Explain your work. Name LP theorems as you use them.

1. [30pts] Solve the following LP using our two phase method with Anstee's rule. You will need a fake pivot to feasibility and two more pivots in Phase One. In Phase Two you will need one pivot. Is the optimal solution unique? Explain.

$$
\max \begin{array}{ccc}
x_{1} & +7 x_{2} & -2 x_{3} \\
& & \\
x_{1} & +3 x_{2} & -x_{3} \\
\leq & -2 \\
-x_{1} & +x_{2} & -2 x_{3}
\end{array} \leq-3 \quad x_{1}, x_{2}, x_{3} \geq 0
$$

2. [20pts] Consider the following LP

$$
\begin{array}{cccccc}
\max & x_{1} & +2 x_{2} & & & \\
& -2 x_{1} & -x_{2} & +7 x_{3} & \leq & -2 \\
& x_{1} & +x_{2} & +x_{3} & \leq & x_{1}, x_{2}, x_{3} \geq 0 \\
& x_{1} & +2 x_{2} & & \leq 14 &
\end{array}
$$

We are given that $x_{1}=4, x_{2}=5, x_{3}=0$ is an optimal solution. State the dual LP. Determine an optimal dual solution. Would our primal solution remain optimal if we replaced the first inequality of the primal by $x_{1}-x_{2}+5 x_{3} \leq-1$?
3. [20pts] We are given $A, \mathbf{b}, \mathbf{c}$, current basis and B^{-1}. Determine, using our revised simplex methods (with Anstee's rule), the next entering variable (there is one!) and the next leaving variable (there is one!). Give the 'old' B, the 'new' B and the eta matrix E that updates the old B to the new B.

$$
\begin{aligned}
& A=\begin{array}{c}
x_{1} \\
x_{5} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\left(\begin{array}{ccccccc}
1 & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & b \\
1 & 4 & 3 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \begin{array}{l}
x_{5} \\
x_{6} \\
x_{7}
\end{array}\left(\begin{array}{l}
5 \\
3 \\
2
\end{array}\right) \quad B^{-1}=\begin{array}{ccc}
x_{5} & x_{6} & x_{7} \\
x_{3} \\
x_{1}
\end{array}\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & -1 & 2
\end{array}\right) \\
& \mathbf{c}^{T}=\left(\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
1 & 7 & 3 & 1 & 0 & 0 & 0
\end{array}\right) \\
& \text { basis }\left\{x_{5}, x_{3}, x_{1}\right\}
\end{aligned}
$$

4. a) [5pts] State the Strong Duality Theorem.
b) [5pts] Consider an LP which has an optimal (primal) solution and also a dual optimal solution which happens to have the first dual variable $y_{1}=4$. Give the marginal value interpretation of y_{1}.
5. [20pts] Let A be an $m \times n$ matrix and let \mathbf{c} an $n \times 1$ vector. Assume that for every \mathbf{x} satisfying $A \mathbf{x} \leq \mathbf{0}$ that $\mathbf{c}^{T} \mathbf{x} \leq 0$. Prove that there exists a \mathbf{y} satisfying $\mathbf{y} \geq \mathbf{0}$ and $A^{T} \mathbf{y}=\mathbf{c}$.
(Comment (not a hint): this shows that $\mathbf{c}^{T} \mathbf{x} \leq 0$ is implied by a positive linear combination of the m inequalities $A \mathbf{x} \leq \mathbf{0}$).
