Notation for Revised Simplex Formulas:
The standard inequality form of an LP is

$$
\max \{\mathbf{c} \cdot \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0}\}
$$

We add slack variables, one per inequality, to write this as

$$
A \mathbf{x}+\mathbf{x}_{S}=[A I]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{S}
\end{array}\right]=\mathbf{b}, \quad z=\mathbf{c} \cdot \mathbf{x}=\left[\mathbf{c}^{T} \mathbf{0}^{T}\right]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{S}
\end{array}\right]
$$

where S denotes indices of the slack variables. The notation has been to use B to denote the basic variables and N to denote the non-basic variables. Thus \mathbf{x}_{B} (respectively \mathbf{c}_{B}) denotes the vector of basic variables (the vector obtain from those rows of

$$
\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{S}
\end{array}\right] \quad\left(\text { respectively }\left[\begin{array}{c}
\mathbf{c} \\
\mathbf{0}
\end{array}\right]\right)
$$

indexed by B) and similarly $\mathbf{x}_{N}\left(\right.$ and $\left.\mathbf{c}_{N}\right)$ is the vector indexed by N. We let A_{N} denote the submatrix of $[A I]$ of columns indexed by N and then let B (rather than the more consistent A_{B}) to denote the invertible submatrix of $[A I]$ of columns indexed by B. We can shuffle the indices of the variables as follows:

$$
[A I]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{S}
\end{array}\right]=\sum_{i} A_{i} x_{i}=\left[A_{N} B\right]\left[\begin{array}{c}
\mathbf{x}_{N} \\
\mathbf{x}_{B}
\end{array}\right]=A_{N} \mathbf{x}_{N}+B \mathbf{x}_{B}=\mathbf{b} .
$$

We manipulate as follows

$$
B \mathbf{x}_{B}=\mathbf{b}-A_{N} \mathbf{x}_{N}
$$

and then multiply on the left by B^{-1} to obtain

$$
\mathbf{x}_{B}=B^{-1} \mathbf{b}-B^{-1} A_{N} \mathbf{x}_{N}
$$

We then take

$$
z=\mathbf{c} \cdot \mathbf{x}=\left[\mathbf{c}^{T} \mathbf{0}^{T}\right]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{S}
\end{array}\right]=\mathbf{c}_{B}^{T} \mathbf{x}_{B}+\mathbf{c}_{N}^{T} \mathbf{x}_{N}
$$

and substitute for \mathbf{x}_{B} to obtain

$$
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}\right) \mathbf{x}_{N} .
$$

Perhaps the only mystery is how B^{-1} is known to exist. I'll try that on an assignment 1. Revised Simplex Formulas (please memorize!):

$$
\begin{gathered}
\mathbf{x}_{B}=B^{-1} \mathbf{b}-B^{-1} A_{N} \mathbf{x}_{N} \\
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}\right) \mathbf{x}_{N}
\end{gathered}
$$

