MATH 340
Sample Revised Simplex Computations for Quiz 4.
In each of the following questions you are given $A, \mathbf{b}, \mathbf{c}$, current basis and B^{-1}. Determine, using our revised simplex methods, the next entering variable (if there is one), next leaving variable (if there is one) and the new B^{-1} and the next basic feasible solution.
1.

$c=\left(\begin{array}{ccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 4 & 5 & 0 & 0 & 0\end{array}\right)$
Solution:
$\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}=\left(\begin{array}{cc}x_{4} & x_{5} \\ 0 & 0\end{array}\right)-\left(\begin{array}{ccccc}x_{3} & x_{1} & x_{2} & x_{3} \\ 0 & 4 & 5\end{array}\right) \begin{array}{ccc}x_{3} & x_{4} & x_{5} \\ x_{1} \\ x_{2}\end{array}\left(\begin{array}{ccc}1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right) \begin{gathered}x_{3} \\ x_{3} \\ x_{5}\end{gathered}\left(\begin{array}{c}0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right)=[-43]$
Thus we choose x_{5} to enter.

$$
B^{-1} \mathbf{b}=\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
8 \\
7 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
3
\end{array}\right), \quad B^{-1} A_{5}=\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right)
$$

Now $x_{B}=B^{-1} \mathbf{b}-B^{-1} A_{5} x_{5} \geq 0$ implies $x_{5} \leq 1$ and so x_{3} leaves the basis.
new $B^{-1}=\begin{gathered}x_{3} \\ x_{5} \\ x_{1} \\ x_{2}\end{gathered}\left(\begin{array}{ccc}1 / 3 & -2 / 3 & 1 \\ 2 / 3 & -1 / 3 & 0 \\ -1 / 3 & 2 / 3 & 0\end{array}\right)$ (perform pivot on old B^{-1} to take $\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)$ to $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$).
The next basic feasible solution can be obtained by taking $x_{5}=1$ and then we obtain $x_{3}=0, x_{1}=3, x_{2}=2$ (using $x_{B}=B^{-1} \mathbf{b}-B^{-1} A_{5} \cdot 1$) with $x_{4}=0$.
2.

$$
A=\begin{gathered}
x_{5} \\
x_{6} \\
x_{6} \\
x_{7}
\end{gathered}\left(\begin{array}{cccccccc}
1 & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & b \\
1 & -1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
x_{5} & 0 & 0 & 1
\end{array}\right) \begin{gathered}
x_{5} \\
x_{6} \\
x_{7}
\end{gathered}\left(\begin{array}{l}
3 \\
3 \\
1
\end{array}\right)
$$

$\left.c=\begin{array}{ccccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ 0 & 4 & 2 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\text { current basis: }\left\{x_{2}, x_{3}, x_{4}\right\}, B^{-1}=\begin{aligned}
& x_{2} \\
& x_{3} \\
& x_{4}
\end{aligned}\left(\begin{array}{ccc}
x_{5} & x_{6} & x_{7} \\
1 / 3 & -1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & 1 / 6 & 5 / 6
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& \mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}= \\
& \left.\begin{array}{cccc}
x_{1} & x_{5} & x_{6} & x_{7} \\
0 & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
x_{2} & x_{3} & x_{4} & x_{2} \\
4 & 2 & 0
\end{array}\right) \begin{array}{c}
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{ccc}
x_{5} & x_{6} & x_{7} \\
1 / 3 & -1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & 1 / 6 & 5 / 6
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{5} & x_{6} & x_{7} \\
x_{6} \\
x_{7}
\end{array}\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \begin{array}{llll}
x_{1} & x_{5} & x_{6} & x_{7}
\end{array} \\
& =\left(\begin{array}{llll}
-2 & -2 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Thus we are at optimality (since all coefficients are negative) with an optimal solution:

$$
B^{-1} \mathbf{b}=\left(\begin{array}{ccc}
1 / 3 & -1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & 1 / 6 & 5 / 6
\end{array}\right)\left(\begin{array}{l}
3 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 / 3 \\
5 / 3 \\
1 / 3
\end{array}\right) .
$$

3.

$\left.c=\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\ 3 & -1 & 5 & 0 & 0 & 0\end{array}\right)$
Solution:

Thus we choose x_{2} to enter.
$B^{-1} \mathbf{b}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right), \quad B^{-1} A_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)\left(\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$.
Now $B^{-1} \mathbf{b}-B^{-1} A_{2} x_{2} \geq 0$ implies no restriction on the value of x_{2} and so the LP is unbounded.

Note: Letting $x_{2}=t>0$ we have the solution $x_{1}=2+t, x_{5}=2+t, x_{6}=1$ of value $z=6+2 t$.

