MATH 223: Coordinates Richard Anstee

If we have a set of vectors {uy, uy, ..., u;} where we set U = span{uy, uy, ..., uz}, it is natural
to express any vector u € U as a linear combination of the vectors uy, us, ..., u;, namely

u = CiUz + CoUg + - - - + CxUg

where we think of ¢, ¢a, . . ., ¢ as the coordinates of u with respect to the spanning set {uy, uy, ..., ux}.
Now if {u;,us,...,u} is linearly independent, then the coordinates behave as we would hope,
namely they are unique.

Theorem 1 If the set {uy,uy,...,u} is linearly independent, then for each vector u € U =
span{uy, vy, ..., u,}, there are unique numbers cy, ¢, ..., ¢k (the coordinates) such that u = cyus +
Cols + - -+ + cpUy.

Proof: The existence of numbers ¢y, ¢y, . . ., ¢, follows from the fact that u € U = span{uy, ug, ..., ug}.
Assume
u = Cus + coug + - - - + Uy

u = djuy + douy + - - - + dpuy
Then by subtracting the two equations we obtain
0= (61 — dl)u2 + (CQ — dg)llg +--- 4 (Ck — dk)uk

Since the set {uy, ug, ..., u;} is linearly independent, then we deduce that ¢; —dy; =0, ca —dy = 0,
. ¢ —dr =0 and hence ¢y =dy, co = ds, ... ,cp = d. [ |

Thus if we have a k-dimensional vector space than we can coordinatize the vectors as elements
of R¥. Consider the following 4 vectors.

1 2 1 3
V) = 1 , Vg = 3 , V3= 5) , Vg = 7
0 1 4 4
We can verify that U = span{vy,vs, v3.v4} = span{vy, vo} noting that vy = —7v; + 4vy and

vy = —5vi +4vy. Indeed dim(U) = 2. While U C R? it is natural to consider U as a 2-dimensional
vector space and in fact we can write our vectors in blue coordinates with respect to the basis vy, v

of U.

! . 1 2 .10 ! . -7 3 . -5
1] is 0l 3 | is L 5 | is 4| 7| is 4|
0 1 4 4

A somewhat different example is from the assignment. Let W = span{cos?(z),sin*(x)}. We
deduce that {cos?(z),sin?(z)} is a basis for W so we can coordinatize with respect to this basis.

.1 : .10 ]2 . 1
cos?(z) is [ 0 ], sin®(z) is [ 1 1, 2 is [ 5 }, cos(2z) is { 1 }
As a vector space over R we can think of W as R2. Of course as functions, there are more properties.
We can’t differentiate a vector but we can differentiate cos?(z).
A student in MATH 223 in 2015 said that U and W were thinly veiled examples of R?. And

of course similarly we think of a vector space X, with dim(X) = k£ and R as the scalar field, as a
thinly veiled example of R¥. To make this precise consider the following definition.



Definition 2 Given two vector spaces U,V over the same field F', we say that U and V are iso-
morphic if there is a bijective map h : U — V with h(0) = 0 (the first 0 is in U and the second 0
is in V') and with the property that for any x,y € U, we have h(x +y) = h(x) + h(y) and for any
ceF, hicx) = c- h(x).

Remember that the isomorphism need not preserve other properties of the elements of U and
V' that are not associated with being a vector space.

Theorem 3 If U and V are vector spaces over the same field and dim(U) = dim(V') then U and
V' are isomorphic.

Proof: Let k = dim(U) = dim(V). Assume k£ > 0. Let U have basis uj,ug,...,u; and V has
basis vq, Vg, ..., Vg Then define h(u;) = v; and extend to all vectors of U by linearity; namely
for u = Zle a;u; and so define h(u) = Zle a;v;. We easily show that h is a bijection and
h_l(Vz‘) =u;.

When 0 = dim(U) = dim(V), then each consists of just the zero vector and so the isomorphism
is easy. |

The following is an important application of dimension.

Theorem 4 An m x m matriz A is diagonalizable if and only if there is a basis of R™ consisting
of eigenvectors of A.

Proof: If A is diagonalizable then there is a diagonal matrix D and an invertible matrix M with
AM = MD. But then each column of M is an eigenvector of A (no column of M can be 0 since
M is invertible. And since M is invertible, the only solution to Mx = 0 is x = 0. Thus the m
columns of M are linearly independent. But we note the columns of M are contained in R™. Thus
the dimension of the column space of M is m and so the column space of M is equal to R™.

If there is a basis of R™ say {vi, va,..., v, then if we form the matrix M whose columns are
the v;’s then M is invertible. If Av; = \;v;, then we have AM = M D where the ¢th diagonal entry
is ;. [ |

We will add some more detail to this theorem as course progresses



