and so has a hamiltonian path. Hence we may reorder the vertices so
that j»j+1 for each 1< j<m-1.

, . 1f, .
Now there are exactly m+1 columns with no ‘fall’, that is no [ O] in a consecutive

pair of rows. Then if A has m+1+(k-1)(m-1)+1 columns then A has (k-1)(m-1)+1

[ 0] s in consecutive pairs of rows and hence, by the pigeonhole principle, there are

at least k [ 0]'5 in some consecutive pair of rows j,j+1. This contradicts j»j+1. Thus

in this case n<km+1. This completes the proof. O

It is likely the construction in (Theorem 3.6,[1]) for an mxn simple matrix with

no submatrix (k-1)-

(1)] , yields the correct bound. A similar preliminary analysis

can be done for the 2x(2k+2) forbidden configuration of k-I> with [1 g} appended.

But the outcome is unclear.
The following is an easy case where the general bounds do not apply.

Proposition 3.2. Let of bea kx1 (0,1)-column and let A be an mxn simple matrix
with no configuration o Assume o has p 1's and q 0's. Then
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plf‘l)+(;2)+...+(g‘)+( (f;)(qmz)(g‘) . (3.2)

The following is a case where the 3x2 matrix F has no repeated columns yet
the bound turns out to be O(m) improving on O(m?2). How do we predict such
results in advance?

n<

Theorem 3.3. Let A bean mxn simple matrix with no configuration

10
01]. (3.3)
01 ‘

m+1 and this is best possible.

w

Then n <

o

Proof. Note that if of,8 are two columns of A with the column sum of o less
than the column sum of $ then the forbidden configurations force ot< B. Also if
A; is the submatrix of A (on m rows) of all columns of column sum i then A;
has no configuration F; in (2.8) and so, as in Lemma 2.7, the columns form a type 1
or type 2 pattern, hence there are at most m columns in A;. In consideration of
the bound we may assume there are columns of two column sums i, j, 1 <i<j.
Using the covering relation of columns of column sum j over those of column
sum i, we can decompose A, by permuting rows and columns as follows:

A=

B J
oc] ’ (3.9)

where B is an sxn' (0,1)-matrix of all columns of A of column sum at mosti , 0
denote an (m-s)xn' matrix of 0's, C is (m-s)xn" matrix which with the sxn"
matrix J of all 1's consists of those columns of A of column sum greater thani. By

induction applied to B and C weget n'<3s+1 and n"<3(m-s) +1. Butif B
2 2

has a column of 1's then C does not have a column of 0's and so either n' or n"
is one short of its bound. Hence

n=n"+n"<BGs+1+Cm-s)+1) -1
2 2

w

<3m+1 .(3.5)

N

The bound is seen to best possible by taking m =2k and then k copies of
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001
{0 1 o] (3.6)

in a diagonal fashion to form a mx2m matrix by putting 0’s below those blocks and

2

1’s above and then adding the column of I’s. O
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