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Summary

Traditional valuation by comparable sales does not possess a formal methodology for the explicit
incorporation of imperfect information. Chance-constrained programming permits this and, at its

| simplest, facilitates valuation by linear programming. All information, whether perfect or not, is

incorporated into the methodology in a transparent manner. Together these features render the
approach particularly useful where market information is otherwise scarce. The argument is illustrated
by a practical example.
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1. Introduction

Traditional valuation by comparable sales developed historically to meet particular technical
requirements. It relates a valuation to property characteristics; ceteris paribus the greater the
amount of a particular (advantageous) characteristic the higher the value of the property as a
whole. Further, the valuation is based on known realized sales prices of comparable properties.
These facts are used in a context where, overall, there is very limited information; specifically,
where only a few comparable sales are available. If instead of there being four or five
comparable sales there were 12 to 15 and preferably twice as many again, an econometric-
based valuation could be carried out (see Wiltshaw 1991a and 1991 b)and Matysiak (1991) for,
amongst other matters, a discussion of the applicability of econometrics to valuation).
Though traditional valuation by comparable sales works with limited information, it is
sssumed that information is accurate. Realized sales prices are considered to be exactly as

. stated. The characteristics of comparables are also treated as though they are measured
| precisely. This is assumed whatever the particular measurement scale used: a continuous

characteristic, such as gross external area, is considered to be as accurately measured as a
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binary characteristic (like the possession, or not, of a south-facing aspect). Similar remarks
apply to the property to be valued.

In summary, in traditional valuation it is assumed that, while there are only a few
comparables, the property-specific information related to then can be relied upon completely,
An ad hoc procedure is then followed to arrive at a valuation. However, this method has been
challenged (Wiltshaw, 1991a) as imprecise, ambiguous and tautological. In the same paper it
was suggested that linear programming represents a superior procedure. Nevertheless it is still
the case that even this approach assumes all the data it uses is perfectly accurate.

The question now arises as to how we carry out a valuation in the face of imperfect
information. In this particular paper we will confine our attention to imperfections in our
knowledge of realized sales prices; in principle, however, other imperfect data can be
incorporated into the valuation. Further, since the traditional method is fatally flawed, we will
further limit the discussion to the linear-programming approach. The paper commences witha
summary of the latter. This is followed by a formal statement of the imperfect information
which is to be utilized. Section 4 presents the explicit incorporation of imperfect information
into the mathematical programming valuation problem. Section 5 addresses the practical
aspects of deriving linear algebraic constraints for comparables with imperfect price
information. A simple example is then presented to illustrate the procedure. In the conclusions
we debate briefly the potential contribution of the suggested methodology. Throughout the
analytical focus continues to be a valuation consistent with market prices (Wiltshaw, 1991a),
which may now be estimates rather than an explicit simulation of supply and demand
conditions. The latter would require far more information than assumed here.

2. A summary of the linear programming approach

Valuers conceive of the value of a property as the total summation of the value of its
characteristics. Let k;; be the amount of property characteristic j to be found in property i; for
example, in the case of a house, it may be the gross external area, the presence or absence of
central heating, etc. Thus we can express the value of property i as:

le Pk {1

where p; is the price of characteristic j and there are assumed to be n characteristics. The
valuation problem can be interpreted as the discovery of the maximum price that can be
attributed to the subject property, v which is algebraically and arithmetically consistent with
the stated comparable sales. The analytical task is to input the characteristic prices (p,, p,,
...p;...p,)fromtheinformation contained in the m comparable sales. It has been expressed
(Wiltshaw, 1991a, p. 11) as:

n
maximize: Y pk,, @
=1
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where¢;, ¢, . . . ¢, are the m realized sales prices. The valuation is arrived at by inputing the

characteristic prices p,, p, ... p, by means of the simplex algorithm.

3. Imperfect price information

If we consider the reality of valuation practice all the data required are unlikely to be equally
available. We require information on the characteristics of both the subject property (k
...k,,) and the comparables, of which we will assume there are m -+t (k
kyg oo kopi. ..

X k vl ;(kvz
112712 - -~ Mg 21
K kml' ka st kmn; km+l 1 km+1 20 km+ln; et km+l i km+12 crt km-Hn)'This
information, in its entirety, is assumed to be available to the valuer. However the latter may
face two particular difficulties. All the realized prices of the comparables may not be known.
In England and Wales, for example, property prices are treated as confidential information.
This problem can be compounded by a thin market in traded properties, yielding, at best, few
potential comparables. In what follows, where a comparable’s realized prices is unknown it
will be indicated by an asterisk; for example, in the case of comparable m+i we write cho

Conceptually, at least, we are now in a position to argue that not only should the
maximum value of subject property v be consistent with the m equality constraints for which
the realized prices are known but, additionally, it should also be consistent with the equality
constraints representing the comparables whose realized prices are not known to the valuer.
We will assume there are r unknown prices. Algebraically the valuation problem can now be
represented as:

n

maximize: j;l Pk, 4)
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J=1
Y pkay=cy
i=1
2 Pkm=cp Gl
j=1 r

n
> P+t j=Cmsn

j=1

n
=¥
Z pjkm+lj—Lm+l

i=1

Pl,[’zn-l’nzo J

It is to be understood that for this to be a truc linear programming problem n>m-+1.

This may be a more elegant way of expressing the valuation problem; however, in terms of
a practical procedure, it does not move us any closer to a solution. For a valuation
computation to proceed it is obvious there must be some kind of numerical substitution for
Crmt1s Cmag == Cmare

To accomplish this we need to return to fundamentals. If, for example, we do not possess
the particular realized price of comparable m+i then we need to think in terms of a likely
range of prices which include the unknown ¢, ;. In the light of this we may be able to make
an estimate of ¢}, ;.

Any estimate must represent a ‘balance’ between two tendencies: to over- or underestimate
the particular price c* ;. To be specific, and at the same time accommodate the possibility
that the estimate is exactly equal to ¢*,;, we face two possible formulations: a balance
between not overestimating and overestimating; or, alternatively, a balance between not
underestimating and underestimating. When presented in this manner, comparable m+iin
the former case is expressed as <c*,.or >c¥, .. In the latter case the same comparable
would be expressed as >c*,; or <c¥, . The selection between these depends to a certain
extent on how the valuation problem has been formulated: we have presented it as one of
maximization. Hence the most secure form, in terms being likely to produce a bounded
solution space, is of the <X, type (how the possibility of overestimation, >cy ., fitsinto
this will be explained later).

Confining ourselves to the formulation involving not overestimating or overestimating,
we are still presented with the problem of their particular representation. This is dependent
upon a balance of (subjective) probabilities. A detailed explanation of this involves us re-
examining the linear programming problem we have posed. We are seeking the values ofp,,
Ps - - - P, that maximize the value of subject property, v while simultaneously satisfying them
equality comparable constraints, for which the realized prices are known. The additional
task which p,, p, . . . p, now have to perform is that they should simultaneously be such that
overestimation of, say, ¢¥ , ;. should not occur according to some minimum probability, such

as o, ;.
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In summary we replace the constraint
n
Z ijm+.'j=":.+i 6)
i=1
with a probability (Prob) statement in the form of a chance constraint:
n
Prob<Z pjkm+ij<c:+l)>am*l‘ 0
J=1

The latter implies that the input characteristic prices which maximize the value of v should be
sth that the m+i unknown realized price should not be overestimated with at least a
minimum probability of «,, , ;. A corollary of this is that there is a complementary maximum

probability of 1 -, ,, that the property characteristic prices will overestimate the realized
price of comparable ,, ,;; that is:

Prob(z pjk,,,+,.}>c,‘:+,-><l-—a,,,“ (8)
=

4. Imperfect price information and mathematical programming

InSection 3 we have seen how a comparable sale, with an unknown realized sale price, can be
expressed as a probabilistic statement. At the extreme all our comparable information may
be of this kind, with ¢ unknown prices. If this is so, and we are seeking the maximum
valuation of the subject property consistent with the unknown comparable sales prices, the
valuation can be represented as a problem in chance-constrained programming (see, for
example, Vajda, 1972). Such a problem may take the form:

maximize: ;1 Pk, 9)
" ~
subject to : Prob(jg1 pjklch’,“) Za,
Pmb(é:, pjkzj<c§> Za,
[ (10)

n
Pr0b< Z iju<cf)>°‘,
J=1

PisP2 .- P20

The interpretation of this is as follows. We seek the input property characteristic prices (p;,
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Py --. p,) such that the value of property v is at a maxirr‘xum, .while eac]? comp?r.ablc‘s
estimated value does not exceed its’unknown realized price with a specnﬁc.d minimum
probability. This, however, is a somewhat pessimistic formulation of the valuation problem.
Itislikely that there are some comparables when the realized prices arc.knowr.l.‘Assume there
are m comparables for which this is the case, with prices¢,, ¢, ... ¢, ;in addll.IOH there arel
where the realized prices (c%, ,,¢%,, ...k, ) are unknown. Hence the valuation problemis
now:
n

maximize: } pk,; (1)

i=1

n
subject to: Y pk ;=c,

ji=1

2 pka=c,
i=1

i M

pjkmj= Cm

i=1

n
Prob(Z pjk,,,HJ-SC,’f,H)?am f {12)
i=t
Pr0b< Z ijm+2j<(';+z)>°‘m+
J=1
Pl‘Ob( Z pjkm+ljscr:+l>>am+t
J=
PisPas - Pa0 J
It should be noted that Equations 11 and 12, like Equation 9 and 10, describe a nonlinear
problem.

Obviously the interpretation of this formulation is somewhat different frorq the earlier one,
where all the price data were chance-constrained. We now seek the input property
characteristics prices such that:the value of property v is maximized while remaining
consistent with m certain realized prices and t uncertain prices, where the latter are only
exceeded with implied maximum levels of probability (1 —a,,, ,, 1—%,,, ... 1—a,, ). In
this formulation the motive continues to be to improve the valuation by including in the
appraisal information in the ¢ chance constraints as well as that in the m certain ~c:onstrair-ns.
However, it should still be borne in mind that we are working with much less information
than would be considered necessary for a meaningful econometric-based valuation. In other
words m+t is likely to be a small number; for example, not more than six. However, because
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we now incorporate additional (admittedly probabilistic) information, the quality of the
valuation is, we hope, enhanced.

5. Mathematical programming with chance constraints

To this point we have merely sought to argue that probabilistic, as well as certain,
information can in principle be incorporated into a programming valuation formulation.
However we have not addressed the practice. '

The essence of the procedure we are about to describe is to substitute in the place of a
unknown realized price, such as ¢*,, a price reflecting the specified probability level, Oy
For this to be discovered we need to consider the likely values of ¢* , ;. Hence it is necessary to
specily its statistical distribution.

Assume ¢ ., is distributed such that:

Prob (¢4,,<B)=F(B)

(13)
Here F(B) is the cumulative probability of the values of c;,,; up to, and including, ¢*, = B.
Of course, implicit in F(B) is the probability density function of c%, ;; for example, ¢*, , may
be uniformly or normally distributed. Clearly the crucial issue is the value of B. Consider the
m+i chance constraint (Equation 7 above). From our distributional assumption it is

obvious that
F(B)=qa,,,,

(14)

Hence if we write B,, it is to be understood that the value B is associated with cumulative
probability o (for the moment the subscript m+i associated with it is suppressed in the
interests of notational simplicity).

It is tempting to substitute for the m+i constraint the following:
‘Zl Pikm+i < B, (15)
j=

The constraint continues to be specified in terms of avoiding overestimation. However the
right-hand side is considerably simplified by specifying a quantity, B,, to embody the
unknown realized price, c* ;, and the probability to which we are working. Nevertheless this
form of the constraint will not perform the task we require of it. If the constraint is adhered to
all we can say is that

n

> Pikimer

ji=1

(16)

does not exceed, but might be smaller than, those possible values of ¢, larger than B,.
However the probability of c*, ,> B, is 1 —a. On the other hand, consider the constraint

Z pjknr+[j<81~a

i=1

an

The right hand side of Equation 17 is simply the quantile, B, associated with the
complementary probability | —«. If this version of the m + i constraint holds, Expression 16
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cannot be larger, but might be smaller than those possible values of ¢¥ , , larger than B, __,
The probability of ¢ . ;> B, _, is @, which is the minimum probability with which we specified
the original m+ i constraint should comply. Thus the greater the probability, a, with which
we wish to avoid overestimating, the lower is the substitute numerical value, B, _,. We use
B, _, since this permits a probability of at least « that the unknown realized price, c*, ,, was
greater than it. Constraints, of a similar form, are constructed for the remaining (-1
comparables with unknown realized prices.
Instead of Equations 11 and 12 we can now solve the linear deterministic equivalent:
n
maximize: ). pk,; (18)
i=1

n
subject to: Y pik,=c,
J=1

by pkyy=c;
Jj=1

Z pjkm+lj=cm
J=1
ijk""*lngl“ﬂv.nvx (19)
=1

j

n
2 Pkms2<B .,
i=1

n
Z pjkm-flstl g
=1

P1sP2- - P20 J

In the simplest case a, ,  =d,,,; ... =0, =a.

The immediate problem, of course, is how do we discover the values of all B, oy, (i=1
2...1)? To meet this challenge we need to move on from the statement that an unknown
realized property price, such as ¢} .., is a random variable to the assertion that it possessesa
specific statistical distribution. Attention here will be confined to the uniform distribution
(others, including the normal distribution, will occur to the reader). This is characterized by
two key parameters: it is critically dependent upon its minimum (that is, floor) and maximum
(ceiling) values.

In the case of comparable property m+ i, with unknown realized price ¢, ;, the valuer has
to specify, the case of a uniform distribution, a floor price, £Cm+i» and a ceiling price cf,,.
The judgement is made in the expectation that

Prob(,ch ek < ek )=1 (20)
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Further, in the range ;3. to ¢k, it is assumed the probability does not change as ¢*, | is
lowered and approaches .y, ,;, or is increased towards ¢, ,. Of course the corollary is that
prices below ccp . ;, and above ¢ .., are assumed to be impossible. [ suspect that this is a
fairly accurate picture as to how a ‘practical’ valuer would conceptualize the issues. In its
discrete guise it appeals through the analogy of the throw of a dice. The latter has six different
values, with a floor of one and a ceiling of six. Values outside these are impossible, and every
value in the range one to six is equally likely. Superficially, at least, a property price may be
thought by the valuer to reflect this schema.

We have yet to determine the linear deterministic equivalent value of ¢* ., where the latter
is assumed to be a random variable with a uniform distribution. Assume, for example, the
minimum probability we are working to for the m+ i constraint is a, , ;. The relevant value of
B, _,,.,, for a uniform distribution is such that:

i) 21

Thus the m +{ constraint, Equation 7, is re-expressed as

Bl—ﬂm.1=fczl+i+(g":+i'“f(‘:+i)(1

”n
Z ijm'+.‘1<31 o =fC:+:+ (yC:l+l_fcr:+i) (1—o,, ) (22)
j=1
All the chance constraints are converted in this manner, with the appropriate substitutions
being made for each comparable as to the values of its ceiling price, 4, floor price, (c*, and
the minimum probability, «, being worked to.

A consequence of treating the unknown realized prices as random variables is that we need
to consider the explicity the relationship between them. In the linear programming
formulation it is assumed that the unknown prices are statistically independent of each other.
The implication of this is that, using the example of two comparables with unknown realized
prices, the probability of any pair of given price ranges occurring is equal to the product of
their marginal probabilities. Further, where the unknown prices each have a uniform
probability distribution, it is assumed any given pair of price ranges, within the respective
overall floor and ceiling prices of the two comparables, are equally probable. There are
additional implications of the assumption of a uniform probability distribution. It is
bounded at both its upper and lower ends. Those bounds, the ceiling and floor prices, reftect
the valuer’s assessment of current market conditions. Prices outside the bounds can only be
achieved, in the valuer’s opinion, following a change in the market. In other words, all
properties being used to carry out the valuation would cease to be comparables. Thus the
valuer is forced to use overall price ranges which are consistent with each other in the context
of the current market.

There is a further implication of the assumed statistical independence of the unknown
realized prices. As the number of comparables with such prices increases, the probability of at
least one being breached (that is, an unknown price being overestimated) unambiguously
increases. The probability of this is equal to the following, where IT is the product symbol:

i=m+e

1= 1 @ (23)

i=m+1
Hence, if we have two comparables with unkown realized prices, and each separately is set to
avoid overestimation at a probability of 97.5%, the probability of there being at least one
overestimation is, using expression 23, nearly 5%. There are, of course, two constraints
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on this ‘error’, These are the levels of probability we choose to work with, and the number of
comparables with unknown realized prices that can be utilized in the valuation. The latteris
likely to be small bearing in mind the contéxt we are working in; further, we can work o
whatever level of probability we choose. Of course this may still be deemed to be
unsatisfactory. The solution in that case is not to specify separately the probability for each of
the t comparables’ chance constraints being observed. Instead the comparables should be
presented such that there is an overall declared level of probability that they are not
breached. This, however, takes us into the field ol a nonlinear programming and outside the
scope of this particular paper.

6. An example

It may assist readers to consolidate their understanding of the above if we work through an
example. Assume we wish to value propert v. We possess data on three comparable
properties, which have been sold recently (x, y, z). For all four we have data on five property
characteristics. The reader may wish to think of these in specific terms. In the case of
residential valuation the five characteristics may be imagined as:

- gross external arca, in square metres:

- number of bedrooms;

- presence (=1) or absence (=0) of a garage;

- presence (=1) or absence (=0) of central heating;
- area of garden, in square metres,

VR W —

In addition we possess the realized selling price of property = (£53 000). We have no specific
prices for the other two comparables. However the valuer is ‘convinced” that floor and ceiling
prices can be identified within which ranges lie their particular selling prices (c¥, ). We
assume further that both ¢*and ¢y are random variables with uniform distributions. Their
respective floor and ceiling prices, together with the other data. on the four properties are
presented in Table 1; the floor and ceiling price columns are straddled in the case of property
z since the selling price is known with certainty.

Table 1.

Property characteristics”
Comparable Floor Ceiling
properties (i) (i) {iii) {iv) (v) price® price*
X 105 3 0 1 140 45 000 49 000
y 101 2 0 0 115 40 000 46 000
z 89 3 1 0 170 53 000
Property to
be valued
v 109 3 0 I 160

“The units used in Table | are described in the text above,
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The problem is to find the maximum value of property v consistent with the price of
property z equalling £53 000, and there being, say, a 97.5% probability that such a valuation
of v is consistent with, respectively, neither ¢* nor cy being exceeded. The mathematical
programme to be solved is as follows:

maximize: 109p, +3p, +p, + 160p; (24)

subject to: Prob (105p, +3p, +p, + 140ps <) >0.975
Prob (101p, +2p, +1 15ps<e=0.975
89p, -+ 3p, +py + 170p, = 53 000 (25)
P1s P2y Py, Pay, ps20

This converts into the linear programming equivalent:

maximize: 109p, +3p, +p, + 160p, (49000~ (26)

subject to: 105p, +3p, +p, + 140p; <45 00%'45 000) 0.025
101p, +2p, +115p; <40 000+ (46 000-40 000) 0.025
89p, +3p,+py + 170p, =53 000 27)
PiryP2s P3Py, ps20

On the basis of this formulation we find, having used the simplex algorithm, that the value of
property v is approximately £51 300.

7. Conclusions

Superficially it may appear only too easy to criticize a chance-constrained programming
approach to valuation, Surely allit amounts to is, in addition, we have to estimate the selling
price of one, or worse more, properties, that have been sold in order to value the particular
one that has not. How can this contribute to improved decision-making? Is it not better to
remain with the primary task of valuing the one property that has to be valued?

Any debate of the key issues must commence with the primary constraining fact of
valuation by comparable sales: that there is very little information available to carry out the
task (hence an econometric approach is precluded). However, it has been implicitly assumed
that what is available can be completely relied upon. The possibility arises that we have
overstated the number of comparables, for which this is the case. If so, the question then
becomes: is there any other information that could be utilized? This paper has suggested that

we incorporate into the analysis those sales whose realized prices are not known. Hence

There are at least two arguments in support of the chance-constrained approach. The first
is factual and the second methodological. Even if we do not know the price a comparable
property realized recently we do know its characteristics are in demand and have been
implicitly priced and exchanged in the market. Where facts are scarce this information is a
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leading candidate to be incorporated into the valuation. However, when incorporating such
information we have to avoid falling into the seme error as traditional valuation by
comparable sales. This has been criticized for the ad hoc nature of its methodology. However,
a chance-constrained programming approach to valuation attempts to avoid this, The
formulation of the problem must meet the strictures of a linear programme. The statistical
distribution of the unknown prices must be declared, and the level, or levels, of probability
being worked to also need to be specified. It is not denied that subjective information is
. incorporated; tht is inevitable in the face of a scarcity of market information. However, the
incorporation is carried out explicitly, thereby facilitating principled and objective debate.
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