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Abstract

Let F be a k×` (0,1)-matrix. We say a (0,1)-matrix A has F as a configuration
if there is a submatrix of A which is a row and column permutation of F . In the
language of sets, a configuration is a trace and in the language of hypergraphs a
configuration is a subhypergraph.

Let F be a given k × ` (0,1)-matrix. We define a matrix to be simple if it
is a (0,1)-matrix with no repeated columns. The matrix F need not be simple.
We define forb(m,F ) as the maximum number of columns of any simple m-rowed
matrix A which do not contain F as a configuration. Thus if A is an m×n simple
matrix which has no submatrix which is a row and column permutation of F then
n ≤ forb(m,F ). Or alternatively if A is an m × (forb(m,F ) + 1) simple matrix
then A has a submatrix which is a row and column permutation of F . We call F
a forbidden configuration.

The fundamental result is due to Sauer, Perles and Shelah, Vapnik and Chervo-
nenkis. For Kk denoting the k×2k submatrix of all (0,1)-columns on k rows, then
forb(m,Kk) =

(
m
k−1
)
+
(

m
k−2
)
+ · · ·

(
m
0

)
. We seek asymptotic results for forb(m,F )

for a fixed F and as m tends to infinity . A conjecture of Anstee and Sali pre-
dicts the asymptotically best constructions from which to derive the asymptotics
of forb(m,F ). The conjecture has helped guide the research and has been verified
for k × ` F with k = 1, 2, 3 and for simple F with k = 4 as well as other cases
including ` = 1, 2. We also seek exact values for forb(m,F ).

Keywords: extremal set theory, extremal hypergraphs, (0,1)-matrices, forbid-
den configurations, trace, VC-dimension, subhypergraph, shattered set.
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1 Introduction
The study of forbidden configurations is a problem in extremal set theory. It is conve-
nient to use the language of matrix theory. We define a simple matrix as a (0,1)-matrix
with no repeated columns. Such an m×n simple matrix A can be thought of a family A
of n subsets of [m] = {1, 2, . . . ,m} with the rows indexing the elements and the columns
indexing the subsets. Let ‖A‖ denote the number of columns in A (which is |A|). As-
sume we are given a k × ` (0,1)-matrix F . We say that a matrix A has a configuration
F if a submatrix of A is a row and column permutation of F and so F is referred to as
a configuration of A (sometimes called trace in the language of sets).

The reader may ask of the importance of the configuration idea in combinatorial
investigations. I feel it is one of a few possible basic notions of substructure and it has
arisen in applications though admittedly not as frequently as some other substructures.
The investigations into the extremal problem of the maximum number of edges in an
n vertex graph with no subgraph H originated with Erdős and Stone [ES46] and Si-
monovits [ES66] and has a large and illustrious literature. There are several ways to
generalize to the hypergraph setting. Typically one considers simple hypergraphs, those
with no repeated edges. One can consider a r-uniform (simple) hypergaph H and forbid
a given subhypergraph H ′, itself a r-uniform (simple) hypergraph. Or one can extend to
general hypergraphs and forbid a given subhypergraph where it is now natural to allow
repeated edges in the forbidden object. This latter problem in the language of matrices
is our focus. It is to be noted that hypergraphs are sometimes not allowed to have the
empty edge whereas our simple matrices naturally allow the column of 0’s.

There are interesting connections of results about forbidden configuration to other
results. Some related problems (VC-dimension, forbidden submatrices, patterns, cover-
ing arrays etc.) are given in Section 2 as well as the relations between them.

Definition 1.1. For two (0, 1)-matrices F and A, we say that F is a configuration in
A, and write F ≺ A if there is a row and column permutation of F which is a submatrix
of A. We say A has no configuration F (or F 6≺ A) if F is not a configuration in A.
Let Avoid(m,F ) denote the set of all m-rowed simple matrices with no configuration F .

Our main extremal problem is to compute

forb(m,F ) = max
A
{‖A‖ : A ∈ Avoid(m,F )}.

Thus forb(m,F ) is the smallest value (depending on m and F ) so that if A is a sim-
ple m × n matrix and A has no configuration F then n ≤ forb(m,F ). Alternatively
forb(m,F ) is the smallest value so that if A is an m × (forb(m,F ) + 1) simple matrix
then A must have a configuration F . This survey mostly considers a single given fixed
forbidden configuration F (though variations to forbidden families of configurations are
in Section 2) and considers the asymptotics of forb(m,F ) as we let m grow.

One could define the equivalence class of matrices under row and column permu-
tations. Let F̃ denote the equivalence class of matrices derived from F by taking all
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row and column permutations of F . Thus a matrix A has a configuration F if A has
a submatrix in F̃ . We often blur the distinction between a matrix F and the related
equivalence class F̃ . A matrix F is referred to as a configuration when we wish to
consider whether another matrix A has F as a configuration.

Remark 1.2. Let Ac denote the 0-1-complement of A. Then forb(m,F c) = forb(m,F ).

Remark 1.3. If F ′ ≺ F (i.e. F has a configuration F ′), then forb(m,F ′) ≤ forb(m,F ).

When giving results it is often convenient to note when we discover forb(m,F ′) =
forb(m,F ) where F ′ ≺ F . Typically one has a construction working for F ′ (a simple
matrix A with no configuration F ′) which then necessarily works for F and we have
a bound for forb(m,F ) which certainly applies to forb(m,F ′). Equality (or asymp-
totic equality) of the construction for F ′ and the bound for F then yields equality (or
asymptotic equality) for forb(m,F ′) and forb(m,F ) as well as for any matrices F ′′ with
F ′ ≺ F ′′ ≺ F ). The following defines some standard configurations.

Definition 1.4. Let Kk be the k × 2k simple matrix of all possible (0,1)-columns on k
rows. Let Ks

k be the k×
(
k
s

)
simple matrix of all possible columns of column sum s. Let

1a0b denote the (a+ b)× 1 vector of a 1’s on top of b 0’s and for convenience we let 1a

denote the a × 1 vector of a 1’s and 0b denote the b × 1 vector of b 0’s. Let Ik be the
k × k identity matrix (equivalent to K1

k). Let Ick be the (0,1)-complement of the k × k
identity matrix (equivalent to Kk−1

k ). Let Tk be the k×k triangular matrix Tk whose i, j
entry is 1 if and only if i ≤ j.

We have a number of results for 2-columned F and find the following notation useful.

Definition 1.5. We define Fa,b,c,d as the (a+ b+ c+ d)× 2 matrix consisting of a rows
[1 1], b rows [1 0], c rows [0 1] and d rows [0 0].

We use the notation [A|B] to denote the matrix obtained from concatenating the
two matrices A and B. We use the notation k · A to denote the matrix [A|A| · · · |A]
consisting of k copies of A concatenated together. We give precedence to the operation ·
(multiplication) over concatenation so that for example [2 ·A|B] is the matrix consisting
of the concatenation of B with the concatenation of two copies of A.

Some useful set notation is:

[m] = {1, 2, . . . ,m}, 2[m] = {S ⊆ [m] : 0 ≤ |S| ≤ m},
(

[m]

k

)
= {S ⊆ [m] : |S| = k}.

Thus Kk corresponds to 2[k] and Ks
k corresponds to

(
[k]
s

)
. Considering simple m × n

matrix A as an element-set incidence matrix, A can be thought of as a family of sets:

A ⊆ 2[m], |A| = n.
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For a subset of rows S, we define A|S to be the submatrix of A formed by the rows of
S. Thus if F is k-rowed, then F ≺ A if there is some S ∈

(
[m]
k

)
with F ≺ A|S. We could

also define
A|S = {B ∩ S : B ∈ A},

but note that you should choose between the set system A|S and the multiset which
would correspond to A|S. Now A being simple yields that A is a set system but we do
not expect either A|S or a configuration F to be simple . A k-uniform set system F has
F ⊆

(
[m]
k

)
. The use of set notation is sometimes preferable. In that setting a forbidden

configuration is called a trace.

There are alternate ways of describing simple matrices that could be considered.
Another equivalent notation is to consider a square free integer x =

∏m
i=1 pi and then

consider all possible divisors of x. This notation was used in [AA95]. One can generalize
to all divisors of some given but arbitrary integer. See this multiset version in Section 2.

Definition 1.6. Let A be an m1 × n1 simple matrix and let B be an m2 × n2 simple
matrix. Then A×B denotes the (m1+m2)×(n1n2) simple matrix each column consisting
of a column of A placed on a column of B and this is done in all possible ways.

Many results have been obtained about forb(m,F ) but the following is the most
fundamental.

Theorem 1.7. [Sauer [Sau72], Perles and Shelah [She72], Vapnik and Chervonenkis
[VC71]] We have that

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

Thus forb(m,Kk) is Θ(mk−1).

There is mention in the paper [Sau72] that the problem is due to Erdős. Also there is
an earlier citation in Russian for [VC71]. If a matrix A contains a copy of Kk in a k-set
of rows S then we say that S is shattered by A. There are many results on shattered
sets. We define a (0,1)-matrix A to have VC-dimension k if the largest cardinality of
a shattered set is k (Kk ≺ A and Kk+1 6≺ A) and so ‖A‖ is O(mk). There are many
results on VC-dimension.

Let ext(m,F ) = {A ∈ Avoid(m,F ) | ‖A‖ = forb(m,F )}. (1)

There are a multiplicity of matrices A ∈ ext(m,Kk) including [Kk−1
m |Kk−2

m | · · · |K0
m]

or, for any k×1 (0,1)-column α, for A all columns with no submatrix α. There are inter-
esting results about matrices in ext(m,Kk) in [Ans88] and an interesting construction
in [AS97] with all column sums in {t, t+ 1, t+ 2, . . . , t+ k − 1}.

Theorem 1.7 has induction proofs (Section 11) using the standard induction [Sau72]
and also with shattered sets [Paj85], a shifting proof (Section 12), and linear algebra
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proofs (Section 14) [FP83] and [Smo97]. The asymptotic growth of Θ(mk−1) was what
interested Vapnik and Chervonenkis in Applied Probability. An easy consequence of
Theorem 1.7 using Remark 1.3 is the following:

Corollary 1.8. Let F be a k × ` simple matrix. Then forb(m,F ) is O(mk−1).

It would seem reasonable to consider (0,1)-matrices F which are not simple as well.
Füredi [Für83] noted the following general bound that can be proved using Theorem 1.7.

Theorem 1.9. [Für83] Let F be a k × ` (0,1)-matrix. Then there is a constant cF so
that forb(m,F ) ≤ cFm

k i.e. forb(m,F ) is O(mk).

But what is the correct asymptotic growth as a function of F? We can obtain
more detailed general results. The first result below (simultaneously and independently
obtained by Füredi and Quinn (generalizing a result of Ryser[Rys72]) and the second
result of Gronau are both exact and can be deduced by the existence of constructions
since the bounds follows from Remark 1.3 in the first case using F = Kk and in the
second case using F = Kk+1.

Theorem 1.10. [FQ83] Let k, s be given positive integers with 0 ≤ s ≤ k. Then

forb(m,Ks
k) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

Theorem 1.11. [Gro80] We have

forb(m, 2 ·Kk) =

(
m

k

)
+

(
m

k − 1

)
+ · · ·+

(
m

0

)
.

The next result refines Füredi’s result Theorem 1.9.

Theorem 1.12. [AF86] We have

forb(m, t ·Kk) = forb(m, t ·Kk
k ) ≤ t− 2

k + 1

(
m

k

)
(1−o(1))+

(
m

k

)
+

(
m

k − 1

)
+ · · ·+

(
m

0

)
,

with equality if a k-design, of multiplicity λ = t − 1 and blocksize k + 1, exists on m
points.

The following four results are quite general refinements of Theorem 1.7 and Theorem
1.9. The following describes the boundary between Θ(mk−2) and Θ(mk−1) for simple
k × ` F .

Theorem 1.13. [AF10] Let k be given.
If F is a simple k × ` matrix with the property that there is a pair of rows of F that do
not contain K0

2 , a pair of rows of F that do not contain K2
2 and a pair of rows of F that

do not contain the configuration K1
2 = I2, then forb(m,F ) is O(mk−2).

If F is a simple k × ` matrix with the property that either every pair of rows has K0
2 or

every pair of rows has K2
2 or every pair of rows has K1

2 , then forb(m,F ) is Θ(mk−1).
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The maximal k-rowed simple matrices F with forb(m,F ) being O(mk−2)are listed in
Theorem 9.1. The following considers the boundary between Θ(mk−1) and Θ(mk) for ar-
bitrary k×` F . The result in Theorem 1.14 was first proved for k = 3 in [AS05],[AGS97]
(there were two proofs originally, one for each of the two possible choices of a 3× 4 B)
and Theorem 1.15 was first proved for k = 3 in [AS05]. Theorem 1.14 was proven for
general k in [AF11],[AFFS05] and Theorem 1.15 was proven for general k in [AF10].

Theorem 1.14. [AGS97][AFFS05][AS05] Let B be a simple k × (k + 1) matrix with
the property that there is one column of each column sum. Let Kk − B denote the
k × (2k − k − 1) matrix obtained from Kk by deleting the columns of B (row order
matters here). Let t be given. Then forb(m, [Kk | t · [Kk −B]]) is Θ(mk−1).

Theorem 1.15. [AS05][AF10] Let k be given and let D12 denote the simple matrix of
all columns of column sum at least 1 with no K2

2 on rows 1 and 2. Then assuming k ≥ 3
and t ≥ 2 then forb(m, [K0

k | t ·D12]) is Θ(mk−1).

Note that t · Ik ≺ t ·D12.

Theorem 1.16. [AF10] Let F be a k-rowed matrix with maximum column multiplicity
t. If F 6≺ [Kk | (t − 1) · [Kk − B]]) for any choice of B as in Theorem 1.14 and F 6≺
[K0

k | t ·D12]) for D12 as in Theorem 1.15 then forb(m,F ) is Θ(mk).

This completely determines the boundary between Θ(mk) and Θ(mk−1). The ma-
trices that Conjecture 3.2 predicts to determine the boundary between Θ(mk−1) and
Θ(mk−2) are described in Theorem 9.2. Theorem 9.1 helps in this analysis. There are
complete asymptotic results for k × 2 F in Section 7.

A large number of exact bounds are sprinkled throughout this survey including
complete exact results for 1× ` F in Section 4 and complete exact results for k× 1 F in
Section 7, a number of 2× ` results in Section 4 and a number of general k×2 results in
Section 7 as well as a number of 3× 2, 3× 3 and 3× 4 results in Section 5 and a number
of 4× 2 and further 4-rowed results in Section 6. One gets an idea of what is typically
driving the exact bounds for many F . In [AK10], we defined a critical substructure of a
configuration F as a minimal configuration F ′ ≺ F with forb(m,F ′) = forb(m,F ). For
K4 we have the complete list of critical substructures but have not yet fully determined
the list for K5.

Theorem 1.17. [Rag11] The critical substructures of K4 are 04, I4, K2
4 , Ic4, 14, 2 · 03

and 2 · 13.

We have verified (Prop. 4.3.8 [Rag11]) that the only k-rowed critical substructures
of Kk are Ks

k for s = 0, 1, . . . , k.

Problem 1.18. Show that 2 · 1k−1 and 2 · 0k−1 are the only (k-1)-rowed critical sub-
structures of Kk.

The following result, while not best possible, indicates that Theorem 1.7 can be
extended.
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Theorem 1.19. [AM11] Let α = 1p0q where p+ q = k and p, q ≥ 2. Then

forb(m, [Kk|α]) = forb(m,Kk).

It is believed that for any t and m large enough (as a function of t, k), forb(m, [Kk|t ·
α]) = forb(m,Kk). Exact bounds often require a more complete understanding of what
it means to forbid a configuration. In many cases we can also determine ext(m,F )
(see (1)). In trying to establish exact bounds we have found some interesting ‘negative’
results including Theorem 6.9 for the configuration F2,1,1,0.

A purpose of this paper is to provide a single place to access existing results (Sections
4, 5, 6, 7, 8, 9) and the proof techniques employed (Sections 10, 11, 12, 13, 14, 15). In
doing so, we are encouraging the gentle reader to consider ways to make progress in
proving the conjecture described in Section 3 or perhaps obtaining exact bounds or
exploring other related problems such as described in Section 2. Open problems are
scattered throughout including Conjecture 3.2, Problem 3.4, Problem 6.4, Problem 7.5,
Conjecture 8.1, Problem 15.2, Conjecture 2.12. Here are two very concrete problems
that I can suggest:

Problem 1.20. Show that

forb(m,


1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1

) is O(m2).

Problem 1.21. Show that for those m for which a triple system of multiplicity 2 exists,

forb(m,

1 1 1 1
1 1 1 1
1 0 0 0

) =
5

3

(
m

2

)
+

(
m

1

)
+

(
m

0

)
+

(
m

m

)
.

I expect that I have missed many related results that have been stated in another
context but have relevance here. I would be glad to hear about them; email me.

2 Variations including Forbidden Submatrices
Uniform Hypergraphs

In generalizing from graphs to hypergraphs, it is often the case that we restrict to r-
uniform (simple) hypergraphs for a fixed r. In our setting this is the requirement that all
column sums are r. Frankl and Pach [FP94] considered Theorem 1.7 for r-uniform hy-
pergraphs for which they established a basic bound of

(
m
k−1

)
. Ahlswede and Khachatrian

[AK97b] obtain a construction of size
(
m−1
k−1

)
+
(
m−1
k−3

)
while Mubayi and Zhao [MZ07a]

obtain an improved upper bound of
(

m
k−1

)
− logpm + k!kk. Other cases of forbidden
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configurations such as K`
k for r-uniform hypergraphs are considered [MZ07a]. Asymp-

totically sharp values for the maximum number of edges in a 3-uniform hypergraph
containing no Fano plane are due to deCaen and Füredi [dCF00]. An asymptotically
exact bound for Turán’s problem remains elusive.

Families of forbidden configurations
The notion of some forbidden substructure often can be described by some family

(often infinite) of forbidden configurations. Many problems in extremal combinatorics
could be phrased that way but typically there is no special insight gained. We have
forbidden families arise using inductive arguments in Corollary 11.1. We’ll discuss a few
other cases. The result of Balogh and Bollabás seems the most interesting result.

Theorem 2.1. [BB05] Let k be given. Then forb(m, {Ik, Ick, Tk}) is O(1).

In some ways this seems to follow from Conjecture 3.2 since no linear construction
(Im, Icm or Tm) avoids all three forbidden configurations Ik, Ick, Tk. A less restrictive
family of forbidden configurations also yielding a constant bound is in [BP09]. A meta
version of Conjecture 3.2 namely that the product constructions yield the asymptotically
best constructions is false in general (Theorem 2.7 and Theorem 2.8 below). An easy
(not optimal) construction of an m ×

(
2k
k

)
simple matrix A that has no configurations

Ik, Ick, Tk is to take all columns of column sum k−1 in the (k -1)-fold product Tm/(k−1)×
Tm/(k−1) × · · ·Tm/(k−1). With Laura Dunwoody, we established some easy exact results.

Theorem 2.2. [AD] forb(m, {I1, Ic1, T1}) = 0 and forb(m, {I2, Ic2, T2}) = 2,
forb(m, {I3, Ic3, T3}) = 6.

A result of Balin Fleming (related to results in [AF10]) yields a remarkably good
bound:

Theorem 2.3. Let Fa =

[
1 0
0 1

t · 1
1

]
, Fb =

[
1 0
0 1

t · 0
0

]
, and Fc = t ·

[
0 1 1
0 0 1

]
.

Then for t ≥ 2, forb(m, {Fa, Fb, Fc}) ≤ 6t− 6.

The following three results follow from results of Balogh, Keevash and Sudakov
[BKS05]. Somewhat different bounds occur if one adds 0 to I, adds 1 to Ic and adds 0
to T .

Theorem 2.4. Let k ≥ 2 be given. Then forb(m, {Ik, Ick}) is Θ(mk−1).

Proof: . We note that forb(m, {Ik}) is O(mk−1) and hence forb(m, {Ik, Ick}) is O(mk−1).
The construction of the (k -1)-fold product Tm/(k−1) × Tm/(k−1) · · · × Tm/(k−1) show that
forb(m, {Ik, Ick}) is Ω(mk−1) since if we take two rows from any one term of the product,
we are unable to have I2 and yet Ik and Ick have I2 in every pair of rows.

Theorem 2.5. Let k ≥ 2 be given. Then forb(m, {Ick, Tk}) is Θ(mk−1).
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Proof: . We note that forb(m, {Ick}) is O(mk−1) and hence forb(m, {Ick, Tk}) is O(mk−1).
The construction of the (k -1)-fold product Im/(k−1) × Im/(k−1) · · · × Im/(k−1) show that
forb(m, {Ick, Tk}) is Ω(mk−1) since if we take two rows from any one term of the product,
we are unable to have

(
1
1

)
and yet Ick and Tk have

(
1
1

)
Theorem 2.6. Let k ≥ 2 be given. Then forb(m, {Ik, Tk}) is Θ(mk−2).

Proof: . We note that both Ik and Tk have a column with k − 1 0’s and so nei-
ther can be found in the (k -2)-fold product Icm/(k−2) × Icm/(k−2) · · · × Icm/(k−2), hence
forb(m, {Ik, Tk}) is Ω(mk−2). To prove the upper bound, we use induction on ` in the
statement forb(m, {Ik, T`}) is O(m`−2), for ` ≥ 2. When ` = 2, We note that for-
bidding T2 means that any two sets (thinking of columns as sets) must be disjoint.
Then the condition no configuration Ik means that there are at most k − 1 disjoint
nonempty sets (column sum at least 1) and the empty set (the column of 0’s). Thus
forb(m, {Ik, T2}) = k which is Θ(m2−2). Now we use induction on ` and the standard
decomposition of (22) noting that applying Lemma 11.1 to F = T` yields Fs = T`−1 for
s 6= 1. Thus forb(m, {Ik, T`) ≤ forb(m− 1, {Ik, T`}) + forb(m− 1, {Ik, T`−1}). Applying
induction, we obtain the desired bound.

The following result shows that our constructions of Conjecture 3.2 are no longer
sufficient for asymptotics with families of forbidden configurations. General forbidden
subgraph problems could be given this way.

Theorem 2.7. Let C4 denote the 4 × 4 matrix that is the incidence matrix of a cycle
of length 4. Then forb(m, {13, C4}) is Θ(m3/2).

Proof: Forbidding 13 makes this into a graph problem since apart from columns of sum
0 or 1, all remaining columns must have two 1’s. A simple matrix with column sums
2 can be viewed as the vertex-edge incidence matrix of a graph on m vertices. Now
the maximum number of edges in a graph on m vertices with no no cycle of length 4 is
Θ(m3/2).

We have obtained a stronger version of this by a complicated induction argument.
Note that I2 × I2 is C4 as a configuration.

Theorem 2.8. [ARS11b] We have that forb(m, {I2 × I2, I2 × T2, T2 × T2}) is Θ(m3/2).

While these result are ‘negative’ and suggests that handling families of forbidden
configurations will be enormously more difficult than forbidding a single configuration,
it is also the case that some of our inductive proofs for a single conjecture naturally
consider families of forbidden configurations and perhaps in those cases our product
constructions are still asymptotically optimal.

Assume t is given. Kleitman considered the maximum size of a set system F ⊆ 2[m]

with the property that for every pair A,B ∈ F , |A\B| + |B\A| ≤ 2t. The bound is
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forb(m,Kt+1). One can think of this as having forbidden the (2t+ 1)× 2 configurations
F0,2t+1,0,0, F0,2t,1,0, . . . , F0,t+1,t,0.

Balanced and Totally Balanced matrices are easily defined in terms of forbidden
configurations. Let Ck denote the k × k matrix that is the incidence matrix of a cycle
of length k. A matrix is Balanced if and only if it has no configuration Ck for k ∈
{3, 5, 7, 9, . . .}. A matrix is Totally Balanced if and only if it has no configuration Ck

for k ∈ {3, 4, 5, 6, . . .}. The result that forb(m,C3) =
(
m
2

)
+
(
m
1

)
+
(
m
0

)
can be found in

[Rys72] but also follows from Theorem 1.7 since C3 is a configuration of K3.

Theorem 2.9. [AF84] Let Ck denote the k × k matrix that is the incidence matrix of
a cycle of length k. Then forb(m, {C3, C4, C5, . . .}) = forb(m,C3) =

(
m
2

)
+
(
m
1

)
+
(
m
0

)
.

One has the remarkable result that any m× (
(
m
2

)
+
(
m
1

)
+
(
m
0

)
) simple matrix with

no configuration C3 is also totally balanced (Remark 3.1[Ans80b]). Totally balanced
matrices have been studied in many papers (e.g. [AF84]) with a survey contained in
[Spi03].

Forbidden Submatrices: Fixed Row and Column Order
Another variation is to ask whether the row or column order is important. In most

combinatorial investigations, permuting the row and column order is just a relabelling.
Forbidding a configuration can be thought of as forbidding all submatrices in the equiv-
alence class F̃ . In other circumstances either the row order or the column order or both
may be crucial. For example, there are algorithms that proceed by assuming you have
a special ordering and then the algorithm exploits this special ordering [AF84]. It is a
somewhat remarkable fact (due to Hoffman, Kolen and Sakarovitch [HKS86] as well as
[AF84]) that a matrix is Totally Balanced if and only if the rows and columns can be
ordered so that the resulting matrix has no submatrix[

1 1
1 0

]
.

Spinrad has a survey on some results in this area.
Results on Forbidden submatrices can be found in [Ans85], [AF86], [FFP87], [Ans00].

One can restate Theorem 6.6 as a forbidden submatrix problem where we view F0,b,0,0

as a matrix (not configuration).

Theorem 2.10. [FFP87] Let k,m be given and let f(m, k) denote the maximun number
of columns in a simple m-rowed matrix A such that A has no submatrix F0,b,0,0 (we
are viewing F0,b,0,0 = [1k |0k] as a k × 2 matrix and not as a configuration). Then
f(m, 2) =

(
m
2

)
+ 2m− 1 and f(m, k) <

(
m
k

)
+ 5k2

(
m
k−1

)
.

As noted above the theorem on bounding one-way differences yields a forbidden
configuration result. The following is the general result for forbidden submatrices.
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Theorem 2.11. [Ans00] Let F be a k× ` (0,1)-matrix. Let A be an m×n (0,1)-matrix
with no k × ` submatrix of A being equal to F . Then

n ≤ m2k−1−((k−1)/(13 log2 `))

This was an improvement on the result that n ≤ m2k−1 proved in [FFP87] via a
pigeonhole argument and on the first bound of n ≤ m13k log2 ` in [Ans85]. In any event
the conjecture was made both in [AF86], [FFP87] that:

Conjecture 2.12. Let F be a k× ` (0,1)-matrix. Let A be an m× n (0,1)-matrix with
no k × ` submatrix of A being equal to F . Then there exists a constant cF depending
only on F so that

n ≤ cFm
k.

Some recent progress is in [AC12].

Fixed Row order for Configurations
There have been some investigations for cases where only column permutations of F

are allowed. Some linear algebra proofs have this as an essential character [Ans95]. We
note that a row permutation of Kk (orKs

k) is a column permutation ofKk (orKs
k). Thus

in the standard cases we can avoid row permutations. Some induction proofs generalize,
using this idea, to the idea of order shattered sets [ARS02].

Forbidding configurations on some selection of subsets of rows
There are cases where one might want to forbid a configuration of k rows on only

some subset of the possible k-sets of rows or indeed on a collection of subsets of rows of
varying sizes. Induction, shifting and linear algebra proofs continue to work. Theorem
2.13 of Alon [Alo83] is central to this. An exploration of the proof techniques and some
generalizations are in [Ans88]. An application of the result is Theorem 2.11 [Ans00] to
the problem of forbidden submatrices.

The main results on shattered sets are stated from a different point of view (typically
assuming some configurations are present on certain subsets of the rows) but are related
(e.g. [ARS02]).

Multiset versions
Many results easily extend to allowing the elements of our family A to themselves

be multisets, the usual approach being to allow element i (corresponding to row i) to
have maximum multiplicity ei. Thus rather than entries 0 or 1 the entries in row i of
A are in [ei]. The extension of Theorem 1.7 to multisets with e1 = e2 = · · · = em = e
is in [Ste78] and the extension of Theorem 1.7 to multisets allowing different ei’s is in
[KM78]. The extension to forbidding K|S| on rows S for a family of sets S ∈ T ⊆ 2[m]

while having various element multiplicities is in [Alo83]. Define an m-rowed matrix A

11



to be e-simple if there are no repeated columns and if any entry in the ith row of A is
chosen from {0, 1, . . . , ei} for i = 1, 2, . . . ,m. In this context, we use KS to denote the
k ×

(∏
i∈S(ei + 1)

)
e-simple matrix.

Theorem 2.13. [Alo83]. Let m, e1, e2, . . . , em be given positive integers and let S be
given with S ⊆ 2[m]. Let f(m,S) be the number of (m, e1, e2, . . . , em)-columns which do
not have all 0’s for the rows indexed by S for any S ∈ S. Then if A is m× n e-simple
matrix with K|S| 6≺ A|S for any S ∈ S, then

n ≤ f(m,S).

There are some forbidden configuration ideas in [AM85] that explore the natural
generalization of Ks

k and Theorem 1.10 to multisets. The results in [AA95] are stated
in terms of divisors of an integer

∏m
i=1 p

ei
i .

A recent variation of Füredi and Sali [FS11] considers forbidding versions of Kk

consisting of two symbols. Let Kk({i, j}) denote the k × 2k matrix consisting of all
possible columns on the two symbols i, j. Let A be an m × n matrix with entries in
{0, 1, 2, . . . , e} and no repeated columns. Assume that for each pair i, j ∈ {0, 1, 2, . . . ,m}
we have a bound k(i, j). Assume A has no configuration Kk(i,j)(i, j) for each pair
i, j ∈ {0, 1, 2, . . . , e}. Then we can obtain a polynomial bound on n (polynomial in m
where e and the values k(i, j) are viewed as constants) that reduces to Theorem 1.7 in
the case e = 1 and k(0, 1) = k.

Interestingly, the Bixby and Cunningham [BC87] proof of the bound on the number
of distinct columns for a totally unimodular matrix, a (-1,0,1)-matrix, uses Theorem 1.7
for k = 2. Further applications to matrices with more than just two possible entries are
found in [Ans90a].

Results where we allow our family A to be a multiset are more problematic and we
quickly would have forb(m,F ) be infinite by either repeating the column of 0’s or the
column of 1’s. The design theoretic results of [AB] do use such an interpretation when
the column sums are restricted.

VC-dimension
Vapnik and Chevonenkis [VC71] were interested in applied probablility when they

studied the fundamental result Theorem 1.7. Applications to learning theory continue
to be developed. There are other applications. Some have described VC-dimension as
a good measure of the complexity of a hypergraph [ŁS10]. An important application is
to transversals. For this concept, a column of 0’s causes difficulties (or an empty edge
in the hypergraph) so in what follows assume we do not have the column of 0’s. Let
S ⊆ [m] be a transversal of A if each column of A has at least one 1 in a row of S.
Seeking a minimum cardinality transversal, we let x be the (0,1)-incidence vector of S,
and compute:

τ = min
{
1 · x subject to ATx ≥ 1, x ∈ {0, 1}m

}
.

12



The natural fractional problem is:

τ ∗ = min
{
1 · x subject to ATx ≥ 1, x ≥ 0

}
.

Haussler and Welzl obtained a ‘close’ connection between τ and τ ∗.

Theorem 2.14. (Haussler and Welzl [HW87]) Assume A is a (0,1)-matrix with no
column of 0’s. If A has VC-dimension k then τ ≤ 16kτ ∗ log(kτ ∗).

An example of the use of this is by Łuczak and Thomassé [ŁS10] to solve a colouring
problem.

Patterns
A problem which sounds very similar to forbidding a configuration is to consider

how many 1’s an m×n matrix can have subject to some ‘forbidden configuration’ of 1’s
sometimes called a pattern. There are several differences including that we do not allow
row and column permutations (although one could do this by forbidding patterns in F̃ )
and the fact we do not concern ourselves with 0’s (if we think of patterns as subgraphs
then our forbidden configurations are like induced subgraphs). If we choose to forbid
a k × ` submatrix of 1’s then this is the problem of Zarankiewicz [KST54]. A number
of papers study problems related to patterns: [Für90],[BG91],[FH92],[MT04],[Tar05].
Assume you have been given some k × ` (0,1)-matrix F which we can call a pattern.
We ask for the maximum number of 1’s in an m× n matrix A which has the property
that there is no k × ` submatrix B with F ≤ B. Füredi and Hajnal [FH92] considers
all patterns of 4 1’s as well as other patterns. Marcus and Tardös [MT04] solve an
important conjecture of Füredi and Hajnal and also a conjecture of Stanley and Wilf
by considering a pattern corresponding to a permutation matrix [MT04] . Various
bounds such as m log n arise for forbidden patterns so some results have quite different
character from forbidden configuration bounds. Results from patterns have been useful
in our investigations [ARS11b]. When applying Conjecture 3.2, it is natural to ask how
many columns can we select from a large product (e.g. Tm/2×Tm/2) while still avoiding
some configuration (e.g. T2 × T2). We may encode each chosen column of the product
Tm/2 × Tm/2 as a 1 in an m/2×m/2 matrix A and the forbidden configuration T2 × T2
forces A to avoid a pattern of a 4 × 4 permutation matrix (as well as other patterns).
Results in [ARS11b] expand on this.

Covering Arrays
A covering array of strength k is a (0,1)-matrix such that every k-set of rows contains

a copy of Kk (this is usually done for the transposed matrix). One would be interested
in the minimum number of columns for which a covering array on m rows exist. The
following result of Kleitman and Spencer answers most of the questions asymptotically
since

Theorem 2.15. Kleitman and Spencer[KS73] Let k be given. Then there exists an m-
rowed (0,1)-matrix A such that for every S ∈

(
[m]
k

)
, that Kk ≺ A|S such that ‖A‖ is

Θ(logm).

13



A survey article on binary covering arrays by Lawrence et al [JL11] is recommended.
In [AM11] we defined

req(m,F ) = min
A
{|A| : A is m-rowed and simple; for all S ∈

(
[m]

k

)
F ≺ A|S}.

An application to forbidden configurations occurs when we consider what we must delete
in order to avoid a configuration. The question is typically only relevant for the number
of rows small.

Lemma 2.16. [AM11] Let k, p, q be given with p + q ≤ k. Let A be a k-rowed simple
matrix with no configuration F = 1p0q×Kk−(p+q). Then for every S ⊆

(
[k]
p+q

)
set of rows

of the matrix Kp
p+q ≺ (Kk\A)|S. Thus forb(k, (1p0q)×Kk−(p+q)) = 2k − req(k,Kp

p+q).

3 Main Conjecture for asymptotic bounds
Our investigations have led us to a conjecture on the asymptotic growth of forb(m,F ) for
a fixed F asm goes to infinity. We had noted that all our results had forb(m,F ) = Θ(me)
for an integer e. Our conjecture involves the product construction (Definition 1.6). Let
Ai be an mi×ni simple matrix for 1 ≤ i ≤ t. The t-fold product A = A1×A2×· · ·×At

is an (
∑t

i=1mi)× (Πt
i=1ni) simple matrix. Let Ih denote the h× h identity matrix and

Ich denotes its (0,1)-complement. Let Th denote the h× h triangular matrix

Th =


1 1′s

1
. . .

0′s 1

 .
The three matrices I, Ic, T are our proposed building blocks for product constructions.
Note that if each Ai in the t-fold product above is of size m/t × m/t then the t-fold
product has m rows and Θ(mt) columns. Let F be a k × ` (0,1)-matrix.

Definition 3.1. Let X(F ) be the smallest p so that F is a configuration in A1 × A2 ×
· · · ×Ap for every choice of Ai as either Im/p, Icm/p or Tm/p. Alternatively, assuming F
is not a configuration in at least one of I, Ic, T , then X(F )− 1 is the largest choice of
p so that F is not a configuration in A1×A2× · · · ×Ap for some choice of Ai as either
Im/p, Icm/p or Tm/p.

We are assuming m is large and divisible by p, in particular that m ≥ (k+1)(k`+1)
so that m/p ≥ k` + 1. Divisibility by p does not affect the asymptotics since we can
use a simple submatrix of a simple matrix that avoids F for construction purposes. We
are also using the fact that we need only consider p-fold products for p ≤ k+ 1, since F
is a configuration in ` ·Kk and we can find ` ·Kk (and hence F ) as a configuration in
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A1 × A2 × · · · × Ak+1 by taking 1 row from each of the first k products (each row has
[01]) and then, since we are taking no rows from the final Ak+1, we get the configuration
(m/(k+1)) ·Kk in the product. Or we could appeal to Theorem 1.9 which has forb(m, ` ·
Kk) being O(mk) and hence ` · Kk must be in a (k + 1)-fold product else this would
yield (forb(m, ` ·Kk) is Ω(mk+1), a contradiction. If F is a configuration in the p-fold
product A1 × A2 × · · · × Ap, assume that ai rows of Ai are used with

∑p
i=1 ai = k.

If we form the submatrix of Ai of ai rows, then we would be interested in at most `
copies of a given column on these rows (F has ` columns) if this is possible. Now for
t ≥ k + `, any ai rows of K1

t contains ` columns of 0’s as well as a copy of K1
ai
. The

analogous result is true for Kt−1
t . Also for t ≥ kl + l, the ai rows of Tt consisting of

rows ` + 1, 2` + 1, 3` + 1, . . . , k` + 1 have ` columns of 0’s and ` · Tai . Thus as long as
m ≥ (k + 1)(k`+ 1) we are able to use the matrices Ai as if they were arbitrarily large.

Conjecture 3.2. [AS05] We believe that

forb(m,F ) = Θ(mX(F )−1).

Note that the definition of X(F ) ensures forb(m,F ) is Ω(mX(F )−1), via the product
construction, although for X(F ) = 1 a little care must be taken. The use of the
product construction for forbidden configurations is introduced in [AGS97] with non-
trivial applications to Theorem 2.6 [AGS97] and Theorem 3.4 [AGS97] for cases with
k = 2 and k = 3. The Conjecture 3.2 has been verifed for k = 2 in Theorem 4.2, k = 3
in Theorem 5.1, l = 2 in Theorem 7.2, k = 4 and F simple in Theorem 6.1, and other
cases. Moreover the Conjecture has motivated work such as in Conjecture 8.1.

It is important to note that the constant in front of the leading term mX(F )−1 of
forb(m,F ) is not predicted by the Conjecture and so the Conjecture is little help with
exact bounds. Also computing X(F ) is non-trivial (for large F ).

Problem 3.3. Show that computing X(F ) is NP-hard.

Perhaps the problem Partition into Cliques would be useful. We have yet to make
a direct connection between our proofs of asymptotic bounds for forb(m,F ) with the
derivation of X(F ). We think of this problem as a configuration version of the Erdős-
Stone-Simonovits Theorem [ES46] for the maximum number of edges in a graph avoiding
some specified subgraph H where χ(H) is relevant.

Some consequences of the conjecture can be considered problems.

Problem 3.4. Let forb(m,F ) be Θ(mp). Is it true that forb(m, t · F ) is O(mp+1)?
Let forb(m, 2 · F ′) be Θ(mq). Is it true that forb(m, t · F ′) is Θ(mq) for any t ≥ 2?

Problem 6.4 is a specific instance of this problem.

4 F is a 1× ` or 2× ` (0,1)-matrix
For completeness we consider 1× ` F (Theorem 5.1 and Corollary 5.2 from [AFS01]).
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Theorem 4.1. Assume F is a 1× ` (0,1)-matrix with p 1’s and with p ≥ `− p ≥ 0 and
let F ′ be the 1× p (0,1)-matrix with p 1’s. Assume m ≥ p− 1 ≥ 1. Then

forb(m,F ′) = forb(m,F ) = bpm
2
c+ 1.

For the case F is 2 × `, the asymptotic classification of forb(m,F ) is completed in
[AGS97]. We need some special matrices

F1 =

[
1
0

]
, F2(t) =

[
0
0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0

0
1

1
1

]
, F3(t) =

[
0
0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0

t︷ ︸︸ ︷
0 · · · 0
1 · · · 1

]
.

Theorem 4.2. Let F be a 2× ` (0,1)-matrix.
(Constant Cases) If F = F1, then forb(m,F ) = Θ(1).
(Linear Cases) If F has at least one configuration from K0

2 , K1
2 , K2

2 ,
[2 · F1], and if F is a configuration in F2(t), F3(t), F3(t)

c for some t ≥ 1, then
forb(m,F ) = Θ(m).
(Quadratic Cases) If F has at least one configuration from 2 · K0

2 , [K0
2 |2 · K1

2 |K2
2 ], or

2 ·K2
2 then forb(m,F ) = Θ(m2).

In addition, any 2× ` (0,1)-matrix F will fall into one of the three Cases.

Proof: The linear bound for forb(m,F2(t)) is Theorem 2.2[AGS97]. The linear bound
for forb(m,F3(t)) is Theorem 2.3[AGS97]. The quadratic construction for [K0

2 |2 ·K1
2 |K2

2 ]
is Theorem 2.6[AGS97]. The quadratic bound in general for 2-rowed forbidden config-
urations follows from Theorem 1.9. All the lower bounds follow from the constructions
given in Conjecture 3.2 but were developed in [AGS97]. For example a linear construc-
tion for 2 · F1 is Im.

A large number of exact or nearly exact bounds are available for 2-rowed F .
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Table 1.

configuration F forb(m,F ) reference

[ q︷ ︸︸ ︷
0 · · · 0
1 · · · 1

] ⌊
(q+1)m

2

⌋
+ 2, m large Thm 4.6[AB][

0
1

]
2 [AFS01][

0 0
1 1

]
m+ 2 [AFS01][

0 0 0
1 1 1

]
2m+ 2 [AFS01][

0 0 0 0
1 1 1 1

] ⌊
5m
2

⌋
+ 2 [AK07][

1 0 0
0 1 1

] ⌊
3m
2

⌋
+ 1 [AGS97][

1 0 0 0
0 1 1 1

] ⌊
7m
3

⌋
+ 1 [AFS01][

1 0 0 0 0
0 1 1 1 1

] ⌊
11m
4

⌋
+ 1 [AK07][

1 0 0 0 0 0
0 1 1 1 1 1

] ⌊
15m
4

⌋
+ 1 [AK07][

1 1 0 0 0
0 0 1 1 1

] ⌊
8m
3

⌋
[AFS01][

1 1 0 0 0 0
0 0 1 1 1 1

] ⌊
10m
3
− 4

3

⌋
[AK07][

1 1 0 0 0 0 0
0 0 1 1 1 1 1

]
4m [AK07]

[ p︷ ︸︸ ︷
1 · · · 1
0 · · · 0

p︷ ︸︸ ︷
0 · · · 0
1 · · · 1

]
pm− p+ 2 [AFS01]

An interesting case for which we do not know the exact bound is the following.
Theorem 4.3. [AK07], [AFS01] Let p, q be given with p < q. Then

(
p+ q

2
+O(1))m ≤ forb(m,

[ p︷ ︸︸ ︷
1 · · · 1
0 · · · 0

q︷ ︸︸ ︷
0 · · · 0
1 · · · 1

]
) ≤ qm− q + 2.

From Theorem 2.6 and Corollary 2.7 of [AFS01] we obtain:
Theorem 4.4.

forb(m,
[
0 1 1 1
0 0 0 0

]
) = forb(m,

[
0 1 1 1
1 0 0 0

]
) = forb(m,

[
0 1 1 1 0 1
0 0 0 0 1 1

]
) =

⌊7m

3

⌋
+1

17



From Theorem 2.3 and Corollary 2.5 of [AFS01] we obtain:

Theorem 4.5.

forb(m,
[
0 1 1
1 0 0

]
) = forb(m,

[
0 1 1 0 1
0 0 0 1 1

]
) = b3m

2
c+ 1.

We have the following exact bound (for large m) which is Theorem 1.3 in [AB]. A
pigeonhole argument yields a bound that exceeds the bound below by a linear amount
and for small m the larger pigeonhole bound can be achieved.

Theorem 4.6. [AB] Let q ≥ 3 be given. Then for m ≥ max{5q − 4, 8q − 18},

forb(m,F = q ·
[
1
0

]
=
[ q︷ ︸︸ ︷

1 1 · · · 1
0 0 · · · 0

]
) = bq + 1

2
mc+ 2. (2)

Here is a table of bounds for 2-columned F with 1 or 2 rows.

Configuration forb(m,F ) Proof
F1,0,0,0 =

[
1 1

] (
m
1

)
+
(
m
0

)
Thm 1.7

F0,1,0,0 =
[
1 0

] (
m
0

)
Thm 1.7

F2,0,0,0 =

[
1 1
1 1

] (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F1,1,0,0 =

[
1 1
1 0

] (
m
1

)
+
(
m
0

)
Thm 1.7

F1,0,0,1 =

[
1 1
0 0

] (
m
1

)
+
(
m
0

)
+
(
m
m

)
[AFS01] or Thm 7.3

F0,2,0,0 =

[
1 0
1 0

] (
m
1

)
+
(
m
0

)
Thm 1.7

F0,1,1,0 =

[
1 0
0 1

] (
m
1

)
+
(
m
0

)
Thm 1.7

Let us use the following notation for 2-rowed configurations (as opposed to notation
for 2-columned configurations):

F2(r, p, q, s) =


r︷ ︸︸ ︷

00 · · · 0
00 · · · 0

p︷ ︸︸ ︷
11 · · · 1
00 · · · 0

q︷ ︸︸ ︷
00 · · · 0
11 · · · 1

s︷ ︸︸ ︷
11 · · · 1
11 · · · 1

]
.

Theorem 4.7. (Thm 2.2 [AFS01]) Let p ≥ 1 be given. Then forb(m,F2(1, p, p, 0)) =
pm− p+ 2.

Theorem 4.8. (Thm 2.3 [AFS01]) Let p ≥ 1 be given. Then forb(m,F2(1, p, 1, 1)) ≤
(p− 1

2
)m+ 1.
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Theorem 4.9. [AFS01] We have forb(m,F2(1, 2, 2, 1)) = bm2

4
c+m+ 1.

Theorem 4.10. Let p ≥ 4 be given. There exists an m0 and a c so that for m ≥ m0

and m ≥ 4(p− 1)3/2,

m2

4
+ (p− 1

1

2
−√p− 1)m+O(p) ≤ forb(m,F2(1, p, p, 1)) ≤ m2

4
+ (p− 1)(m− 2) + c.

Theorem 4.11. Let r, p, q, s be given with r ≥ 2, r ≥ p, q, s. Then

forb(m,F2(r, 0, 0, 0)) = forb(m,F2(r, p, q, s)) =
r + 1

6
m2 +O(m).

The bounds do grow for larger p as the coefficient of m2 increases from r+1
6

to r−1
2
.

Theorem 4.12. Let r, p, q, s be given with r, p, s ≥ 2 and r ≥ s. Then

forb(m,F2(r, p, p, s)) ≤
r − 1

2
m2 +O(m),

and for r, s ≥ 3,

lim
p−→∞

forb(m,F2(r, p, p, s))

m2
=
r − 1

2
.

The following (Theorem 3.5 [AFS01]) would be a useful (and somewhat surprising)
tool in extending exact bounds.

Theorem 4.13. Let r, p, q, s be given with 2 ≤ p < q. If there exist a, b, c with
forb(m,F2(r, p, p, s)) ≤ am2 + bm + c and a, b > 0, then there exists an m0 (depending
on r, p, q, s, a) so that for m ≥ m0 then forb(m,F2(r, p, q, s)) ≤ am2 + bm+ c.

5 F is a 3× ` (0,1)-matrix
For the case F is 3× `, the asymptotic classification of forb(m,F ) is begun in [AGS97],
[AFS01] and was completed in [AS05]. The following configurations are needed for
Theorem 5.1:

F1 =

1
0
0

 , F2 =

1 0 1 0
0 1 1 1
0 0 0 1

 , F3 =

1 0 1 0
0 1 0 1
0 0 1 1

 ,

F4(t) =

 0
0
0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0
0 · · · 0

t︷ ︸︸ ︷
0 · · · 0
1 · · · 1
0 · · · 0

0
0
1

t︷ ︸︸ ︷
1 · · · 1
1 · · · 1
0 · · · 0

1
0
1

t︷ ︸︸ ︷
0 · · · 0
1 · · · 1
1 · · · 1

1
1
1

 ,
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F5(t) =

 0
0
0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0
0 · · · 0

t︷ ︸︸ ︷
0 · · · 0
1 · · · 1
0 · · · 0

0
0
1

1
1
0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0
1 · · · 1

t︷ ︸︸ ︷
0 · · · 0
1 · · · 1
1 · · · 1

1
1
1

 ,

F6(t) =

 0
0
0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0
0 · · · 0

t︷ ︸︸ ︷
0 · · · 0
1 · · · 1
0 · · · 0

t︷ ︸︸ ︷
0 · · · 0
0 · · · 0
1 · · · 1

t︷ ︸︸ ︷
1 · · · 1
1 · · · 1
0 · · · 0

t︷ ︸︸ ︷
1 · · · 1
0 · · · 0
1 · · · 1

 .
Theorem 5.1. Let F be a 3× ` (0,1)-matrix.
(Linear Cases) If F has at least one column and if F is a configuration in F2 then
forb(m,F ) = Θ(m).
(Quadratic Cases) If F has at least one configuration from K0

3 , K1
3 , K2

3 , K3
3 , 2 ·F1, 2 ·F c

1

or F3 and if F is a configuration in F4(t), F5(t), F6(t) or F6(t)
c for some t ≥ 1, then

forb(m,F ) = Θ(m2).
(Cubic Cases) If F has at least one configuration from 2 ·K0

3 , [2 ·K1
3 |K2

3 ], [2 ·K1
3 |K3

3 ],
[K0

3 |2 ·K2
3 ], [K1

3 |2 ·K2
3 ] or 2 ·K3

3 then forb(m,F ) = Θ(m3).
In addition, any 3× ` (0,1)-matrix F will fall into one of the three Cases.

Proof: The linear bound for forb(m,F2) is Theorem 3.3[AGS97]. The quadratic bound
for forb(m,F4(t)) is Theorem 3.9[AGS97]. The quadratic bound for forb(m,F5(t)) is
Theorem 4.2 in [AS05] and the quadratic bound for forb(m,F6(t)) is Theorem 4.1 in
[AS05]. The cubic bound for all 3-rowed F follows from Theorem 1.9 above. All the
lower bounds follow from the constructions given in Conjecture 3.2 but had been devel-
oped as follows. Quadratic lower bounds for forb(m,K1

3), forb(m,K2
3), forb(m,F3) are

in Corollary 3.5[AGS97], quadratic lower bound for forb(m,K3
3) (and hence forb(m,K0

3)
by taking the 0-1-complement) is in Theorem 3.6[AGS97], quadratic lower bound for
forb(m, 2 · F1) (and hence forb(m, 2 · F c

1 )) is in Theorem 3.7[AGS97]. A cubic lower
bound for forb(m, 2 · K3

3) (and hence forb(m, 2 · K0
3)) is in Theorem 3.9[AGS97] and

cubic lower bounds for forb(m, [2 ·K2
3 |K0

3 ]) and forb(m, [2 ·K2
3 |K1

3 ]) (and hence also for
forb(m, [2 ·K1

3 |K3
3 ]),forb(m, [2 ·K1

3 |K2
3 ])) are in Theorem 3.10[AGS97].

There are a number of exact results.

Theorem 5.2. (Theorem 3.3 [AGS97]) forb(m,F2) = 2m.

Theorem 5.3. forb(m,F3) = bm2/4c+m+ 1.

Proof: The construction of taking [K0
m/2 |Tm/2]× [K0

m/2 |Tm/2] is Theorem 3.4 [AGS97].
To prove the bound, one can use shifting (Section 12) and Theorem 12.1. The number
of different columns of A|S on a given set S with |S| = 3 is at most 6 and so the same
is true for the shifted matrix T (A). But then since T (A) is a downset, all columns in
T (A) have at most 2 1’s and considering the columns of 2 1’s as edges of a graph on a
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vertex set identified with the rows, we see that the graph has no triangles on any triple
S (or T (A)|S would have 7 different columns). Thus by Mantel’s bound (Turán) there
are at most bm2/4c columns of 2 1’s and up to m+ 1 additional columns of less than 2
1’s.

Let F8(k) =


1 1 1
1 1 1
...

...
...

1 1 1
1 0 0


 k − 1

.

Note that F8(3) is in Table 2. The generality of this result for larger k costs nothing.

Theorem 5.4. [AK10] Let m be given.

forb(m,F8(3)) = forb(3 · 1200) ≤
4

3

(
m

2

)
+

(
m

1

)
+

(
m

0

)
,

with equality if m ≡ 1, 3(mod 6). Let k be given.

then forb(m,F8(k)) = forb(m, 3 · 1k−1) ≤
k + 1

k

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
, (3)

with equality if there exists a design on [m] of blocks of size k such that for each subset
S ∈

(
[m]
k−1

)
, there is exactly one block of size k containing it.

We have the following exact bound (for large m) which is Theorem 1.5 in [AB]. A
pigeonhole argument yields a bound that exceeds the bound below by a linear amount
and for small m the larger pigeonhole bound can be achieved.

Theorem 5.5. [AB] Let q > 2 be given. There exists a constant M so that for m > M ,

forb(m, q · (1201)) =


q︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
0 0 · · · 0

) ≤ m+ 2 +
q + 1

3

(
m

2

)
, (4)

with equality for m ≡ 1, 3(mod 6).

A number of exact results follow from the following result.

Theorem 5.6. [AK10] Let F be one of the following three matrices:1 1 1 0 0
1 1 0 1 0
0 0 1 0 0

 ,
1 1 1 0 0

1 1 0 1 0
0 0 0 0 0

 ,
1 1 1 1 0 0

1 1 0 0 0 0
0 0 1 0 1 0

 .
Then for m ≥ 3, forb(m,F ) = forb(m, 2 · 1201) = forb(m,1301).
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The following two results were obtained with the assistance of a Genetic Algorithm.
Here a genetic algorithm suggested both the bound and the structure of matrices that
achieve the bound. Moreover it was used to help in the inductive steps by predicting
the structures that would be encountered.

V =

1 1 0 0
1 1 0 0
0 0 1 1

 , W =

1 1 1 1
1 1 0 0
0 0 1 1

 .
Theorem 5.7. [AR11] Let m ≥ 2. Then forb(m,W ) =

(
m
2

)
+ 2m− 1.

Theorem 5.8. [AR11] Let m ≥ 6. Then forb(m,V ) =
(
m
2

)
+m+ 4.
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3× 2 Forbidden Configurations

Configuration forb(m,F ) Proof

F3,0,0,0 =

1 1
1 1
1 1

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.11

F2,1,0,0 =

1 1
1 1
1 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F2,0,0,1 =

1 1
1 1
0 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 7.3

F1,2,0,0 =

1 1
1 0
1 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F1,1,1,0 =

1 1
1 0
0 1

 2m Thm 3.3 in [AGS97]

F1,1,0,1 =

1 1
1 0
0 0

 (
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 3.2 in [AGS97] (Thm 7.3)

F0,3,0,0 =

1 0
1 0
1 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F0,2,1,0 =

1 0
1 0
0 1

 b3m/2c+ 1 Thm 3.1 in [AGS97]
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3× 3 Forbidden Configurations

Configuration F forb(m,F ) Proof1 1 1
1 1 0
1 0 1

,
1 1 1

1 1 0
1 0 0

,
1 1 0

1 1 0
1 0 1

,1 1 0
1 1 0
1 0 0

 or

1 1 0
1 0 0
1 0 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.71 1 0

1 0 1
0 1 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.101 1 1

1 0 0
0 1 0

 or

1 1 0
1 0 1
0 1 0

 2m [AGS97]1 1 1
1 1 1
1 1 1

 5
4

(
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.121 1 1

1 1 1
1 1 0

,
1 1 1

1 1 0
1 1 0

 or

1 1 0
1 1 0
1 1 0

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.111 1 1

1 1 1
0 0 0

 4
3

(
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 5.51 1 1

1 1 1
1 0 0

 4
3

(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 5.41 1 1

1 0 0
1 0 0

,
1 1 1

1 1 0
0 0 1

,1 1 1
1 1 0
0 0 0

 or

1 1 0
1 1 0
0 0 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 5.6

It is an exercise to verify that all 3 × 3 forbidden configurations (or their (0,1)-
complements have been included in the table. We cannot complete the table for 3 × 4
matrices but perhaps it is instructive to see how many are solved by the general results.
I’ve organized the cases by first considering the number of columns of 3 1’s and then
the number of columns 1201.
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3× 4 Forbidden Configurations

Configuration forb(m,F ) Proof1 1 1 1
1 1 1 1
1 1 1 1

 6
4

(
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.12, t = 41 1 1 1

1 1 1 1
1 1 1 0

,
1 1 1 1

1 1 1 0
1 1 1 0

,1 1 1 0
1 1 1 0
1 1 1 0

 5
4

(
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.12, t = 31 1 1 1

1 1 1 1
1 1 0 0

,
1 1 1 1

1 1 1 0
1 1 0 1

,1 1 1 1
1 1 1 0
1 1 0 0

,
1 1 1 0

1 1 1 0
1 1 0 1

, (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.111 1 1 0

1 1 1 0
1 1 0 0

,
1 1 1 1

1 1 0 0
1 1 0 0

,1 1 1 0
1 1 0 1
1 1 0 0

,
1 1 1 0

1 1 0 0
1 1 0 0

,1 1 0 0
1 1 0 0
1 1 0 0

1 1 1 1
1 1 1 1
1 0 0 0

,
1 1 1 1

1 1 1 0
1 0 0 1

,1 1 1 1
1 1 1 0
1 0 0 0

,
1 1 1 0

1 1 1 0
1 0 0 1

, Exact bounds not known

or

1 1 1 0
1 1 1 0
1 0 0 0


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Configuration forb(m,F ) Proof1 1 1 0
1 1 0 1
1 0 1 1

,
1 1 1 1

1 1 0 0
1 0 1 0

,1 1 1 0
1 1 0 1
1 0 1 0

,
1 1 1 0

1 1 0 0
1 0 1 0

, (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.71 1 1 0

1 1 0 1
1 0 0 0

,
1 1 1 0

1 1 0 0
1 0 0 1

,1 1 1 0
1 1 0 0
1 0 0 0

,
1 1 0 0

1 1 0 0
1 0 1 0

,
or

1 1 0 0
1 0 1 0
1 0 0 1

1 1 1 1
1 1 1 1
0 0 0 0

 5
3

(
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Theorem 5.51 1 1 1

1 1 1 0
0 0 0 1

,
1 1 1 1

1 1 1 0
0 0 0 0

1 1 1 0
1 1 1 0
0 0 0 1

,
1 1 1 0

1 1 1 0
0 0 0 0

 Exact bounds not known1 1 1 1
1 1 0 0
0 0 1 0

,
1 1 1 0

1 1 0 1
0 0 1 0

,1 1 1 0
1 1 0 0
0 0 1 1

,
1 1 1 0

1 1 0 0
0 0 1 0

, (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 5.61 1 1 0

1 1 0 1
0 0 0 0

,
1 1 1 0

1 1 0 0
0 0 0 1

,1 1 1 0
1 1 0 0
0 0 0 0

 or

1 1 0 0
1 1 0 0
0 0 1 0


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Configuration forb(m,F ) Proof1 1 1 1
1 1 0 0
0 0 1 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+m− 2 Thm 5.71 1 0 0

1 1 0 0
0 0 1 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+ 3 Thm 5.81 1 1 0

1 1 0 1
0 0 1 1

 Exact bound not known1 1 1 1
1 1 0 0
0 0 0 0

 (
m
2

)
+m+ 2 Thm 6.101 1 0 1

1 0 1 0
0 1 1 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.101 1 1 0

1 0 0 1
0 1 0 0

 2m Thm 5.21 1 0 0
1 0 1 0
0 1 0 1

 ⌊
m2

4

⌋
+
(
m
1

)
+
(
m
0

)
Thm 5.3

6 F is a 4× ` (0,1)-matrix
In this section we begin by considering F to be itself a simple matrix. For the case
that F is simple and 4 × `, the asymptotic classification of forb(m,F ) was completed
by Balin Fleming [AF10]. The main tools are Theorem 1.13 and Corollary 1.8.

We are able to establish the complete classification for the asymptotics of forb(m,F )
for any 4× ` simple matrix F and the result is consistent with the conjecture. To state
the result we need a number of matrices.

F1 =


1
1
0
0

 , F2 =


1 1
1 0
0 1
0 0

 , F3 =


1
1
1
0

 , F4 =


1 0
1 0
0 1
0 1

 , F5 =


1 0 0
0 1 0
0 0 1
1 1 1

 ,

F6=


1 0 1 1 1 0 1 1
0 1 1 0 1 1 0 0
0 0 1 1 0 1 0 1
0 0 0 1 0 0 1 0

 , F7=


1 0 1 1 1 1 0 1
0 1 1 1 1 0 1 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 0

 , F8=


1 0 1 0 0 1
0 1 0 1 1 0
0 0 1 1 1 1
0 0 1 1 0 0

 ,
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F9 =


1 0 0
0 1 0
0 0 1
0 0 1

 , F10 =


1 0 0
0 1 0
0 0 1
0 0 0

 ,

F11 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 , F12 =


1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

 , F13 =


1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1

 .
Theorem 6.1. Let F be a 4× ` simple matrix.
(Linear Cases) If F has a configuration F1 and if F is a configuration in F2 then
forb(m,F ) = Θ(m).
(Quadratic Cases) If F has a configuration F3, F c

3 , F4, F5, or F c
5 and if F is a configu-

ration in F6, F7, or F8, then forb(m,F ) = Θ(m2).
(Cubic Cases) If F has a configuration K0

4 , F9, F c
9 , F10, F c

10, F11, F12, F c
12, F13, or K4

4

then forb(m,F ) = Θ(m3).
In addition, any 4× ` simple matrix F will fall into one of the three Cases.

Proof: The lower bounds are established by constructions of Conjecture 3.2. For
definiteness, note that F1 /∈ I, F3 /∈ I × I, F4 /∈ T × I, F5 /∈ Ic × Ic, K0

4 , F9, F10 /∈
Ic × Ic × Ic, F11, F12, F13 /∈ T × T × T . The arguments are not entirely trivial. We see

that any two rows of Ic do not have
[
0
0

]
and so a k-rowed matrix which has

[
0
0

]
on every

pair of rows is not a configuration in the k− 1-fold product Ic× Ic× · · ·× Ic. Similarly,

any two rows of T do not have
[
1 0
0 1

]
and so a k-rowed matrix which has

[
1 0
0 1

]
on

every pair of rows is not a configuration in the (k−1)-fold product T ×T ×· · ·×T . This
was noted following Corollary 3.5 in [AGS97]. Theorem 7.2, Theorem 1.13, Theorem 1.7
establishes the upper bounds.

To show that any 4×`matrix F is included in one of the three categories, assume that
F is a matrix that falls into neither the linear case or the cubic case. For convenience,
think of a column of column sum 2 as an edge (i, j) if the column has 1’s in rows
i, j. A matrix F falls into the linear case only if F = F1 or F = F2. Examining the
configurations K0

4 , F9, F c
9 , F10, F c

10, F11, F11, F12, F c
12, F13, F c

13 or K4
4 , we deduce that

F cannot have a column of all 0’s (K0
4)or a column of all 1’s (K4

4). F has at most two
columns of column sum 1 and at most two columns of column sum 3 (using F10, F

c
10). In

addition four edges forming a four cycle yields F11 and so there are at most 4 edges in F
which must be a subgraph of a triangle plus one edge from the triangle to the remaining
vertex. (From this and Corollary 1.8 it follows that any 4-rowed configuration with a
quadratic bound has at most 8 column types).

If F has no columns of either three 1’s or three 0’s then, assuming it is not F1 or F2,
it must contain two disjoint edges and hence F4 or have three columns of column sum
2 forming a triangle (F c

5 ) or three columns of column sum 2 sharing a vertex (F5).
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For the general case F is 4×`, the asymptotic classification of forb(m,F ) is not com-
plete but we can use the conjecture to predict the answer. The following configurations
are needed for Conjecture 6.3:

F6(t) =


1 0 1 1
0 1 1 0
0 0 1 1
0 0 0 1

t ·


1 0 1 1
1 1 0 0
0 1 0 1
0 0 1 0


 ,

F7(t) =


1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1

t ·


1 1 0 1
1 0 1 0
0 0 1 1
0 1 0 0


 , F8(t) =


1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·


0 1
1 0
1 1
0 0


 ,

B1 =


0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1

 , B2 =


0 0 0 1 1
0 0 0 1 1
0 0 1 1 1
0 1 1 0 1

 , B3 =


0 0 0 1 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 1

 ,

B4 =


0 0 0 0 1
0 0 1 1 1
0 0 1 1 1
0 1 0 1 1

 , B5 =


0 0 0 1 1
0 0 1 1 1
0 0 1 0 1
0 1 0 1 1

 , B6 =


0 0 0 1 1
0 0 1 1 1
0 0 1 1 1
0 1 0 0 1

 ,

D12 =


0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1

 .
Theorem 6.2. [ARS11a] Let t be given. Then forb(m,F8(t)) is Θ(m2).

Conjecture 6.3. Let F be a 4× ` (0,1)-matrix.
(Linear Cases) If F has F1 as a configuration and if F is a configuration in F2 then
forb(m,F ) = Θ(m).
(Quadratic Cases) If F has at least one configuration from F3, F c

3 , F4, F5, F c
5 or 2 ·F1,

and if F is a configuration in F6(t), F7(t) or F8(t) for some t , then forb(m,F ) = Θ(m2).
(Cubic Cases) If F has at least one configuration from K0

4 , 2 · F3, F9, F c
9 , F10, F c

10,
F11, F12, F c

12, F13, 2 · F c
3 or K4

4 and if F is a configuration in [K4 | t · [K4 − Bi]] or
[K4 | t · [K4 −Bi]]

c for i = 1, 2, . . . 6 or [K0
4 | t ·D12] then forb(m,F ) = Θ(m3).

(Quartic Cases) If F has at least one configuration from 2·K0
4 , [2·K2

4 ], [2·K4
4 ] or [2·K1

4 |C]
or [2 ·K1

4 |C]c where C is one of K2
4 , F12, F c

9 , F c
10, K4

4 , then forb(m,F ) = Θ(m4).
In addition, any 4× ` (0,1)-matrix F will fall into one of the four cases.

The boundary between linear and quadratic follows easily from Theorems 7.1,7.2.
The boundary between quadratic and cubic is partly proven. The cubic lower bounds
are from the constructions. The boundary between cubic and quartic is in Theorem 1.14
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and Theorem 1.15. The quartic bound of Theorem 1.9 completes the cases. We would
need to establish forb(m,F6(t)) and forb(m,F7(t)) are both quadratic to prove this
conjecture.

The Conjecture 3.2 predicts the following and it would be a helpful first step.

Problem 6.4. Is forb(m, t · F4) equal to Θ(m2) for t ≥ 3?

An argument special for the case t = 2 proves the following:

Theorem 6.5. [Ans90b] We have that forb(m, 2 · F4) is Θ(m2).

An exact bound for F4 = F0,2,2,0 follows from a result of Frankl, Füredi, Pach [FFP87]
who asked the following problem (which can be viewed as a forbidden submatrix prob-
lem).

Theorem 6.6. [FFP87] Let f(n, k) denote the length of the longest sequence {S1, S2, . . .}
of distinct subsets of [m] such that |Si\Sj| < k for all i < j. Then f(m, 2) =

(
m
2

)
+2m−1

and f(m, k) <
(
m
k

)
+ 5k2

(
m
k−1

)
.

Without loss of generality we may assume the sequence of sets is in non-decreasing
order by cardinality. Now consider any simple m-rowed matrix which has no config-
uration F0,k,k,0. If we reorder the columns so that columns sums are never decreasing
from left to right then the resulting matrix has no submatrix F0,k,0,0 = [1k |0k] and
so interpreting the columns as subsets of [m], we identify a sequence with the desired
property. Moreover, interpreting the sequence as a simple matrix, the resulting matrix
has no submatrix F0,k,0,0 = [1k |0k] and hence no configuration F0,k,k,0.

Corollary 6.7. [FFP87] We have forb(m,F4) =
(
m
2

)
+m− 2.

This can also be viewed as a variation of a result of Kleitman [Kle66]. In that result
the condition was that pairs of sets B,C have |B\C| + |C\B| ≤ 2t. The condition of
forbidding F4 is slightly weaker than the condition for t = 1 and so the bound for the
result below is slightly larger than Kleitman’s bound. The matrices in ext(m,F ) are
determined. This is modest progress for Problem 15.2.

We have the following exact bound (for large m) which is Theorem 1.6 in [AB]. A
pigeonhole argument yields a bound that exceeds the bound below by a linear amount.
For small m the larger pigeonhole bound can be achieved.

Theorem 6.8. Let q > 2 be given. There exists a constant M so that for m > M ,

forb(m, q · F1) =


q︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0

) ≤ 2 + 2m+
q + 3

3

(
m

2

)
, (5)
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with equality if in addition m ≡ 1, 3(mod 6). Moreover, for m > M , if the bound is
achieved by an m-rowed matrix A, then A has all columns of sum 0, 1, 2, m− 2, m− 1,
m and for some integers a, b with a + b = q − 3, the columns of sum 3 correspond to a
simple (m, 3, a)-design and the columns of sum m−3 correspond to the (0,1)-complement
of a simple (m, 3, b)-design and there are no other columns.

A more general result for q · (1t01), and so involving t-designs, is proven by Niranjan
Balachandran [Bal12].
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4× 2 Forbidden Configurations

Configuration forb(m,F ) Proof

F4,0,0,0 =


1 1
1 1
1 1
1 1

 (
m
4

)
+
(
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F3,1,0,0 =


1 1
1 1
1 1
1 0

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F3,0,0,1 =


1 1
1 1
1 1
0 0

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 7.3

F2,2,0,0 =


1 1
1 1
1 0
1 0

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F2110 =


1 1
1 1
1 0
0 1

 ≥ (29
21

)
(
m
2

)
+
(
m
1

)
+
(
m
0

)
≤ 2
(
m
2

)
+
(
m
1

)
+
(
m
0

) [ABS11]

F2,1,0,1 =


1 1
1 1
1 0
0 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
Thm 7.3

F2,0,0,2 =


1 1
1 1
0 0
0 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(

m
m−1

)
+
(
m
m

)
Thm 7.3

F1,3,0,0 =


1 1
1 0
1 0
1 0

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7
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Configuration forb(m,F ) Proof

F1,2,1,0 =


1 1
1 0
1 0
0 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
[ABS11]

F1,2,0,1 =


1 1
1 0
1 0
0 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
[ABS11]

F1,1,1,1 =


1 1
1 0
0 1
0 0

 4m− 4 [ABS11]

F0,4,0,0 =


1 0
1 0
1 0
1 0

 (
m
3

)
+
(
m
2

)
+
(
m
1

)
+
(
m
0

)
Thm 1.7

F0,3,1,0 =


1 0
1 0
1 0
0 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
+
(
m
m

)
[ABS11]

F0,2,2,0 =


1 0
1 0
0 1
0 1

 (
m
2

)
+ 2m− 1 Thm 6.6[FFP87]

The following suggests that an exact bound for F2,1,1,0 would be difficult to obtain. In
a similar way one expects that determining an exact bound for Fa,1,1,0 would be difficult.

Theorem 6.9. Let c be a positive real number. Let A be an m×
(
c
(
m
2

)
+m+ 2

)
simple

matrix with no F2,1,1,0. Then for someM > m, there is anM×
(

(c+ 2
m(m−1))

(
M
2

)
+M + 2

)
simple matrix with no F2,1,1,0.

Results of Peter Dukes [Duk10] give a fairly tight estimate on the coefficient of m2 in
the bound for forb(m,F2,1,1,0). The following are in [AK10]. Theorem 6.11 would yield
many exact bounds using Remark 1.3.

Theorem 6.10. Let F =


1 1 1 1
1 1 0 0
1 0 1 0
0 0 0 0

 . Then for m ≥ 3 we have forb(m,F ) =
(
m
2

)
+

m+ 2.
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Theorem 6.11. Let m ≥ 4. Let F be one of the following three matrices.
1 1 1 1 1 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0
1 1 0 1 0 1 1 0 1 0
0 0 1 0 0 0 0 1 0 0

 or


1 1 1 1 1 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0
1 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0



or


1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1 0 0 0 0
0 0 1 0 1 0 0 0 1 0 1 0

 .
Then forb(m,F ) = forb(m, 2 · 1301) = forb(m,1401) =

(
m
3

)
+
(
m
2

)
+m+ 2.

Let

F11 =


1 1 1
1 1 1
1 0 0
1 0 0

 .
The following result considers a k-rowed F with 2k−4 pairs of repeated columns. Note
the difference and connection to Theorem 1.19. For a number of cases including k = 4,
this result is generalized by the result in [AM11].

Theorem 6.12. [AK07] Assumem ≥ 5. Then forb(m,F11) = forb(m,14) = forb(m,K4).
Assume k ≥ 5 and m ≥ k + 1. Then

forb(m,Kk−4 × F11) =
k−1∑
i=0

(
m

i

)
= forb(m,1k) = forb(m,Kk). (6)

Proof: The proof in the paper is a little light on details for k ≥ 5. We need the base
case ‖A‖ ≤ forb(k + 1, Kk). Let A ∈ Avoid(k + 1, Kk−4 × F11). Using the standard
induction we have ‖A‖ = ‖[B(r)C(r)D(r)]‖ + ‖C(r)‖ where [B(r)C(r)D(r)] has no
Kk−4 × F11 and C(r) has no Kk−3 × F11. Now by induction ‖C(r)‖ ≤ forb(k,Kk−1)
and ‖[B(r)C(r)D(r)]‖ ≤ 2k. If ‖[B(r)C(r)D(r)]‖ ≤ 2k − 1, then we obtain ‖A‖ ≤
forb(k + 1, Kk) establishing the base case. If not, then [B(r)C(r)D(r)] contains all
possible columns. Now this is true for every choice of r and so we deduce that A ∈
Avoid(k + 1, (1202)×Kk−4) from which we find ‖A‖ ≤ forb(k + 1, Kk).

7 F is a k × 1 or k × 2 (0,1)-matrix.
Recall the definitions of the (a + b)× 1 vector 1a0b and the (a + b + c + d)× 2 matrix
Fa,b,c,d = [1a+b0c+d|1a0b1c0d] from Section 1. We first consider k × 1 F .
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Theorem 7.1. Let s, k be given positive integers with s ≤ k. Then

forb(m,1s0k−s) =
s−1∑
i=0

(
m

i

)
+

k−s−1∑
i=0

(
m

i

)
.

For the case F is k × 2, the asymptotic classification of forb(m,F ) is in [AK06]. By
interchanging columns we see that forb(m,Fa,b,c,d) = forb(m,Fa,c,b,d), and by considering
(0,1)-complements we see that forb(m,Fa,b,c,d) = forb(m,Fd,c,b,a). Therefore we may
assume that a ≥ d and b ≥ c. Our result for the function forb(m,Fa,b,c,d) is the following.

Theorem 7.2. [AK06] Suppose a ≥ d and b ≥ c. Then forb(m,Fa,b,c,d) is Θ(ma+b−1)
if either b > c or a, b ≥ 1. Also forb(m,Fa,0,0,d) is Θ(ma) and forb(m,F0,b,b,0) is Θ(mb).

We should note that we have a sharper bound for F0,b,b,0 from Theorem 6.6 [FFP87].
We prove Theorem 7.2 using the strong stability result Theorem 15.1 and induction such
as Lemma 11.3. A number of exact results for k × 2 F have been obtained.

Theorem 7.3. [ABS11]Assume a, d,m are given integers with a ≥ d and m ≥ a + d,
then

forb(m, 2 · 1a0d) = forb(m,Fa,0,0,d) = forb(m,Fa,1,0,d) =
a∑

j=0

(
m

j

)
+

m∑
j=m−d+1

(
m

j

)
.

Theorem 7.4. [AK10] Let m, a, b be given integers. For m ≥ 1, a ≥ 2 and b ≥ 2,

forb(m,Fa,b,0,1) = forb(m,Fa,b,1,0) = forb(m,1a+b01)

and forb(m,Fa,b,1,1) = forb(m,1a+b02).

Also for a ≥ 2,
forb(m,Fa,1,0,1) = forb(m,1a+b01),

and for b ≥ 2,
forb(m,F1,b,1,0) = forb(m,11+b01),

forb(m,F1,b,1,1) = forb(m,11+b02).

Also for b ≥ 3 [ABS11],

forb(m,F0,b,1,0) = forb(m,1b01).

Problem 7.5. Assume we are given positive integers a, b, c, d with a ≥ d and b ≥ c.
Find some mild conditions on a, b, c, d so that forb(m,Fa,b,c,d) = forb(m,1a+b0c+d).
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8 F is a simple 5× ` matrix
For the case that F is a 5 × ` simple matrix, we can use Conjecture 3.2 to predict the
results. The non-trivial calculations to achieve this are in [AR]. Some of the asymptotic
bounds have proofs. The numbered matrices are given after the conjecture. Theo-
rem 1.13 establishes the cubic bounds. The quadratic bounds for F3, F4, . . . F11 are an
open problems except for F7.

Conjecture 8.1. Let F be a 5× ` simple matrix.
(Quadratic Cases) If F has a configuration of F1 or F2 and if F is a configuration in
F3, F4, . . . , F11 then forb(m,F ) is Θ(m2).
(Cubic Cases) If F has a configuration of one of F12, F13, . . . , F24 and if F is a configu-
ration in F25, F26, . . . , F29 then forb(m,F ) is Θ(m3).
(Quartic Cases) If F has a configuration one of F30, F31, . . . , F87 then forb(m,F ) is
Θ(m4).
In addition, any 5× ` simple matrix F will fall into one of these three cases.

Minimal quadratics:

F1 =


1
1
1
0
0

 , F2 =


0
0
0
1
1

 .

Maximal quadratics (by Conjecture 3.2):

F3 =


1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , F4 =


1 1 0 1 1 1
1 0 1 1 1 0
0 1 1 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 , F5 =


0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 1 1 0 1
1 1 1 1 1 0

 ,

F6 =


1 1 0 1 1 1
1 0 1 1 1 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 0 0 1

 , F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

 , F8 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 0
0 0 1 0 0 1
0 0 0 0 1 1

 ,

F9 =


0 0 1 0 0 1
0 1 0 0 0 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 0 0

 , F10 =


1 1 0 1 0 0
1 0 1 1 1 1
0 1 0 1 1 0
0 0 1 0 1 1
0 0 0 0 0 1

 , F11 =


1 1 0 1 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

 .
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Minimal Cubics (cubic constructions exist but minimal by Conjecture 3.2):

F12 =


1
1
1
1
0

 F13 =


0
0
0
0
1

 F14 =


1 1 0
1 0 1
0 1 1
0 0 1
1 1 0

 F15 =


0 0 1
0 1 0
1 0 0
1 1 0
0 0 1



F16 =


1 1 0
1 0 1
0 1 1
1 1 1
0 0 0

 F17 =


0 0 1
0 1 0
1 0 0
0 0 0
1 1 1

 F18 =


1 1 1 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



F19 =


0 0 0 0
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

 F20 =


0 1 1 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 F21 =


1 0 0 0
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0



F22 =


0 1 1
1 1 0
0 1 1
1 0 1
0 0 0

 F23 =


1 0 0
0 0 1
1 0 0
0 1 0
1 1 1

 F24 =


0 0 1 1
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


Maximal Cubics by Theorem 1.13:

F25 =


1 0 1 1 1 1 0
0 1 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 1 1 1 1 1 0 1 1
1 1 1 1 0 0 1 1 1
0 1 0 0 1 1 1 1 1
1 0 1 0 1 0 1 1 0
0 0 0 1 0 1 0 0 1



F26 =


1 0 1 1 1 1 0
0 1 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1
0 1 0 0 1 0 1 0
1 0 1 0 0 1 0 1
0 0 0 1 1 1 1 1



F27 =


0 1 0 0 0 0 1
1 0 0 1 1 1 0
1 1 1 0 1 1 0
1 1 1 1 0 1 1
1 1 1 1 1 0 1

1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 1 1 0 1 0 1
0 1 0 1 1 0 1 0
1 1 1 0 0 0 0 0


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F28 =


1 0 1 1 1 1 0
0 1 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 1 1 1 1 1 0 1 1
1 1 1 0 0 0 1 1 0
0 1 0 1 1 0 1 1 1
1 0 1 1 0 1 1 1 1
0 0 0 0 1 1 0 0 1



F29 =


1 0 1 1 0 0
0 1 0 0 1 1
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0

1 1 0 0 1 0
0 0 1 1 0 1
1 1 1 1 1 1
1 0 1 0 1 1
0 1 0 1 1 1


Minimal quartics by Theorem 1.13:

F30 =


1
1
1
1
1

 F31 =


0
0
0
0
0



F32 =


1 1 0
1 0 1
0 1 1
1 1 1
1 1 1

 F33 =


0 0 1
0 1 0
1 0 0
0 0 0
0 0 0

 F34 =


0 1 1
0 1 1
1 1 0
1 0 1
1 1 1



F35 =


1 0 0
1 0 0
0 0 1
0 1 0
0 0 0

 F36 =


1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0
1 1 1 1

 F37 =


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 1
0 0 0 0



F38 =


1 0 1
0 1 1
0 1 1
1 0 1
1 1 0

 F39 =


0 1 0
1 0 0
1 0 0
0 1 0
0 0 1

 F40 =


1 1 1 0 0 0
0 0 0 1 1 1
1 1 0 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1



F41 =


0 0 0 1 1 1
1 1 1 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0

 F42 =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 1 1 1 1

 F43 =


0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 0 0 0 0 0


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F44 =


1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

 F45 =


0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 1

 F46 =


1 1 1 0 0
1 0 0 1 1
0 1 0 1 1
0 1 1 1 0
1 0 1 0 1



F47 =


0 0 0 1 1
0 1 1 0 0
1 0 1 0 0
1 0 0 0 1
0 1 0 1 0

 F48 =


0 1 1
0 1 1
0 1 1
1 1 0
1 0 1

 F49 =


1 0 0
1 0 0
1 0 0
0 0 1
0 1 0



F50 =


0 1 0 1
0 0 1 1
0 1 1 1
1 0 0 1
1 1 1 0

 F51 =


1 0 1 0
1 1 0 0
1 0 0 0
0 1 1 0
0 0 0 1

 F52 =


0 1 1 0 0
0 1 0 1 1
0 0 1 1 1
1 0 1 1 0
1 1 0 0 1



F53 =


1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
0 1 0 0 1
0 0 1 1 0

 F54 =


0 1 1 1 0 0
0 1 0 0 1 1
0 1 1 1 1 1
1 0 1 0 1 0
1 0 0 1 0 1

 F55 =


1 0 0 0 1 1
1 0 1 1 0 0
1 0 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0



F56 =


0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
1 0 0 0 1
1 0 1 1 0

 F57 =


1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 1 1 0
0 1 0 0 1

 F58 =


0 0 1 1
0 0 1 1
1 0 0 1
0 1 0 1
1 1 1 0



F59 =


1 1 0 0
1 1 0 0
0 1 1 0
1 0 1 0
0 0 0 1

 F60 =


0 0 1 1 0
0 0 1 0 1
1 0 0 1 1
0 1 0 1 1
1 1 1 0 0

 F61 =


1 1 0 0 1
1 1 0 1 0
0 1 1 0 0
1 0 1 0 0
0 0 0 1 1



F62 =


0 0 1 1 0 1
0 0 1 1 1 0
1 0 1 0 1 1
0 1 0 1 1 1
1 1 0 0 0 1

 F63 =


1 1 0 0 1 0
1 1 0 0 0 1
0 1 0 1 0 0
1 0 1 0 0 0
0 0 1 1 1 0

 F64 =


0 0 1 1 1 0
0 0 1 1 0 1
1 0 1 0 0 1
0 1 0 1 1 0
1 1 0 0 1 1


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F65 =


1 1 0 0 0 1
1 1 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 1
0 0 1 1 0 0

 F66 =


0 0 1 1 1 0
0 0 1 1 0 1
1 0 1 0 1 1
0 1 0 1 1 1
1 1 0 0 0 0

 F67 =


1 1 0 0 0 1
1 1 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0
0 0 1 1 1 1



F68 =


0 0 1 1 1 0
0 0 1 1 1 1
1 0 1 0 0 1
0 1 0 1 0 1
1 1 0 0 1 0

 F69 =


1 1 0 0 0 1
1 1 0 0 0 0
0 1 0 1 1 0
1 0 1 0 1 0
0 0 1 1 0 1

 F70 =


0 0 0 1 1 1
0 0 0 1 1 1
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1



F71 =


0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 1
0 0 1 1 1 0
1 1 1 0 0 1

 F72 =


1 1 1 0 0 0
0 1 1 0 1 1
1 0 1 1 0 0
1 1 0 0 0 1
0 0 0 1 1 0

 F73 =


0 0 0 1 1 1
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 1 0 0 0



F74 =


0 0 1 1
1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

 F75 =


0 0 0 1 1 1
1 0 0 1 0 1
0 1 0 1 1 0
0 1 1 0 1 1
1 0 1 0 0 1

 F76 =


1 1 1 0 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 0 0
0 1 0 1 1 0



F77 =


0 0 0 1 1 1
1 0 0 1 1 0
0 1 0 1 0 1
0 1 1 0 0 1
1 0 1 0 1 0

 F78 =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 0

 F79 =


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 1



F80 =


1 0 0 1 1
0 1 0 1 1
0 0 1 0 1
0 0 1 1 0
1 1 0 0 1

 F81 =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
1 1 0 0 1
0 0 1 1 0

 F82 =


1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 1 1 1
0 1 1 0 1 0
1 0 0 1 0 1



F83 =


0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 0 0 1 0 1
0 1 1 0 1 0

 F84 =


1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 1 0 1
0 1 1 0 0 1
1 0 0 1 1 0

 F85 =


0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 0 1 1 0
0 1 1 0 0 1



F86 =


1 0 0 0 0 1
0 1 1 0 0 1
0 0 0 1 1 1
0 1 0 1 0 1
1 0 1 0 1 0

 F87 =


0 1 1 1 1 0
1 0 0 1 1 0
1 1 1 0 0 0
1 0 1 0 1 0
0 1 0 1 0 1


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We would need to prove quadratic bounds for the 9 matrices F3, F4, . . . , F11 in order to
complete the classification of the 5-rowed simple configurations. We have one result (it
required a detailed inductive proof).

Theorem 8.2. [ARS11c] We have that forb(m,F7) is Θ(m2).

Interestingly using Theorem 8.2 and a straightforward induction, we can establish
the 6-rowed F yielding quadratic bounds.

Let G6×3 =


1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0

 .

Theorem 8.3. [ARS11c] We have that forb(m,G6×3) is Θ(m2). Moreover for any
column α, then forb(m, [G6×3|α]) is Ω(m3). In fact if F is not a configuration in G6×3,
then forb(m,F ) is Ω(m3).

9 Boundary between Ω(mk−1) and O(mk−2)

Conjecture 3.2 predicts which k-rowed F will have forb(m,F ) being Θ(mk−2). For the
case of simple matrices we may use Theorem 1.13 directly and obtain the following 6
cases:

F1,k =

 1 1 1 0
1 0 0 1
0 1 0 0


×

Kk−3

, F2,k =

[
1 0
0 1

]
×[

0 1 1
0 0 1

]
×

Kk−4

,

F3,k =


0 0 0 0 1 0 0 1
0 0 0 1 0 1 1 0
0 1 1 0 0 1 1 1
1 0 1 1 1 0 1 1


×

Kk−4

, F4,k =

 0 0 1 1 0
0 0 0 0 1
0 1 0 1 1


×[

1 0 1
0 1 1

]
×

Kk−5

,
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F5,k =


1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1


×

Kk−5

, F6,k =

[
0 1 0
0 0 1

]
×[

1 0 1
0 1 1

]
×[

0 1 1
0 0 1

]
×

Kk−6

.

Theorem 9.1. Let F be a simple k-rowed F for which forb(m,F ) is O(mk−2). Then F

is a configuration in
[

1
0

]
, F1,k, F2,k, F3,k, F4,k, F5,k, or F6,k.

When we apply Conjecture 3.2 to determine non-simple k-rowed matrices with
forb(m,F ) being Θ(mk−2) our first guess would be to allow any column with column
sum ∈ {2, 3, . . . , k− 2} to be repeated t times. This works in most cases. For a k-rowed
simple matrix A, Define Rep(A, t) as the matrix obtained from A by repeating columns
of column sum ∈ {2, 3, . . . , k − 2} t times while leaving the remaining columns of sum
0, 1, k − 1, k unchanged. Applying Conjecture 3.2, we obtain the following:

Conjecture 9.2. Let t ≥ 1 be given. Then forb(m,Rep(F2,k, t)), forb(m,Rep(F3,k, t)),
forb(m,Rep(F4,k, t)), forb(m,Rep(F5,k, t)), forb(m,Rep(F6,k, t)) are all Θ(mk−2). Also
forb(m,Rep(F1,k, t)) is Θ(mk−1).

10 What is missing if a configuration F is avoided?
Let F be a given k × ` (0,1)-matrix. Let S be a subset of [m], the rows of A. We are
interested in what conditions on A|S must be satisfied so that A has no configuration
F . The problem of forbidden configurations does not reduce to these conditions since
the conditions do not refer to the simplicity of A but these conditions have been used
successfully.

We say an |S| × 1 column α on a set of rows S is in ‘short supply’ in A if A|S
has at most some constant number of columns equal to α. In this circumstance row
order is relevant. We are not considering columns of A|S up to row permutations. It is
convenient to list what is missing on k-sets but sometimes one also lists what is missing
on smaller or larger sets of rows.

A careful consideration is required to see what is missing from A when a configuration
F is not a configuration in A. One can use the computer program of Miguel Raggi at
http://www.math.ubc.ca/∼anstee/FConfThesisVersion.tar.gz
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(to solve small cases (say 4 or 5 rows). The following is an example from cases with
k = 3. Let {i, j, k} be a triple of rows of a matrix A = (ars). We say that we have

no
i
j
k

de
f

 (7)

if in every column q of A we do not have aiq = d, ajq = e and akq = f all occurring. As
well, we say that there are

at most t− 1 of
i
j
k

de
f

 (8)

if there are at most t− 1 columns q of A in which aiq = d, ajq = e and akq = f all occur.
Let Sp denote the symmetric group on p symbols.

Proposition 10.1. (Proposition 2.1[AS05]) Let A be a (0,1)-matrix with no configu-
ration F6(t) of Section 5. Let a, b, c be a triple of rows of A. Then we either have a
permutation π1 ∈ S3 with π1(a) = i, π1(b) = j, π1(c) = k (note that {a, b, c} and {i, j, k}
are the same as sets) with

no
i
j
k

0
0
0

 , (9)

or if we do not have (9), then we have a permutation π2 ∈ S3 with π2(a) = i, π2(b) = j,
π2(c) = k with

at most t− 1 of
i
j
k

0
0
1

 , (10)

or if we do not have (9),(10), then we have a permutation π3 ∈ S3 with π3(a) = i,
π3(b) = j, π3(c) = k with

at most t− 1 of
i
j
k

1
1
0

 , and at most t− 1 of
i
j
k

1
0
1

 . (11)

Proof: (sample) If one of (9),(10),(11) is true we have no F6(t). Give (9) is false, we
either have t ·K1

3 in the triple of rows or not. If not, then (10) holds for some ordering.
If we do have t ·K1

3 in the triple of rows, then t copies of two columns of two 1’s (in the
triple of rows) will yield F6(t) and so at most one column of two 1’s appears t or more
times. Thus (11) holds.

Proposition 10.2. (Proposition 2.2[AS05]) Let A be a (0,1)- matrix with no configu-
ration F5(t) of Section 5. Let a, b, c be a triple of rows of A. Then we either have a
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permutation π1 ∈ S3 with π1(a) = i, π1(b) = j, π1(c) = k with

no
i
j
k

0
0
0

 or no
i
j
k

0
0
1

 or no
i
j
k

1
1
0

 or no
i
j
k

1
1
1

 (12)

or if we do not have (12), then we have a permutation π2 ∈ S3 with π2(a) = i, π2(b) = j,
π2(c) = k with

at most t− 1 of
i
j
k

0
0
1

 , and at most t− 1 of
i
j
k

0
1
0

 , (13)

or if we do not have (12),(13), then we have a permutation π3 ∈ S3 with π3(a) = i,
π3(b) = j, π3(c) = k with

at most t− 1 of
i
j
k

1
1
0

 , and at most t− 1 of
i
j
k

1
0
1

 , (14)

or if we do not have (12),(13),(14), then we have a permutation π4 ∈ S3 with π4(a) = i,
π4(b) = j, π4(c) = k with

at most t− 1 of
i
j
k

0
0
1

 , and at most t− 1 of
i
j
k

0
1
1

 . (15)

We can readily establish such results for various F but it does take some careful
thought. We give below the specific result for F (k) = [K0

k | t ·D12] when k = 4 [AF10].
It was crucial in the proof of Theorem 1.15 that this notion for general k is considered.
It used the fact that if you consider what is missing on a given set of k rows in a matrix
A avoiding F (k), then for any pair of rows rows p, q chosen from the k rows, there is
a column in short supply in the submatrix of A formed by the k rows (either absent of
occurring some bounded number of times) which is either 0 on row p or 0 on row q.

Proposition 10.3. Let A be a (0,1)-matrix with no configuration 4-rowed configuration
F6(t) = [K0

4 | t · D12] from Theorem 1.15. Let a, b, c, d be four of rows of A. Then we
either have a permutation π1 ∈ S4 with π1(a) = i, π1(b) = j, π1(c) = k, π1(d) = l (note
that {a, b, c, d} and {i, j, k, l} are the same as sets) with

no

i
j
k
l


0
0
0
0

 , (16)
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or if we do not have (16), then we have a permutation π2 ∈ S4 with π2(a) = i, π2(b) = j,
π2(c) = k, π2(d) = l with

at most t− 1 of

i
j
k
l


1
0
0
0

 , (17)

or if we do not have (16),(17), then we have a permutation π3 ∈ S4 with π3(a) = i,
π3(b) = j, π3(c) = k, π3(d) = l with

at most t− 1 of

i
j
k
l


1
1
0
0

 , and at most t− 1 of

i
j
k
l


1
0
1
0

 . (18)

or if we do not have (16),(17),(18), then we have a permutation π4 ∈ S4 with π4(a) = i,
π4(b) = j, π4(c) = k, π4(d) = l with

at most t− 1 of

i
j
k
l


1
1
0
0

 , and at most t− 1 of

i
j
k
l


0
0
1
1

 . (19)

or if we do not have (16),(17),(18),(19), then we have a permutation π5 ∈ S4 with
π5(a) = i, π5(b) = j, π5(c) = k, π5(d) = l with

at most t− 1 of

i
j
k
l


1
1
1
0

 , and at most t− 1 of

i
j
k
l


1
1
0
1

 at most t− 1 of

i
j
k
l


0
1
1
1

 . (20)

or if we do not have (16),(17),(18),(19),(20), then we have a permutation π6 ∈ S4 with
π6(a) = i, π6(b) = j, π6(c) = k, π6(d) = l with

at most t− 1 of

i
j
k
l


1
1
0
0

 , and at most t− 1 of

i
j
k
l


0
1
1
1

 . (21)

11 Standard Induction
There are easy standard inductions based on either deleting the first row or perhaps the
first two rows. The most attractive application is the bound Theorem 1.13 but there
are many other applications.
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The standard induction [AGS97] proceeds as follows. Let A be a simple m×n matrix
with no configuration F or some such property. Then we can decompose A as follows.
I have permuted the rows so row r of A appears at the top. When deleting row r from
A, there may be repeated columns and we have permuted the columns to obtain the
following where [B(r)C(r)D(r)] is simple.

A =
row r →

[
00 · · · 0 00 · · · 0 11 · · · 1 11 · · · 1
B(r) C(r) C(r) D(r)

]
(22)

Now [B(r)C(r)D(r)] is simple and has no configuration F . Also .
‖A‖ = ‖[B(r)C(r)D(r)]‖ + ‖C(r)‖. One can easily derive the upper bound of The-
orem 1.7 this way by noting that if Kk 6≺ A then Kk−1 6≺ C(r). Then by induc-
tion ‖[B(r)C(r)D(r)]‖ ≤ forb(m − 1, Kk) and ‖C(r)‖ ≤ forb(m − 1, Kk−1). Thus
forb(m,Kk) ≤ forb(m− 1, Kk) + forb(m− 1, Kk−1) and we obtain the desired bound. It
may work to just use row r = 1 but in certain circumstances one should choose row r so
that C(r) is in some way minimal. A version describing what C(r) avoids assuming A
avoids F is stated in [AK06]. It also used for when forbidding families of configurations.

Lemma 11.1. [AK10] Let k be given and let F be a k-rowed simple matrix. For each
s ∈ [k], decompose F as

F =
row s→

[
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1
Bs(F ) Cs(F ) Cs(F ) Ds(F )

]
, (23)

where we have permuted the rows of F so row s is the first row and Cs(F ) consists
of the repeated columns after deleting that row from F . Then if A is a simple matrix
with no configuration F , then in the row decomposition of A of (22), we deduce that
C(r) has no configurations Fs = [Bs(F )Cs(F )Ds(F )] for each s ∈ [k]. In particular if
forb(m, {F1, F2, . . . , Fk}) is O(mt) then forb(m,F ) is O(mt+1).

A slightly more careful argument is required if F is not simple. We forbid from C(r)
any (k -1)-rowed F ′ that satisfies

F ≺
[

0 0 · · · 0 1 1 · · · 1
F ′ F ′

]
.

While this may look quite general, there is more that can be said about C(r) is some
cases. For example if F = 2 · F ′, then C(r) avoids F ′. This was used in Theorem 6.5.
Induction on the number of rows (elements) is a mainstay of studying set systems. Here
is an application of a slight variant of standard argument. Recall that in an m-rowed
matrix A, a set S ⊆ [m] is shattered if K|S| ≺ A|S.

Let sh(A) = {S ⊆ [m] : A shatters S}

Theorem 11.2. [Paj85] Let A be given. Then |sh(A)| ≥ ‖A‖.
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Proof: Decompose A as follows:

A =

[
0 0 · · · 0 1 1 · · · 1
A0 A1

]
.

Then ‖A‖ = ‖A0‖+‖A1‖. By induction |sh(A0)| ≥ ‖A0‖ and |sh(A1)| ≥ ‖A1‖. Now
|sh(A0)∪sh(A1)| = |sh(A0)|+ |sh(A1)|−|sh(A0)∩sh(A1)|. If S ∈ sh(A0)∩sh(A1), then
1∪S ∈ sh(A). Thus the number of sets in sh(A) that are not in sh(A0)∪sh(A1) is at least
|sh(A0) ∩ sh(A1)|. We conclude |sh(A)| ≥ |sh(A0)| + |sh(A1)|. Hence |sh(A)| ≥ ‖A‖.

In [ARS02] we use this induction where we always choose row 1.

Lemma 11.3. Let F ′ be a k × ` (0, 1)-matrix for which forb(m,F ′) is O(mt). Then
with

F =

 11 · · · 1
00 · · · 0
F ′

 ,
we have forb(m,F ) being O(mt+1).

Proof: Let A ∈ Avoid(m,F ). Ignoring the column of 0’s and the column of 1’s, we
decompose the columns of A into blocks Zi and Ji where Zi consists of those columns
of A whose first i + 1 rows are 0i11 and Ji consists of those columns of A whose first
i + 1 rows are 1i01. Now F 6≺ Zi implies that ‖Zi‖ ≤ forb(m − i − 1, F ′). Similarly
‖Ji‖ ≤ forb(m− i− 1, F ′). The result follows by summing the bounds.

An application of this induction is in Theorem 7.2. I would point out that we can
extend these arguments (Lemma 11.1, Lemma 11.3) to families of forbidden configura-
tions which may have relevance in the standard induction in view of Lemma 11.1. A
two-rowed induction was used with success in [AS97] in the case that the columns of
matrix A form an antichain as sets. Using that fact, we can deduce that C is empty in
the decomposition (22) above and so we may write

A =

 00 · · · 0 00 · · · 0 11 · · · 1 11 · · · 1
00 · · · 0 11 · · · 1 00 · · · 0 11 · · · 1
C1 C2C3 C3C4 C5

 ,
where [C1C2C3C4C5] is simple.

Induction, used cleverly, is the gift that keeps on giving. We used a new version of
our standard induction where we consider the minimal set of rows in C(r) for which
the matrix of those rows is simple. This idea was used successfully in combination with
the ‘what is missing’ idea (Section 10) to obtain structural results that led to proofs of
Theorem 2.8[ARS11b] and Theorem 8.2[ARS11c].

We have used repeated induction to obtain a number of results including extensions of
Theorem 1.7 to Theorem 1.13 and also Theorem 1.19. It turns out that consideration of
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base cases becomes difficult. Theorem 4.1 in [AK10] considers the k-rowed configuration
F = [1k | 2 ·(1202)×Kk−4] for which forb(k, F ) > forb(k,Kk) but we may verify forb(k+
1, F ) = forb(k + 1, Kk). Theorem 1.19 [AM11] also has forb(m, [Kk | (1202)×Kk−4]) >
forb(m,Kk) for m = k and perhaps m = k+ 1 and perhaps a additional small values of
m. We succeed establishing forb(k+1, [Kk | (1202)×Kk−4]) = forb(k+1, Kk) for k ≤ 15
which establishes forb(m, [Kk | (1202)×Kk−4]) = forb(m,Kk) for m ≥ k+ 1. For larger
k, new arguments are needed.

12 Shifting proofs
Peter Frankl popularized the use of shifting arguments in extremal set theory. In this
particular context there is a paper of Frankl [Fra83] and a paper of Alon [Alo83] using
shifting techniques to generalize Theorem 1.7. I extended these arguments and used
them in [Ans88]. Shifting is easily defined in set language. Let F ⊆ 2[m]. Let

Tj(B) =

{
B if j /∈ B or if B\j ∈ F
B\j if j ∈ B and B\j /∈ F .

Then
Tj(F) = {Tj(B) : B ∈ F}.

Note that |Tj(F)| = |F|. We can repeatedly apply Tj for each j = 1, 2, . . . ,m to obtain
the shifted family T (F) which has the property that

Tj(T (F)) = T (F) for j = 1, 2, . . .m.

Thus |T (F)| = |F| and T (F) is a downset (namely for every B ∈ T (F) and every
C ⊆ B, we have C ∈ T (F)). Now let S ⊆ [m] and let

F|S = {B ∩ S : B ∈ F}

Theorem 12.1. Let S ⊆ [m]. Then∣∣F|S∣∣ ≥ ∣∣T (F)|S
∣∣.

Using this one can prove Theorem 1.7 by noting that if F has no configuration Kk

then for any S ∈
(
[m]
k

)
, we have |F|S| ≤ 2k − 1 and hence |T (F)|S| ≤ 2k − 1. Since

T (F) is a downset, the column of k 1’s is absent. Thus we deduce |F| = |T (F)| ≤(
m
k−1

)
+
(

m
k−2

)
+ · · ·+

(
m
0

)
and hence prove Theorem 1.7.

Another application is for the forbidden matrix F3 of Section 5, for which we note
that a simple matrix A avoiding F3 has at most 6 column types on any 3 rows. A
consequence is the exact bound of Theorem 5.3. Alon [Alo83] refers to such possible
results.

The shifting argument was utilized in [AA95] to obtain a forbidden configuration the-
orem associated with any ideal (downset) in the lattice of divisors. This led to the notion
of order shattered sets in [ARS02]. These lead to multiset versions of Theorem 12.1.
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13 Graph Theory
The use of Graph Theory is easiest to understand in considering a 2 × ` forbidden
configuration F . In that case, it is natural to form a graph whose vertices are the rows
of the matrix A. We consider what is missing if we forbid a 2-rowed F as in Section 10
and so columns in ‘short supply’ or absent can be noted in the graph perhaps using edge
labels or directed edges (there are only 4 possible columns on 2 rows!). Results in that
direction are repeatedly used in [AGS97],[AFS01],[AK07].

Results about cliques, connectivity, chromatic number are used. The following spe-
cialized result was obtained (a generalization of Rédei’s Theorem that every tournament
has a directed Hamiltonian path) in [AFS01] (some minor errors in published proof!) to
obtain the exact bound Theorem 4.7.

Lemma 13.1. Let D = (N,A) be a directed graph. There is an ordering of the vertices
N as 1, 2, . . .m where m = |N | and a subset T ⊆ A consisting of a collection of vertex
disjoint indirected trees with the following property. Each arc p → q of T has p < q in
the ordering. For each pair i, j, 1 ≤ i < j ≤ m either there is a directed path in T from
i to j or there is a k with i ≤ k ≤ m so that there is a directed path from i to k in T
and there is no edge in D from k to j.

Graph Theory was successfully employed for larger F in [AS05] where the vertex set
corresponds to

(
[m]
k

)
. The standard decomposition of a directed graph into strongly con-

nected components with an acyclic graph between the strongly connected components
was an essential tool. We used that a linear number (linear in the number of vertices) of
directed edges is sufficient to assure strong connectivity. This idea was again employed
in [AF10] along with indicator polynomials to establish Theorem 1.15.

14 Linear Algebra
Applications of linear algebra here include the proof of Theorem 1.7. Frankl and Pach
obtained results for null t-designs [FP83]. One approach is the following. Given two
columns β, γ, we say β covers γ if and only if β ≥ γ. For an m × n simple matrix A
and an m× 1 (0,1)-vector γ, we can define A(γ) as the 1× n (0,1)-row vector with a 1
in position j if column j of A covers γ.

Now the vector space V = span{A(γ) : γ ∈ Rn} is a vector space of dimension n
and moreover {A(γ) : γ is a column of A} is a basis for V . Now if we take

Γk−1 = {γ : there exists an s with 0 ≤ s ≤ k − 1 and γ is a column of Ks
m}

we are able to verify the following.

Theorem 14.1. [FP83]([Rys72],[Ans85]). let A be an m × n simple matrix with no
configuration Kk. Then n is the dimension of V = span{A(γ) : γ ∈ Γk−1} for Γk−1 =
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{γ : there exists an s with 0 ≤ s ≤ k − 1 and γ is a column of Ks
m}. Hence

n ≤ |Γk−1| =
(

m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
Another application of linear algebra is to considering columns in short supply using

indicator polynomials. Given an m × 1 (0,1)-column α we can create a multilinear
polynomial p(x) of degree m in variables x1, x2, . . . , xm that evaluates to 1 for column
α ( where we take xi = αi for each i = 1, 2, . . . ,m) and evaluates to 0 for all other
(0,1)-columns.

Let A ∈ Avoid(m,Kk). Then for each subset S ⊆ [m] with |S| = k, we have that
A|S has at least one missing column, say α(S), else A has Kk. Smolensky [Smo97]
noted that the dimension of the space of real valued functions on the columns of A
is ‖A‖. Any real valued function on the columns of A can be given as a multilinear
polynomial. Let x = (x1, x2, . . . , xm). In particular for a column α = (α1, α2, . . . , αm)T

we can form
∏m

i=1(xi − 1 + αi) which will be non-zero only for column x = α for all
x ∈ {0, 1}n. A suitable linear combination of such multilinear polynomials (one for
each column α of A) will yield any real valued function on columns of A. Smolensky
showed that linear combinations of multilinear polynomials of degree at most k − 1
suffice and so the dimension of that space is the bound of Theorem 1.7. Thus we have
the bound of Theorem 1.7 for ‖A‖. Assume f(x) contains an expression x1x2 · · ·xk and
let S = {1, 2, . . . , k}. Then given the column α(S) = (α1, α2, . . . , αk)T , we can form a
polynomial fS(x) =

∏k
i=1(xi − 1 + αi) of degree k with leading term x1x2 · · · xk so that

for x ∈ {0, 1}n, fS(x) is 0 if x|S 6= α(S) for x ∈ {0, 1}n. We can now replace x1x2 · · ·xk
by x1x2 · · ·xk − fS(x). The new polynomial will evaluate to the same values on the
columns of A and we will have replaced x1x2 · · · xk by terms of degree at most k − 1.
Do this for all choices of S and repeat until you obtain a polynomial of degree at most
k − 1.

This idea of (what can be called) indicator polynomials was exploited in [AFFS05]
for cases where each k-set of rows has two missing columns and further exploited in
[AF10]. Different ways to achieve a reduction in degree occur.

15 Strong Stability
The idea of strong stability is to show that a set system satisfying some property (in
our case having a forbidden configuration F ) and having a number of sets close to the
optimal value (for us forb(m,F )) that the system of sets has much of its structure
already determined. This contrasts sharply with Theorem 1.7 for which there are a
multiplicity of matrices achieving the given bound (e.g. Theorem 1.1[Ans83b], Theorem
4.2[Ans88], Theorem 3.1[AS97]).

The strong stability result used in proving Theorem 7.2 considers a k-uniform set
system with no F0,r+1,r+1,0 (the notation Fabcd is defined in Section 7) which is equivalent
to having the set system be k−r-intersecting. As noted when introducing Theorem 6.6,
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having no configuration F0,r+1,r+1,0 is the same as having no submatrix F0,r+1,0,0 for
a k-uniform family. Let numbers k, r1, r2 be given and suppose G and H are given
disjoint sets with |G| = k− r1 + r2. We define Ikr1,r2 on the pair (H,G) to be the family
consisting of all sets of size k in G ∪ H that intersect G in at least k − r1 = |G| − r2
points. Note that any two sets in Ikr1,r2 have at least |G| − 2r2 = k − r1 − r2 points in
common, i.e. Ikr1,r2 is (k− r)-intersecting, where r = r1 + r2. The Complete Intersection
Theorem, conjectured by Frankl, and proved by Ahlswede and Khachatrian [AK97a], is
that any k-uniform, (k − r)-intersecting family of maximum size on a given ground set
is isomorphic to Ikr−p,p, for some 0 ≤ p ≤ r, which depends on the size of the ground
set. Note that |Ikr1,r2 | is O(mr) (Θ(mr) for |G| and |H| being Θ(m)). The following was
critical to prove Theorem 7.2.

Theorem 15.1. [AK06] Suppose A is a k-uniform (k − r)-intersecting set system on
[m] of size at least (5r)5rmr−1. Then A ⊆ Ikr−p,p for some 0 ≤ p ≤ r.

We are also interested in the related family of sets Fk
r1,r2

on the pair (H,G) to be the
family consisting of all sets of size k in G∪H that intersect G in exactly k−r1 = |G|−r2
points. Note that |Fk

r1,r2
| is also O(mr) and that |Ikr1,r2\F

k
r1,r2
| is O(mr−2). A proof of

Theorem 15.1 in the case r = 1 (where there are no asymptotics) is used in [Ans90b].

Problem 15.2. Can you to use Theorem 15.1 to prove some more exact bounds for F
being the 2k × 2 matrix of k copies of I2 for which the bound is O(mk) by Theorem 6.6
[FFP87] (or Theorem 7.2). Corollary 6.7 is the case k = 2.
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