MATH 340 Example of pivoting to optimal solution(s).

We considered the following LP in standard inequality form

We add slack variables x_5, x_6, x_7 corresponding to the difference between the left and right hand sides of the three constraints so that all 7 variables $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$. We form our first dictionary

It is traditional to use z for the objective function. There is an *obvious solution* to these 4 equations, namely $x_5 = 3$, $x_6 = 2$, $x_7 = 2$ and $x_1 = x_2 = x_3 = x_4 = 0$ with z = 0. (this is called a *basic feasible solution*)

We now use Anstee's rule trying to increase a variable from 0 in the current obvious solution so we greedily choose x_1 to increase and hence *enter*. We leave $x_2 = x_3 = x_4 = 0$. The choice of x_1 as the variable with the largest coefficient in dictionary expression for z (and in the case of ties choosing the variable of smallest subscript) is called **Anstee's Rule** in this course.

we deduce that x_1 can be increased to 1 while decreasing x_6 to 0. We obtain a new dictionary by having x_1 only appear on the left and x_6 is now on the right of the equation signs.

There is an obvious solution to these 4 equations, namely $x_5 = 2$, $x_1 = 1$, $x_7 = 2$ and $x_6 = x_2 = x_3 = x_4 = 0$ with z = 4. Note how I keep all the entries of each variable in neat columns. It makes adding and subtracting equations much more reliable.

By Anstee's rule we would wish to increase x_3 leaving $x_6 = x_2 = x_4 = 0$

and we deduce that we could increase x_3 to 2 while driving x_7 to 0 and so we say x_3 enters and x_7 leaves.

There is an obvious solution to these 4 equations, namely $x_5 = 1$, $x_1 = 2$, $x_3 = 2$ and $x_6 = x_2 = x_7 = x_4 = 0$ with z = 10. But now the equation $z = 10 - 2x_6 - 2x_2 - 3x_7 - x_4$ combined with the four inequalities $x_6 \ge 0$, $x_2 \ge 0$, $x_7 \ge 0$, $x_4 \ge 0$ yields $z \le 10$. Thus we have found an optimal solution to the LP. In fact $z \le 10$ with equality if and only if $x_6 = x_2 = x_7 = x_4 = 0$. Now setting $x_6 = x_2 = x_7 = x_4 = 0$ in our third dictionary yields $x_5 = 1$, $x_1 = 2$, $x_3 = 2$. Thus we have found the unique optimal solution in this case.