Consider a primal

$$
\begin{gathered}
\max \mathbf{c} \cdot \mathbf{x} \\
A \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq \mathbf{0}
\end{gathered}
$$

If we have a dictionary with all the coefficients in the z row are negative (namely $\mathbf{c}_{N}-\mathbf{c}_{B} B^{-1} A_{N} \leq$ $\mathbf{0}^{T}$ then we can call this dual feasible since $\mathbf{c}_{B}^{T} B^{-1}$ would be a feasible solution to the dual:

$$
\begin{gathered}
\min \mathbf{b} \cdot \mathbf{y} \\
A^{T} \mathbf{y} \geq \mathbf{c} . \\
\mathbf{y} \geq \mathbf{0}
\end{gathered}
$$

If we start with a dictionary (for the primal) that is infeasible (namely $B^{-1} \mathbf{b} \ngtr \mathbf{0}$) which has all the coefficients in the z row being negative then we can proceed with the Dual Simplex algorithm. The following example gives one way that this could happen but you imagine that this could occur in a sensitivity analysis problem using the dual simplex.

$$
\begin{aligned}
\max -3 x_{1}-x_{2} & \\
2 x_{1}+2 x_{2} & \leq 1 \\
-2 x_{1}-x_{2} & \leq-2 \\
4 x_{1}+3 x_{2} & \leq 1
\end{aligned} \quad x_{1}, x_{2} \geq 0
$$

We have our first dictionary

$$
\begin{array}{rlrrr}
x_{3} & = & 1 & -2 x_{1} & -2 x_{2} \\
x_{4} & = & -2 & +2 x_{1} & +x_{2} \\
x_{5} & = & 1 & -4 x_{1} & -3 x_{2} \\
z & = & -3 x_{1} & -x_{2}
\end{array}
$$

Rather than introduce x_{0} and use our two phase method, we are able to embark directly on our dual simplex method. We choose x_{4} to leave and then (in order to preserve dual feasibility) we choose x_{2} as the entering variable. We obtain the following dictionary:

$$
\begin{array}{rlrrr}
x_{3} & = & -3 & +2 x_{1} & -2 x_{4} \\
x_{2} & = & 2 & -2 x_{1} & +x_{4} \\
x_{5} & = & -5 & +2 x_{1} & -3 x_{4} \\
z & = & -2 & -x_{1} & -x_{4}
\end{array}
$$

Note that we have made progress (we have a better dual solution with a smaller objective function value in the dual of -2 rather than 0). We choose x_{5} to leave (greedily choosing the 'largest' negative coefficient) and then (in order to preserve dual feasibility) we choose x_{1} as the entering variable. We obtain the following dictionary:

$$
\begin{array}{rrrrr}
x_{3} & = & 2 & +x_{5} & +x_{4} \\
x_{2} & = & -3 & -x_{5} & -2 x_{4} \\
x_{1} & = & 5 / 2 & +(1 / 2) x_{5} & +(3 / 2) x_{4} \\
z & = & -9 / 2 & -(1 / 2) x_{5} & -(5 / 2) x_{4}
\end{array}
$$

Again we have made progress finding a dual solution of value $-9 / 2$. We would choose x_{2} to leave but we are unable to find an entering variable since $(-(1 / 2) \quad-(5 / 2))+\lambda\left(\begin{array}{ll}-1 & -2) \leq \mathbf{0}^{T} \text { for all }\end{array}\right.$
$\lambda \geq 0$). So we guess that the dual is unbounded but how can we see this? A solution which is somewhat wishful thinking is taking the current dual solution $\mathbf{y}=(0,5 / 2,1 / 2)$ (obtained as $\mathbf{c}_{B}^{T} B^{-1}$ which is readily obtained as the coefficients of the slack variables. Now why not add t times the same coeficients from the row for x_{2}, namely $\mathbf{z}=(0,2,1)$ to obtain a solution $\mathbf{y}+t \mathbf{z}=(0,5 / 2+2 t, 1 / 2+t)$ with objective function value $-9 / 2-3 t$ which shows the dual is unbounded. This wishful thinking works and you can verify that I have a parametric set of feasible dual solutions whose objective function, in the dual, goes to $-\infty$. Below I make explicit the reason why this works.

Now we have reached a place where we have a potential leaving variable but no entering variable. Imagine in general that we are doing the dual simplex method and we have x_{k} leaving. Let $\left[\begin{array}{llllllll}0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right]$ denote the $m \times 1$ vector with a 1 in the column corresponding to x_{k}. Thus

$$
\left[\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] B^{-1} \mathbf{b}<0
$$

since the cosntant entry must be zero in the row corresponding to x_{k}.
If we are unable to determine an entering variable then that is because

$$
\left[\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] B^{-1} A_{N} \geq \mathbf{0}
$$

namely the entries in the row corresponding to x_{k} must all be negative and the entries in that row are the row of $-B^{-1} A_{N}$.

Now we do the standard trickery (as done in the proof of Strong Duality). We have

$$
\left[\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] B^{-1} B \geq \mathbf{0}^{T}
$$

and so for any variable x_{i} we have

$$
\left[\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] B^{-1} A_{i} \geq \mathbf{0}
$$

Now regroup the variables by original variables and slack variables and we obtain

$$
\left[\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] B^{-1} A \geq \mathbf{0}^{T}
$$

and

$$
\left[\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right] B^{-1} I \geq \mathbf{0}^{T}
$$

If we set $\mathbf{z}^{T}=\left[\begin{array}{llllllll}0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right] B^{-1}$ then we discover that
$\left[\begin{array}{llllllll}0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right] B^{-1} A \geq \mathbf{0}$ implies $\mathbf{z}^{T} A \geq \mathbf{0}^{T}$ which is $A^{T} \mathbf{z} \geq \mathbf{0}$ and $\left[\begin{array}{llllllll}0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right] B^{-1} I \geq \mathbf{0}^{T}$ yields $\mathbf{z}^{T} \geq \mathbf{0}^{T}$ and so $\mathbf{z} \geq \mathbf{0}$.

We also have that the i th entry of $B^{-1} \mathbf{b}=\left[\begin{array}{llllllll}0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right] B^{-1} \mathbf{b}=\mathbf{z}^{T} \mathbf{b}$. Now the i th entry is less than zero, because that is why we are trying to do a dual simplex pivot. So $\mathbf{z}^{T} \mathbf{b}=\mathbf{b} \cdot \mathbf{z}<0$. This is exactly what we need to have the dual be unbounded (towards $-\infty$). Assume \mathbf{y} is a dual solution. The $\mathbf{y}+t \mathbf{z}$ is also a dual feasible solution and, since $\mathbf{b} \cdot \mathbf{z}=\mathbf{z}^{T} \mathbf{b}<0$, we have $\mathbf{b} \cdot(\mathbf{y}+t \mathbf{z})=\mathbf{b} \cdot \mathbf{y}+t \mathbf{b} \cdot \mathbf{z}$ and so $\lim _{t \rightarrow \infty} \mathbf{b} \cdot(\mathbf{y}+t \mathbf{z})=-\infty$.

