The following examples have been sometimes given in lectures and so the fractions are rather unpleasant for testing purposes. Note that each question is imagined to be independent; the changes are not intended to be cumulative.

We wish to consider a trucking firm who can choose to purchase three types of trucks subject to three constraints on capital, space and number of drivers. We use variable x_{i} to denote the number of trucks of type i to be purchased.

	Truck 1	Truck 2	Truck 3	availability
capital	24	40	46	1200 units $\$ 10 \mathrm{~K}$
space	1	1	1	30 trucks
drivers	3	6	6	150 people
net profit	12	20	21	

Now setting $x_{i}=$ number of trucks of type i to be produced we have the LP:

$$
\begin{array}{ccccc}
\max & 12 x_{1}+20 x_{2}+21 x_{3} & & \\
& 24 x_{1}+40 x_{2} & +46 x_{3} & \leq & 1200 \\
& x_{1}+x_{2} & +x_{3} & \leq & 30 \\
& 3 x_{1}+6 x_{2} & +6 x_{3} & \leq & 150
\end{array}
$$

We get the final dictionary:

$$
\begin{array}{cccccc}
x_{4} & = & 40 & +2 x_{5} & +6 x_{2} & +\frac{22}{3} x_{6} \\
x_{1} & = & 10 & -2 x_{5} & & +\frac{1}{3} x_{6} \\
x_{3} & = & 20 & +x_{5} & -x_{2} & -\frac{1}{3} x_{6} \\
z & = & 540 & -3 x_{5} & -x_{2} & -3 x_{6}
\end{array}
$$

a) Give B^{-1}, appropriately labelled:

$$
B^{-1}=\begin{aligned}
& x_{4} \\
& x_{1} \\
& x_{3}
\end{aligned}\left(\begin{array}{ccc}
1 & -2 & x_{5} \\
0 & -\frac{22}{3} \\
0 & 2 & -\frac{1}{3} \\
0 & -1 & \frac{1}{3}
\end{array}\right)
$$

b) Give the marginal values associated with capital,space and drivers:
capital: 0 , space: 3 , drivers: 3
i.e. extra capital worth 0 so not helpful, extra space worth 3 , extra drivers worth 3 . But this is only true on the margin, for large changes, these values are unlikely to be valid (although they provide an upper bound). You'd be willing to pay 3 units for a parking spot and sell a parking spot for 3 units.
c) Give values for c_{1}, c_{2}, c_{3} so $\left\{x_{4}, x_{1}, x_{3}\right\}$ still yields an optimal basis:

In this case we wish $c_{N}^{T}-c_{B}^{T} B^{-1} A_{N} \leq \mathbf{0}$:

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
x_{2} & x_{5} & x_{6} \\
c_{2}-c_{3} & c_{3}-2 c_{1} & \frac{1}{3} c_{1}-\frac{1}{3} c_{3}
\end{array}\right)
\end{aligned}
$$

d) For what range on c_{1} is the current basis $\left\{x_{4}, x_{1}, x_{3}\right\}$ still optimal?

$$
c_{N}^{T}-c_{B}^{T} B^{-1} A_{N}=\left[-1,21-2 c_{1}, \frac{1}{3} c_{1}-7\right) \leq \mathbf{0}
$$

We deduce that $10 \frac{1}{2} \leq c_{1} \leq 21$. Note that in this range the optimal solution is $x_{1}=10$ and $x_{3}=20$ and so the profit would be $10 c_{1}+420$.
e) What is the optimal solution if $c_{1}=10$? We create the updated dictionary and try pivoting to optimality. We believe we are close to optimal since we have made a small change.

$$
\begin{array}{rllll}
x_{4} & =40 & +2 x_{5} & +6 x_{2} & +\frac{22}{3} x_{6} \\
x_{1} & =10 & -2 x_{5} & & +\frac{1}{3} x_{6} \\
x_{3} & =20 & +x_{5} & -x_{2} & -\frac{1}{3} x_{6} \\
z & = & +x_{5} & -x_{2} & -\frac{11}{3} x_{6}
\end{array}
$$

x_{5} enters and x_{1} leaves

$$
\begin{array}{rllll}
x_{4} & = & 50 & & \\
x_{5} & = & 5 & & * \\
x_{3} & = & 25 & & \\
z & & * & -\frac{1}{2} x_{1} & -x_{2}
\end{array}-\frac{11}{3} x_{6}
$$

We have a new optimal solution $x_{3}=25$. The profit hasn't been worked out but you can since it is $25 \cdot 21=525$, a slight reduction.
f) What is the optimal solution if $c_{1}=22$?

$$
\begin{array}{rlllll}
x_{4} & = & 40 & +2 x_{5} & +6 x_{2} & +\frac{22}{3} x_{6} \\
x_{1} & = & 10 & -2 x_{5} & & +\frac{1}{3} x_{6} \\
x_{3} & = & 20 & +x_{5} & -x_{2} & -\frac{1}{3} x_{6} \\
z & = & * & -23 x_{5} & -x_{2} & +\frac{1}{3} x_{6}
\end{array}
$$

x_{6} enters and x_{3} leaves

$$
\begin{array}{rllll}
x_{4} & = & 480 & & \\
x_{1} & = & 30 & * \\
x_{6} & = & 60 & & \\
z & = & * & -22 x_{5} & -2 x_{2}
\end{array}-x_{3}
$$

We have a new optimal solution $x_{1}=30$. The profit hasn't been worked out but you can since it is $30 \cdot 22=660$. We have made truck 1 valuable so we now buy lots of it.
g) For what range on c_{2} is the current basis optimal. We simply need $c_{2}-c_{B} B^{-1} A_{2} \leq 0$. Now $c_{B} B^{-1}=[0,3,3]$. So we find that for $c_{2} \leq 21$ the the current basis (and solution) remain optimal.
h) What if we introduce a new truck (we'll use variable x_{7}) with requirements of 45 capital, 1 parking spot, 5 crew and value 22 . Sounds like a winner compared with truck 3 . We may imagine adding x_{7} and the associated date to our original problem and compute

$$
c_{7}-c_{B} B^{-1} A_{7}=c_{7}-\left[\begin{array}{lll}
0 & 3 & 3
\end{array}\right]\left[\begin{array}{c}
45 \\
1 \\
5
\end{array}\right]=4
$$

Thus we would like to buy truck 7 . We compute

$$
B^{-1} A_{7}=\begin{array}{ccc}
x_{4} & x_{5} & x_{6} \\
x_{4} \\
x_{1} \\
x_{3}
\end{array}\left(\begin{array}{ccc}
1 & -2 & -\frac{22}{3} \\
0 & 2 & -\frac{1}{3} \\
0 & -1 & \frac{1}{3}
\end{array}\right)\left[\begin{array}{c}
45 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{c}
6 \frac{1}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]
$$

We insert this in our dictionary:

$$
\begin{array}{rllllll}
x_{4} & = & 40 & +2 x_{5} & +6 x_{2} & +\frac{22}{3} x_{6} & -6 \frac{1}{3} x_{7} \\
x_{1} & = & 10 & -2 x_{5} & & +\frac{1}{3} x_{6} & -\frac{1}{3} x_{7} \\
x_{3} & = & 20 & +x_{5} & -x_{2} & -\frac{1}{3} x_{6} & -\frac{2}{3} x_{7} \\
z & =540 & -3 x_{5} & -x_{2} & -3 x_{6} & +4 x_{7}
\end{array}
$$

Here x_{7} enters and x_{4} leaves but there is more pivoting to be done so I'll ignore this case. Note that since e we will have increased z above 540 then we know that track 7 will be purchased.
i) Describe a profitable truck. It is one in which 3 times the space requirement and 3 times the labour requirement is less than the profit.
j) Determine the value of the new solution when we decrease capital by 50 , increase space by 5 and decrease labour by 5 . Given our marginal values we expect the profit to change by $\sum_{i} \Delta b_{i} \cdot y_{i}=$ $0 \cdot(-5)+3 \cdot 5+3 \cdot(-5)=0$. But this prediction works if the current basis remains feasible. Check

$$
\begin{gathered}
x_{4} x_{5} \\
x_{6} \\
x_{4} \\
x_{1} \\
x_{3}
\end{gathered}\left(\begin{array}{ccc}
1 & -2 & -\frac{22}{3} \\
0 & 2 & -\frac{1}{3} \\
0 & -1 & \frac{1}{3}
\end{array}\right)\left[\begin{array}{c}
1200-50 \\
30+5 \\
150-5
\end{array}\right]=\left[\begin{array}{c}
40 \\
10 \\
20
\end{array}\right]+\begin{array}{cc}
x_{4} & x_{5} \\
x_{4}\left(\begin{array}{ccc}
1 & -2 & -\frac{22}{3} \\
x_{1}\left(\begin{array}{cc}
2 \\
0 & 2
\end{array}\right. & -\frac{1}{3} \\
x_{3} & -1 & \frac{1}{3}
\end{array}\right)\left[\begin{array}{c}
-50 \\
+5 \\
-5
\end{array}\right]=\left[\begin{array}{c}
\frac{50}{3} \\
\frac{65}{3} \\
\frac{40}{3}
\end{array}\right]
\end{array}
$$

Thus we gently increase trucks of type 1 (to take advantage of increased parking and handle decreased labour) while decreasing type 3 .

The changes $\Delta b_{1}, \Delta b_{2}, \Delta b_{3}$ can vary quite a bit and still have $B^{-1} \Delta \mathbf{b} \geq \mathbf{0}$.
k) For what values of Δb_{2} is the current basis still optimal?

$$
B^{-1}\left(\begin{array}{c}
0 \\
\mathbf{b}+\Delta b_{2} \\
0
\end{array}\right) \geq \mathbf{0}
$$

Thus

$$
\left[\begin{array}{c}
40 \\
10 \\
20
\end{array}\right]+\left[\begin{array}{c}
-2 \Delta b_{2} \\
2 \Delta b_{2} \\
-\Delta b_{2}
\end{array}\right] \geq \mathbf{0}
$$

from which we deduce

$$
-5 \leq \Delta b_{2} \leq 20
$$

i.e. $25 \leq b_{2} \leq 50$. The marginal value of 3 is valid in this interval.

What happens if $B^{-1}(\mathbf{b}+\Delta \mathbf{b}) \nsupseteq \mathbf{0}$?
$\ell)$ What is the optimal solution if $\Delta b_{1}=-100$ and $\Delta b_{2}=10$?
We compute

$$
\left.B^{-1}\binom{-100}{\left.\mathbf{b}+\begin{array}{c}
x_{4} \\
10 \\
0
\end{array}\right)}=\left[\begin{array}{l}
40 \\
10 \\
20
\end{array}\right]+\begin{array}{c}
x_{5} \\
x_{4} \\
x_{1}\left(\begin{array}{ccc}
1 & -2 & -\frac{22}{3} \\
x_{3}
\end{array}\right)\left[\begin{array}{c}
-100 \\
10 \\
0
\end{array}\right. \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-80 \\
30 \\
10
\end{array}\right] \nsupseteq \mathbf{0}
$$

We would have the dictionary

$$
\begin{array}{cccccc}
x_{4} & = & -80 & +2 x_{5} & +6 x_{2} & +\frac{22}{3} x_{6} \\
x_{1} & = & 30 & -2 x_{5} & & +\frac{1}{3} x_{6} \\
x_{3} & = & 10 & +x_{5} & -x_{2} & -\frac{1}{3} x_{6} \\
z & = & 540 & -3 x_{5} & -x_{2} & -3 x_{6}
\end{array}
$$

Recall that if $c_{N}^{T}-c_{B}^{T} B^{-1} A_{N} \leq \mathbf{0}^{T}$, and so $c_{B}^{T} B^{-1}$ is a feasible dual solution of objective function value $c_{B}^{T} B^{-1} \mathbf{b}$. If we do not have a primal feasible solution because $B^{-1}(\mathbf{b}+\Delta \mathbf{b}) \nsupseteq \mathbf{0}$, we still have a dual feasible solution and so we seek to find a dual optimal solution (and so a primal optimal solution) by minimizing the dual objective function while preserving feasibility. Following the Dual Simplex method we have x_{4} leave and seek the largest λ so that

$$
\left(\begin{array}{ccc}
x_{5} & x_{2} & x_{6} \\
-3 & -1 & -3
\end{array}\right)+\lambda\left(\begin{array}{ccc}
2 & 6 & \frac{22}{3}
\end{array}\right) \leq \mathbf{0}^{T} \text {. We choose } \lambda=1 / 6 \text { and so } x_{2} \text { enters resulting in the }
$$ following dictionary.

$$
\begin{array}{rllll}
x_{2} & = & \frac{40}{3} & -\frac{1}{5} x_{5} & +\frac{1}{6} x_{4}
\end{array}-\frac{11}{9} x_{6} .
$$

One more pivot required. We choose x_{3} to leave and then seek the largest λ so that

$$
\left.\begin{array}{ccc}
x_{5} & x_{4} & x_{6} \\
-\frac{8}{3} & -\frac{1}{6} & -\frac{16}{9}
\end{array}\right)+\lambda\left(\begin{array}{ccc}
\frac{4}{3} & -\frac{1}{6} & \frac{8}{9}
\end{array}\right) \leq \mathbf{0}^{T} \text {. There is a tie with } \lambda=2 \text { and so either } x_{5} \text { or } x_{6}
$$ enters but following an extended form of Anstee's rule we choose x_{5} to enter. We obtain the new dictionary (or at least the parts we need)

$$
\begin{aligned}
x_{2} & = & \frac{25}{2} & \\
x_{1} & = & 25 & \\
x_{5} & = & \frac{5}{2} & \\
z & = & 550 & -2 x_{3}
\end{aligned}-\frac{1}{2} x_{4}
$$

Thus we get an optimal solution $(25,25 / 2,0,0,5 / 2,0)$ with $z=550$ (we make more money as predicted) with new marginal values of $1 / 2$ for capital, 0 for space, and 0 for labour.

Our tie for the entering variable results in a degeneracy in the dual.
$\mathrm{m})$ What is the optimal solution if we add the constraint $x_{2}+x_{3} \geq 15$? First note that adding a constraint can only decrease the value of the objective function (it may even make the LP ifeasible). The answer here is easy. Our current solution $x_{1}=10$ and $x_{3}=20$ with $z=540$ remains optimal.
n) What is the optimal solution if we add the constraint $x_{2}+x_{3} \geq 22$?

We start by noting that our current optimal solution is not feasible. So we have to do something. We add a new slack variable $x_{7}=x_{2}+x_{3}-22$. We can't introduce this directly into our dictionary because it contains a basic variable but we can express x_{3} in terms of non-basic variables and obtain

$$
x_{7}=x_{2}+x_{3}-22=x_{2}+\left(20+x_{5}-x_{2}-\frac{1}{6} x_{6}\right)-22=-2+x_{5}-\frac{1}{6} x_{6}
$$

We have the dictionary

$$
\begin{array}{rlllll}
x_{4} & = & 40 & +2 x_{5} & +6 x_{2} & +\frac{22}{3} x_{6} \\
x_{1} & = & 10 & -2 x_{5} & & +\frac{1}{3} x_{6} \\
x_{3} & = & 20 & +x_{5} & -x_{2} & -\frac{1}{3} x_{6} \\
x_{7} & = & -2 & +x_{5} & & -\frac{1}{6} x_{6} \\
z & = & 540 & -3 x_{5} & -x_{2} & -3 x_{6}
\end{array}
$$

We follow the dual simplex algorithm, attempting to decrease z value while maintaining dual feasibility by having x_{7} leave the basis.

$$
\left.\begin{array}{ccc}
x_{5} & x_{2} & x_{6} \\
-3 & -1 & -3
\end{array}\right)+\lambda\left(\begin{array}{lll}
1 & 0 & -\frac{1}{6}
\end{array}\right) \leq \mathbf{0}^{T} . \text { We can take } \lambda=3 \text { and choose } x_{5} \text { as the entering }
$$

variable. Our new dictionary is:

$$
\begin{array}{rllll}
x_{4} & = & 44 & & \\
x_{1} & = & 6 & & \\
x_{3} & = & 22 & & \\
x_{5} & = & 2 & & \\
z & = & 534 & -3 x_{7} & -x_{2}
\end{array}-4 x_{6}
$$

We have a new optimal solution $x_{1}=6$ and $x_{3}=22$ (thus we satisfy the constraint $x_{2}+x_{3} \geq 22$) with $z=534$ (a reduction in profitability from the added constraint). The marginal values are 0 fro capital, 0 for space, 4 for labour and 3 for the new constraint. We assume the new constraint is written as $-x_{2}-x_{3} \leq-22$ and so increasing -22 to -21 results in less of a restriction and so an expectation of increased profit of 3 units. When LINDO is given the constraint explicitly as $x_{2}+x_{3} \geq 22$ it will return a dual price of -3 so that if you increase 22 to 23 then you expect profit to drop by 3 .

After n questions perhaps you don't need anymore but we discussed in class two questions:
o) How do we delete a variable? Two suggestions were offered. If for example we wished to remove x_{3} we could set $c_{3}=-1$, making x_{3} unprofitable and our sensitivity techniques would drive it to 0 . We could add a constraint $x_{3}=0$ (or $x_{3} \leq 0$) and proceed as above. If we wished to remove x_{2}, since it is non-basic we could just delete it from further consideration.
p) How do we delete a constraint? If for example we wished to remove $x_{1}+x_{2}+x_{3} \leq 30$ we could simply change the right hand side to some large number (say 1000) essentially eliminating the constraint. Or we could add a variable to the constraint $x_{1}+x_{2}+x_{3}-x_{7} \leq 30$ where $c_{7}=0$. If the constraint is currently non-binding, such as capital, then essentially the constraint has been eliminated.
q) How do we change an entry in A ? This is more difficult but still possible. For the column of a nonbasic variable this is reasonable (try it!). In a test environment, only one pivot suffices to get you to optimality but this is unrealistic and for some changes it may be advisable to start from scratch.

