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The Extremal Problem

A (0, 1)-matrix is simple if it has no repeated columns.
‖A‖ will denote the number of columns of matrix A.

We say that a matrix F is a configuration of a matrix A if F is a row and
column permutation of some submatrix A′ of A, and write F ≺ A.

Having fixed some family of matrices F , called a forbidden family, we will
define to be the set

Avoid(m,F) = {A : A is m-rowed simple and F 6≺ A ∀ F ∈ F}.

Consequently, we let

forb(m,F) = max
A∈Avoid(m,F)

‖A‖.

(When F = {F}, we will write Avoid(m,F ) and forb(m,F ).)
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The Extremal Problem

As with any extremal problem, we search for constructions and bounds.
Constructions A avoiding a certain object give lower bounds whereas
upper bounds on forb(m,F) require new proofs.

Example Constructions which achieve the bound for the matrix on the
right have the matrix on the left as a configuration.

forb

(
m,

[ t︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
0 0 · · · 0

])
≤ forb

m,


t︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0


 .



Multiple Copies of a Configuration

If F is a (0, 1)-matrix, then t · F will denote the matrix

[

t copies︷ ︸︸ ︷
F F · · · F ].

As intuition suggests, there exists some integer M so that, whenever
m ≥ M,

forb(m, (t + 1) · F ) > forb(m, t · F ).



Multiple Copies of a Configuration

Let F be given where F is k × `. We split this into the cases where ` = 1
and ` ≥ 2. The latter is easy:

Case 1: ` ≥ 2. Assume the contrary forb(m, (t + 1) · F ) = forb(m, t · F )
and so take an m × n matrix A ∈ Avoid(m, t · F ) with

n = forb(m, t · F ) = forb(m, (t + 1) · F )

and some m × 1 column α not in A. Considering A′ = [A|α], we have
that (t + 1) · F ≺ A′ on some ((t + 1)`)-set of columns of A′ and since
` ≥ 2, we can take a t`-subset of these, not including α, on which
t · F ≺ A, a contradiction.



Multiple Copies of a Configuration

Case 2: ` = 1 we introduce the notation 1p0q to denote columns of p 1s
on top of q 0s.

The following theorem of Keevash (2015) is useful for constructions:

Theorem Let p, λ be given. There exists some
A ∈ Avoid(m, (λ+ 1) · 1p) whose column sums are all p + 1 and

‖A‖ = λ
p+1

(
m
p

)
for m, p, t satisfying

(
p+1−i
p−i

)
divides

(
m−i
p−i
)

for
i = 1, 2, . . . , p − 1.

When p > q, a result of Anstee, Barekat, and Pellegrin (2019) provides
exact bounds, for large enough m, that grow with t. From the exact
bounds it immediately follows that∣∣∣∣forb(m, t · 1p0q)−

(
1 +

t − 2

p + 1

)
mp

p!

∣∣∣∣ ≤ c1m
p−1.

When p = q, no exact bound is known but similar arguments apply.



The bound on Kk

Let Kk be the k × 2k matrix of all possible columns on k rows. The
following, due to Sauer 72, Perles, and Shelah 72, and Vapnik and
Chervonenkis 71, is a central result in forbidden configurations.

Theorem

forb(m,Kk) =

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

k − 1

)
.

First use Pascal’s identities to arrange the above expansions as(
m − 1

0

)
+

(
m − 1

1

)
+

(
m − 1

2

)
+ · · ·+

(
m − 1

k − 1

)
+

(
m − 1

0

)
+

(
m − 1

1

)
+ · · ·+

(
m − 1

k − 2

)
,

yielding forb(m − 1,Kk) + forb(m − 1,Kk−1) = forb(m,Kk).



The bound on Kk

Let us prove the bound by illustrating the method of standard induction.

Given a matrix A on m rows avoiding Kk , we can permute the rows and
columns of A as

row r →
[

1 1 · · · 1 1 1 · · · 1 0 0 · · · 0 0 0 · · · 0
Br Cr Cr Dr

]
where Cr are those columns which would be repeated upon the deletion
of row r . The matrices Cr and [Br Cr Dr ] are (m − 1)-rowed simple.
[Br Cr Dr ] has no Kk but we can say more about Cr : since Cr appears
under 1s and 0s, Cr has no Kk−1. Therefore, with
‖A‖ = ‖[Br Cr Dr ]‖+ ‖Cr‖,

‖A‖ ≤ forb(m − 1,Kk) + forb(m − 1,Kk−1) = forb(m,Kk),

precisely the inductive result we require.



Our main question is for which B is it true that

forb(m, [K4|B]) = forb(m,K4)

(at least for large m)? We make progress.



The bound on Kk

Matrices A on m rows with ‖A‖ = forb(m,Kk) vary a great deal. They
are not canonical.

The first 5× 16 matrix has no K3 because it has no submatrix [1 0 1]T .
The second is more random.

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0




1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0





The bound on Kk

Matrices A on m rows with ‖A‖ = forb(m,Kk) vary a great deal. They
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The first 5× 16 matrix has no K3 because it has no submatrix [1 0 1]T .
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1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0




1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0






1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0


What is missing?
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0
1
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1
0

1

no
1
0

1
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1

1
1

no
1

1

1

no
1

0
1

no

1
1
1
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1
1

1
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1
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Critical Substructures for K4

A critical substructure of a configuration F is a minimal configuration
F ′ ≺ F so that forb(m,F ′) = forb(m,F ).

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.

Note that

forb(m, 14) = forb(m,K 3
4 ) = forb(m,K 2

4 ) = forb(m,K 1
4 )

= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).
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Motivations

Can we add columns to K4 and preserve its bound? The added columns
must have column sum 2.

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1
1
1
0


The 3× 3 block 3 · 13 has a bound of

(
m
0

)
+
(
m
1

)
+
(
m
2

)
+ 5

4

(
m
3

)
, bigger

than that of K4.

Results in Anstee, Meehan (2011) state that

forb(m, [K4|1202]) = forb(m,K4)

for m large enough (actually m ≥ 5). Generalizations were hindered in
searching for base cases m in the standard induction. Using several
stability lemmas, we can overcome these difficulties.



Product Construction

If F is k1 × `1 and G is k2 × `2, we will denote by F × G the
(k1 + k2)× `1`2 matrix consisting of every column of F appearing over
every column of G .

In this way,

Kk =

k times︷ ︸︸ ︷
[1 0]× [1 0]× · · · × [1 0] .



Main Theorems

Let

KT
2 =


1 1
1 0
0 0
0 1

 and F1 =

 1 1 1 0
1 0 0 1
0 1 0 0

 .
Theorem Assume k ≥ 4 and t ≥ 1. There exists an mk so that, for
m > mk , we have

forb(m, [Kk |t · (KT
2 × Kk−4)] = forb(m,Kk).

The neat fact due to Gronau (1980) that
forb(m, 2 · Kk) = forb(m,Kk+1) is instrumental in proving:

Theorem Assume k ≥ 3 and t ≥ 1. There exists an mk so that, for
m > mk , we have

forb(m, [2 · Kk |t · (F1 × Kk−3)]) = forb(m, 2 · Kk).



Proof of Theorem

F2 =

 1 0
0 1
0 0

 , F3 =

 1 1
0 1
0 0

 , F4 =

 1 1
1 0
0 1

 .

Let F = {[K3|t · F2], [K3|t · F3], [K3|t · F4]}

Claim 1(3) Claim 2(3) Claim 3(3)
forb(m,F) → forb(m,F) → A ∈ Avoid(m,F)

≤ forb(m,K3) + c = forb(m,K3) t · F2, t · F3, t · F4 6≺ A|S ,
‖A‖ ≤ forb(m,K3)− m + 4t

↙ ↙ ↓
Claim 1(4) Claim 2(4) Claim 3(4)

forb(m, [K4|t · KT
2 ]) → forb(m, [K4|t · KT

2 ]) → A ∈ Avoid(m, [K4|t · KT
2 ])

≤ forb(m,K4) + c4 = forb(m,K4) t · KT
2 6≺ A|S

‖A‖ ≤ forb(m,K4)− m + 4t
↙ ↙ ↓

Claim 1(5) Claim 2(5) Claim 3(5)
forb(m, [K5|t · [01]× KT

2 ]) → forb(m, [K5|t · [01]× KT
2 ]) → A ∈ Avoid(m, [K5|t · [01]× KT

2 ])

≤ forb(m,K5) + c4 = forb(m,K5) t · [01]× KT
2 6≺ A|S

‖A‖ ≤ forb(m,K5)− m + 4t

.

.

.
.
.
.

.

.

.



Proof of Theorem (outline)

To understand the somewhat complicated induction, consider the proof
of Claim 2(4) that forb(m, [K4|t · KT

2 ]) = forb(m,K4) for m large.

We use Claim 1(4) and Claim 3(3) as well as some analysis of our
standard induction.

Let A ∈ Avoid(m, [K4|t · KT
2 ]). If K4 6≺ A, then ‖A‖ ≤ forb(m,K4) as

desired. So assume for some set of rows S , K4 ≺ A|S .
Then t · KT

2 6≺ A|S (actually (t + 1) · KT
2 6≺ A|S but who’s counting).

Using standard induction we deduce that t · F1, t · F2, t · F3 6≺ Cr |S\r .
By Claim 3(3), we have ‖Cr |S\r‖ ≤ forb(m − 1,K3)−m + 4t.

Also by standard induction, [BrCrDr ] ∈ Avoid(m− 1, [K4|t · KT
2 ]). Apply

Claim 1(4) to obtain ‖[BrCrDr ]‖ ≤ forb(m − 1,K4) + c4.

Using the recursion forb(m − 1,K4) + forb(m − 1,K3) = forb(m,K4) we
obtain the result assuming m > c4 + 4t.
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Problems

We always have many problems.

Can we improve our result for K4 (i.e. add more columns and get the
same exact bound) or are the current results best possible (some
constructions would be required)?

The following theorem indicates that we will certainly see a change in the
bound of K4 if we were to extend to [K4|K 2

4 ].

Theorem (Anstee, Fleming 2010) Let k be given and let B be an
k × (k + 1) matrix with one column of each column sum. Then
forb(m, [Kk |t · (Kk\B)]) is Θ(mk−1). Also if F is a k-rowed configuration
and Kk ≺ F , then forb(m,F ) is Θ(mk−1) if and only if there is a t and
k × (k + 1) matrix B with one column of each column sum where
F ≺ [Kk |t · (Kk\B)].
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same exact bound) or are the current results best possible (some
constructions would be required)?

The following theorem indicates that we will certainly see a change in the
bound of K4 if we were to extend to [K4|K 2

4 ].

Theorem (Anstee, Fleming 2010) Let k be given and let B be an
k × (k + 1) matrix with one column of each column sum. Then
forb(m, [Kk |t · (Kk\B)]) is Θ(mk−1). Also if F is a k-rowed configuration
and Kk ≺ F , then forb(m,F ) is Θ(mk−1) if and only if there is a t and
k × (k + 1) matrix B with one column of each column sum where
F ≺ [Kk |t · (Kk\B)].



Problems

Let

F5 =


1 1 1
1 0 0
0 1 0
0 0 1

 , F6 =


1 0
1 0
0 1
0 1

 , F7 =


1 1 1 0 0
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 .
Problem Show that

forb(m, [K4|F5]) > forb(m,K4) and forb(m, [K4|F6]) > forb(m,K4).

Constructions are hard to come by. It is possible that even
forb(m, [K4|t · F7]) = forb(m,K4). We need some new constructions!



Thank You

Comox Glacier, Queneesh
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