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What Are Forbidden Configurations?

Forbidden configurations are a type of problem in extremal set
theory. In general, the study of extremal set theory asks the
question, “Given a set, what is the largest family of subsets of this
set one can attain such that some property holds?”

Some definitions make formalizing this idea easier...
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Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

i.e. if A is m × n, then it is the incidence matrix of some family A
of n subsets of [m] = {1, 2, . . . ,m}. For example,

A =

 0 0 0 1 1
0 1 0 0 1
0 0 1 1 1


A =

{
∅, {2}, {3}, {1, 3}, {1, 2, 3}

}
Each column is a subset of {1,2,3}.
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An Easy Extremal Set Problem

An example of an (non-forbidden-configuration) extremal set
problem:
What is the largest number of subsets of {1,2,3,4} one can have
such that each pair of subsets has a non-empty intersection?

One could select all subsets that include the element 1:
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


Each pair of columns intersects along the first row. Thus, the

answer is at least 8.
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An Easy Extremal Set Problem

On the other hand, we can also line up each subset with its
complement:


0
0
0
0




1
1
1
1

 ,


1
0
0
0




0
1
1
1

 ,


1
0
0
1




0
1
1
0

 · · ·
We can only select one subset from each pair, since each pair has
an empty intersection. Thus, since there are 8 pairs, the answer is
at most 8.
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Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A that is a row and column
permutation of F .

F =

[
0 0 1 1
0 1 0 1

]
∈


1 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0

 = A

We consider the property of forbidding a configuration F in A for
which we say that F is a forbidden configuration in A.

Definition Let forb(m,F ) be the largest number of columns that a
simple m-rowed matrix A can have subject to the condition that A
contains no configuration F . Thus, any m × (forb(m,F ) + 1)
simple matrix contains F as a configuration.
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An Easy Forbidden Configuration Problem

What is forb

(
m,

[
1 0
0 1

])
?

Note that this says that for every pair of columns, one is a subset
of the other; otherwise, that pair contains the forbidden
configuration.
Thus, we can have only one column of each column sum from 0 to
m, and thus at most m + 1 columns.

For example, m





0 1 1 · · · 1 1
0 0 1 · · · 1 1
0 0 0 · · · 1 1
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1


.

So forb

(
m,

[
1 0
0 1

])
= m + 1.
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

e.g. K3 =

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1



Theorem (Sauer 1972, Perles and Shelah 1972, Vapnik and
Chervonenkis 1971)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
= Θ(mk−1)

I Norbert Sauer: Graph theorist from University of Calgary

I Saharon Shelah: Famous mathematical logician

I Vapnik and Chervonenkis paper was a fundamental one of
applied probability

Connor Meehan UBC, Vancouver An Introduction to Forbidden Configurations



Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

e.g. K3 =

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1


Theorem (Sauer 1972, Perles and Shelah 1972, Vapnik and
Chervonenkis 1971)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
= Θ(mk−1)

I Norbert Sauer: Graph theorist from University of Calgary

I Saharon Shelah: Famous mathematical logician

I Vapnik and Chervonenkis paper was a fundamental one of
applied probability

Connor Meehan UBC, Vancouver An Introduction to Forbidden Configurations



Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

e.g. K3 =

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1


Theorem (Sauer 1972, Perles and Shelah 1972, Vapnik and
Chervonenkis 1971)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
= Θ(mk−1)

I Norbert Sauer: Graph theorist from University of Calgary

I Saharon Shelah: Famous mathematical logician

I Vapnik and Chervonenkis paper was a fundamental one of
applied probability

Connor Meehan UBC, Vancouver An Introduction to Forbidden Configurations



Let [A|B] represent the concatenation of matrices A and B.
Definition Let q ·M be the matrix [M|M| · · · |M] consisting of q
copies of M placed side by side.

Theorem (Gronau 1980)

forb(m, 2 · Kk) = forb(m,Kk+1) =

(
m

k

)
+

(
m

k − 1

)
+ · · ·+

(
m

0

)
.
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Where I Come in

My research this summer has looked at extending the applicability
of this fundamental result of forbidden configurations. Specifically,
the question I’ve been answering is

What k-rowed matrices G and H are there such that
forb(m, [Kk |G ]) = forb(m,Kk)

forb(m, [2 · Kk |H]) = forb(m, 2 · Kk)?

An important fact pertaining to this is that if F ′ is a configuration
of F , then forb(m,F ) ≥ forb(m,F ′) since all matrices that avoid
F ′ necessarily avoid F .
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The Standard Induction

By far the most important tool in my research has been induction,
the most common manifestation of which uses the standard
decomposition.

Let A be an m × forb(m,F ) simple matrix containing no F . We
write A as follows upon permuting its columns:

A =

[
0 0 · · · 0 0 1 1 · · · 1 1

B C C D

]
,

where C is the matrix of columns that repeat after the first row of
A is deleted.

Similarly, if F is k-rowed, we can decompose F after swapping row
1 and row r for all r ∈ {1, ..., k}:

F =

[
0 0 · · · 0 0 1 1 · · · 1 1
Er Gr Gr Hr

]
← row r

.
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The Standard Induction

A =

[
0 0 · · · 0 0 1 1 · · · 1 1

B C C D

]
F =

[
0 0 · · · 0 0 1 1 · · · 1 1
Er Gr Gr Hr

]
← row r

As a specific example, suppose A has no K3. Then C can have no
K2, as shown:

K3 =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


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The Standard Induction

A =

[
0 0 · · · 0 0 1 1 · · · 1 1

B C C D

]
F =

[
0 0 · · · 0 0 1 1 · · · 1 1
Er Gr Gr Hr

]
← row r

In general, we observe that [BCD] is a simple (m − 1)-rowed
matrix that avoids F and C is a simple (m − 1)-rowed matrix that
avoids [Er Gr Hr ] for all r ∈ {1, ..., k}. Let |A| represent the number
of columns in A.

Thus, if we have induction hypotheses for forb(m − 1,F ) and
forb(m− 1, {[Er Gr Hr ] : r ∈ {1, 2, . . . , k}}) that are consistent with
base cases, we obtain an upper bound for forb(m,F ) since

forb(m,F ) = |A| = |[BCD]|+ |C |
≤ forb(m − 1,F ) + forb(m − 1, {[Er Gr Hr ] : r ∈ {1, 2, . . . , k}}).
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Extending Kk by a column

The following theorem is a result of repeated uses of the standard
induction and verification of base cases via proof by contradiction.
Theorem Let k ≥ 4 be a given integer. Let α be a k × 1
(0,1)-column consisting of at least two 1s and at least two 0s. For
m ≥ k + 1,

forb(m, [Kk |α]) = forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

Notice that if α contained at least k − 1 1s or 0s, [Kk |α] would
contain a 3× (k − 1) matrix of 1s or 0s. Let B be either one of
these matrices. It can be shown that forb(m,B) > forb(m,Kk) and
thus the theorem would no longer be true.
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Extending Kk by a column

Theorem Let q ≥ 2 be a given integer. Then there exists an
integer m0 so that for m ≥ m0,

forb(m,

K4|q ·


1
1
0
0


) = forb(m,K4) + cq,

where cq is a constant that depends only on the choice of q.

It is possible that there exists some m1 such that for m ≥ m1,

forb(m,

K4|q ·


1
1
0
0


) = forb(m,K4), but the existence of such a

number is as yet unproven.
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Sometimes, even if it is known that forb(m, [Kk |G ]) > forb(m,Kk),
it is unclear how to construct best possible extremal matrices.
Thus, constructions are sought after.

forb(m,

[
K2|q ·

[
1
0

]]
) ≥ forb(m,K2) +

(q−2
2

)
.

(Anstee and Karp, 2008)

I Steven Karp: Dr. Anstee’s 2008 USRA student and student of
University of Waterloo!
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Extending 2 · Kk by a column

Theorem Let k ≥ 2 be a given integer and let H =

1 1 · · · 1
0 0 · · · 0

Kk−2

.

For m ≥ k + 2,

forb(m, [2 · Kk |H]) = forb(m, 2 · Kk).

To verify the base case m = k + 2, I tried for weeks to compute
forb(m,H), but ultimately failed because I could not verify that
base case of m = k + 1. Eventually, we realized it sufficed to show
forb(k + 1,H) ≤ 2k+1 − k − 3, and so the theorem was saved.
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1 1 · · · 1
0 0 · · · 0

Kk−2

.

For m ≥ k + 2,

forb(m, [2 · Kk |H]) = forb(m, 2 · Kk).

To verify the base case m = k + 2, I tried for weeks to compute
forb(m,H), but ultimately failed because I could not verify that
base case of m = k + 1. Eventually, we realized it sufficed to show
forb(k + 1,H) ≤ 2k+1 − k − 3, and so the theorem was saved.
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Extending 2 · Kk by a column

While the previous theorem covers many examples of H for which
forb(m, [2 · Kk |H]) = forb(m, 2 · Kk), there can certainly be others.
One other we have found:

Theorem For m ≥ 5,

forb

m,

2 · K3|

1 0 1 0
0 1 1 1
0 0 0 1

 = forb(m, 2 · K3).

This theorem uses a slightly different proof technique from the
previous.
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Open Questions for the Rest of the Summer

1. Is it true that forb

m,

Kk |


1 1 · · · 1
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0

Kk−4



 = forb(m,Kk)?

2. Is it true that there exists an m0 such that for m ≥ m0,

forb

m,

1 1 · · · 1
0 0 · · · 0

Kk−2

 =
( m
k−2

)
+
( m
k−3

)
+ ...+

(m
0

)
+
(m
m

)
?
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Thanks for listening! It’s great to visit Waterloo for the first time!
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