Consider the LP given by $A, \mathbf{b}, \mathbf{c}$, current basis, and final dictionary:

$$
\begin{aligned}
& c=\left(\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
3 & 5 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

a) Give B^{-1}, appropriately labelled:
solution

$$
B^{-1}=\begin{gathered}
x_{5} \\
x_{5} \\
x_{2} \\
x_{1}
\end{gathered}\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

b) Give the marginal values associated with the three raw materials:
solution
0,2,1
b
c) Determine an optimal solution when we replace \mathbf{b} by $\left.\begin{array}{l}x_{5}\left(\begin{array}{l}5 \\ x_{6} \\ 3 \\ x_{7}\end{array}\right) \text { : } \\ 2\end{array}\right)$
solution

$$
\text { Now } B^{-1} \mathbf{b}=\begin{array}{ccc}
x_{5} & x_{6} & x_{7} \\
x_{5} \\
x_{2} \\
x_{1}
\end{array}\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & -1 & 2
\end{array}\right) \begin{aligned}
& x_{5} \\
& x_{6} \\
& x_{7}
\end{aligned}\left(\begin{array}{l}
5 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \geq \mathbf{0}
$$

so the optimal solution is $x_{5}=1, x_{2}=1, x_{1}=1$ with the rest zero.
d) Determine an optimal solution when we replace \mathbf{b} by $\left.\begin{array}{l}x_{5} \\ x_{6}\left(\begin{array}{l}3 \\ 3 \\ x_{7}\end{array}\right) \text { : } \\ 2\end{array}\right)$: solution

$$
\begin{aligned}
& \text { Now } B^{-1} \mathbf{b}=\begin{array}{ccc}
x_{5} & x_{6} & x_{7}
\end{array} \begin{array}{c}
b \\
x_{5} \\
x_{2} \\
x_{1}
\end{array}\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & -1 & 2
\end{array}\right) \begin{array}{l}
x_{5} \\
x_{6} \\
x_{7}
\end{array}\left(\begin{array}{l}
3 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \\
& x_{5}=-1 \quad-x_{7} \quad+2 x_{6} \quad-2 x_{3} \quad+x_{4} \\
& x_{2}=1 \quad+x_{7} \quad-x_{6} \quad+x_{3} \\
& x_{1}=1 \quad-2 x_{7} \quad+x_{6} \quad-2 x_{3} \quad-x_{4} \\
& z=8 \quad-x_{7}-2 x_{6} \quad-2 x_{4}
\end{aligned}
$$

We use the dual simplex method: x_{5} leaves, $(-1,-2,0,-2)+(-1,2,-2,1) t \leq 0$ implies $t \leq 1$ and so x_{6} enters.

$$
\begin{array}{rlllll}
x_{6} & =1 / 2 & & & \\
x_{2} & =1 / 2 & * & & \text { optimal solution: } x_{6}=1 / 2, x_{2}=1 / 2, x_{1}=3 / 2 \\
x_{1} & =3 / 2 & & & & \\
z & = & -2 x_{7} & -x_{5} & -2 x_{3} & -x_{4}
\end{array} \quad .
$$

e) Determine the range for c_{1} so that the basis $\left\{x_{5}, x_{2}, x_{1}\right\}$ remains optimal:
solution

$$
\begin{aligned}
& c_{N}^{T}-c_{B}^{T} B^{-1} A_{N}=\left(\begin{array}{cccc}
x_{3} & x_{4} & x_{6} & x_{7} \\
1 & 1 & 0 & 0
\end{array}\right)-\left(\begin{array}{ccccc}
x_{5} & x_{2} & x_{1} & x_{5} \\
0 & 5 & c_{1}
\end{array}\right)\left(\begin{array} { c c c }
{ 1 } & { - 2 } & { 1 } \\
{ x _ { 2 } } \\
{ } & { } & { } \\
{ x _ { 1 } }
\end{array} (\begin{array} { c c c }
{ x _ { 5 } } \\
{ 0 } & { 1 } & { - 1 } \\
{ 0 } & { - 1 } & { 2 }
\end{array}) \left(\begin{array}{cccc}
x_{3} & x_{4} & x_{6} & x_{7} \\
x_{6} \\
x_{7}
\end{array}\binom{0}{0}\right.\right. \\
& =\left(\begin{array}{cccc}
x_{3} & x_{4} & x_{6} & x_{7} \\
6-2 c_{1} & 1-c_{1} & c_{1}-5 & 5-2 c_{1}
\end{array}\right)
\end{aligned}
$$

We are optimal for $3 \leq c_{1} \leq 5$ (check: $3 \in[3,5]$).
f) Determine an optimal solution if $c_{4}=4$:
solution

$$
c_{4}-c_{B}^{T} B^{-1} A_{4}=4-\left(\begin{array}{lll}
0 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=1>0
$$

New dictionary for basis $\left\{x_{5}, x_{2}, x_{1}\right\}$ is

$$
\begin{array}{ccccccc}
x_{5} & = & 0 & -x_{7} & +2 x_{6} & -2 x_{3} & +x_{4} \\
x_{2} & = & 1 & +x_{7} & -x_{6} & +x_{3} & \\
x_{1} & = & 1 & -2 x_{7} & +x_{6} & -2 x_{3} & -x_{4} \\
z & = & 8 & -x_{7} & -2 x_{6} & & +x_{4}
\end{array}
$$

x_{4} enters and x_{1} leaves.

$$
\begin{array}{rlllll}
x_{5} & =1 & & & \\
x_{2} & =1 & * & & \text { optimal solution: } x_{5}=1, x_{2}=1, x_{4}=1 \\
x_{4} & =1 & & & & \\
z & =9 & -3 x_{7} & -x_{6} & -2 x_{3} & -x_{1}
\end{array}
$$

g) Find the optimal solution if we add a variable (product) x_{8} with requirements $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and profit of 6 per unit of x_{8} :
solution
With current basis, coefficient of x_{8} in final row is $c_{8}-c_{B}^{T} B^{-1} A_{8}=6-\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=-1 \leq 0$.
Thus the current solution remains optimal (we won't start producing product x_{8}).

