
MATH 223: Coordinates Richard Anstee

If we have a set of vectors {u1,u2, . . . ,uk} where we set U = span{u1,u2, . . . ,uk}, it is natural
to express any vector u ∈ U as a linear combination of the vectors u1,u2, . . . ,uk, namely

u = c1u2 + c2u2 + · · ·+ ckuk

where we think of c1, c2, . . . , ck as the coordinates of u with respect to the spanning set {u1,u2, . . . ,uk}.
Now if {u1,u2, . . . ,uk} is linearly independent, then the coordinates behave as we would hope,
namely they are unique.

Theorem 1 If the set {u1,u2, . . . ,uk} is linearly independent, then for each vector u ∈ U =
span{u1,u2, . . . ,uk}, there are unique numbers c1, c2, . . . , ck (the coordinates) such that u = c1u2 +
c2u2 + · · ·+ ckuk.

Proof: The existence of numbers c1, c2, . . . , ck follows from the fact that u ∈ U = span{u1,u2, . . . ,uk}.
Assume

u = c1u2 + c2u2 + · · ·+ ckuk

u = d1u2 + d2u2 + · · ·+ dkuk

Then by subtracting the two equations we obtain

0 = (c1 − d1)u2 + (c2 − d2)u2 + · · ·+ (ck − dk)uk.

Since the set {u1,u2, . . . ,uk} is linearly independent, then we deduce that c1− d1 = 0, c2− d2 = 0,
. . ., ck − dk = 0 and hence c1 = d1, c2 = d2, . . . ,ck = dk.

Thus if we have a k-dimensional vector space than we can coordinatize the vectors as elements
of Rk. Consider the following 4 vectors.

v1 =

 1
1
0

 , v2 =

 2
3
1

 , v3 =

 1
5
4

 , v4 =

 3
7
4


We can verify that U = span{v1,v2,v3.v4} = span{v1,v2} noting that v3 = −7v1 + 4v2 and
v4 = −5v1 +4v2. Indeed dim(U) = 2. While U ⊆ R3 it is natural to consider U as a 2-dimensional
vector space and in fact we can write our vectors in blue coordinates with respect to the basis v1,v2

of U .  1
1
0

 is

[
1
0

]
,

 2
3
1

 is

[
0
1

]
,

 1
5
4

 is

[
−7
4

]
,

 3
7
4

 is

[
−5
4

]
.

A somewhat different example is from the assignment. Let W = span{cos2(x), sin2(x)}. We
deduce that {cos2(x), sin2(x)} is a basis for W so we can coordinatize with respect to this basis.

cos2(x) is

[
1
0

]
, sin2(x) is

[
0
1

]
, 2 is

[
2
2

]
, cos(2x) is

[
1
−1

]
.

As a vector space over R we can think of W as R2. Of course as functions, there are more properties.
We can’t differentiate a vector but we can differentiate cos2(x).

A student in MATH 223 in 2015 said that U and W were thinly veiled examples of R2. And
of course similarly we think of a vector space X, with dim(X) = k and R as the scalar field, as a
thinly veiled example of Rk. To make this precise consider the following definition.



Definition 2 Given two vector spaces U, V over the same field F , we say that U and V are iso-
morphic if there is a bijective map h : U → V with h(0) = 0 (the first 0 is in U and the second 0
is in V ) and with the property that for any x,y ∈ U , we have h(x + y) = h(x) + h(y) and for any
c ∈ F , h(cx) = c · h(x).

Remember that the isomorphism need not preserve other properties of the elements of U and
V that are not associated with being a vector space.

Theorem 3 If U and V are vector spaces over the same field and dim(U) = dim(V ) then U and
V are isomorphic.

Proof: Let k = dim(U) = dim(V ). Assume k > 0. Let U have basis u1,u2, . . . ,uk and V has
basis v1,v2, . . . ,vk. Then define h(ui) = vi and extend to all vectors of U by linearity; namely
for u =

∑k
i=1 aiui and so define h(u) =

∑k
i=1 aivi. We easily show that h is a bijection and

h−1(vi) = ui.
When 0 = dim(U) = dim(V ), then each consists of just the zero vector and so the isomorphism

is easy.

The following is an important application of dimension.

Theorem 4 An m×m matrix A is diagonalizable if and only if there is a basis of Rm consisting
of eigenvectors of A.

Proof: If A is diagonalizable then there is a diagonal matrix D and an invertible matrix M with
AM = MD. But then each column of M is an eigenvector of A (no column of M can be 0 since
M is invertible. And since M is invertible, the only solution to Mx = 0 is x = 0. Thus the m
columns of M are linearly independent. But we note the columns of M are contained in Rm. Thus
the dimension of the column space of M is m and so the column space of M is equal to Rm.

If there is a basis of Rm say {v1,v2, . . . ,vm then if we form the matrix M whose columns are
the vi’s then M is invertible. If Avi = λivi, then we have AM = MD where the ith diagonal entry
is λi.

We will add some more detail to this theorem as course progresses


