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Abstract

A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-
matrix F , we say that a (0,1)-matrix A has F as a Berge hypergraph if there is a
submatrix B of A and some row and column permutation of F , say G, with G ≤ B.
Letting ‖A‖ denote the number of columns in A, we define the extremal function
Bh(m,F ) = max{‖A‖ : A m-rowed simple matrix and no Berge hypergraph F}.
We determine the asymptotics of Bh(m,F ) for all 3- and 4-rowed F and most
5-rowed F . For certain F , this becomes the problem of determining the maximum
number of copies of Kr in a m-vertex graph that has no Ks,t subgraph, a problem
studied by Alon and Shinkleman.

Keywords: extremal graphs, Berge hypergraph, forbidden configuration, trace,
products

1 Introduction

This paper explores forbidden Berge hypergraphs and their relation to forbidden config-
urations. Define a matrix to be simple if it is a (0,1)-matrix with no repeated columns.
Such a matrix can be viewed as an element-set incidence matrix. Given two (0,1)-
matrices F and A, we say A has F as a Berge hypergraph and write F Î A if there
is a submatrix B of A and a row and column permutation of F , say G, with G ≤ B.
The paper of Gerbner and Palmer [15] introduces this concept to generalize the notions
of Berge cycles and Berge paths in hypergraphs. Let F be k × `. A Berge hypergraph
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associated with the object F is a hypergraph whose restriction to a set of k elements
yields a hypergraph that ‘covers’ F . Berge hypergraphs are related to the notion of a
pattern P in a (0,1)-matrix A which has been extensively studied and is quite challeng-
ing [14]. We say A has pattern P if there is a submatrix B of A with P ≤ B. The award
winning result of Marcus and Tardos [18] concerns avoiding a pattern corresponding to
a permutation matrix. Row and column order matter to patterns.

We use heavily the concept of a configuration; see [7]. We say A has a configuration
F if there is a submatrix B of A and a row and column permutation of F , say G, with
B = G. Configurations care about the 0’s as well as the 1’s in F but do not care about
row and column order. In set terminology the notation trace can be used.

For a subset of rows S, define A|S as the submatrix of A consisting of rows S of A.
Define [n] = {1, 2, . . . , n} and let

(
[n]
k

)
consist of all k-subsets of [n]. If F has k rows and

A has m rows and F Î A then there is a k-subset S ⊆ [m] such that F Î A|S. For two
m-rowed matrices A,B, use [A |B] to denote the concatenation of A,B yielding a larger
m-rowed matrix. Define t · A = [AA · · ·A] as the matrix obtained from concatenating
t copies of A. Let Ac denote the (0,1)-complement of A. Let 1a0b denote the (a+ b)× 1
vector of a 1’s on top of b 0’s. We use 1a instead of 1a00. Let K`

k denote the k ×
(
k
`

)
simple matrix of all columns of ` 1’s on k rows and let Kk = [K0

kK
1
kK

2
k · · ·Kk

k ].
Define ‖A‖ as the number of columns of A. Define our extremal problem as follows:

BAvoid(m,F) = {A : A is m-rowed, simple, F 6Î A for all F ∈ F},

Bh(m,F) = max
A
{‖A‖ : A ∈ BAvoid(m,F)}.

We are mainly interested in F consisting of a single forbidden Berge hypergraph F .
When |F| = 1 and F = {F}, we write BAvoid(m,F ) and Bh(m,F ).

The main goal of this paper is to explore the asymptotic growth rate of Bh(m,F )
for a given k × ` (0,1)-matrix F . Theorem 3.1 handles k = 3, Theorem 4.4 handles
k = 4 and Theorem 5.1 handles k = 5 (modulo Conjecture 7.1). The results apply some
of the proof techniques (and results) for Forbidden configurations [7]. We have some
interesting connections with ex(m,Ks,t) (the maximum number of edges in a graph on
m vertices with no complete bipartite graph Ks,t as a subgraph) and ex(m,Kn, Ks,t)
[6] (the maximum number of complete subgraphs Kn in a graph on m vertices with no
complete bipartite graph Ks,t as a subgraph). Section 6 has some applications of this
graph theory such as Theorem 6.1 and Theorem 6.3. Note that Kk has two meanings
in this paper that are hopefully clear by context namely either the complete graph on
k vertices or as the matrix [K0

kK
1
kK

2
k · · ·Kk

k ]. We also obtain in Theorem 6.5, that if
F is the vertex-edge incidence matrix of a tree T , then Bh(m,F ) is Θ(m) analogous to
ex(m,T ).

We first make some easy observations.

Remark 1.1 Let F, F ′ be two k×` (0,1)-matrices satisfying F Î F ′. Then Bh(m,F ) ≤
Bh(m,F ′).
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The related extremal problem for forbidden configurations is as follows:

Avoid(m,F) = {A : A is m-rowed, simple,F 6≺ A for all F ∈ F},

forb(m,F) = max
A
{‖A‖ : A ∈ Avoid(m,F)}.

When |F| = 1 and F = {F}, we write Avoid(m,F ) and forb(m,F ). There are striking
differences between Bh(m,F ) and forb(m,F ) such as Theorem 6.5 for Berge hypergraphs
and Theorem 6.9 for forbidden configurations. Note that the two notions of Berge
hypergraphs and configurations coincide when F has no 0’s.

Remark 1.2 Let F be a (0,1)-matrix. Then Bh(m,F ) ≤ forb(m,F ). If F is a matrix
of 1’s then Bh(m,F ) = forb(m,F ).

Note that any forbidden Berge hypergraph F can be given as a family B(F ) of
forbidden configurations by replacing the 0’s of F by 1’s in all possible ways. Define

B(F ) = {B is a (0,1)-matrix : F ≤ B}. (1)

Remark 1.3 Bh(m,F ) = forb(m,B(F )).

Isomorphism can reduce the required set of matrices to consider, for example B(I2)
which has 4 matrices satisfies:

BAvoid(m,B(I2)) = BAvoid(m,

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 1
1 1

]}
).

A product construction is helpful. Let A, B be m1×n1 and m2×n2 simple matrices
respectively. We define A × B as the (m1 + m2) × n1n2 matrix whose columns are
obtained by placing a column of A on top of a column of B in all n1n2 possible ways.
This extends readily to p-fold products. Let It = K1

t denote the t× t identity matrix. In
what follows you may assume p divides m since we are only concerned with asymptotic
growth with respect to m.

The p-fold product

p︷ ︸︸ ︷
Im/p × Im/p × · · · × Im/p ,

is an m ×mp/pp simple matrix. This corresponds to the vertex-edge incidence matrix
of the complete p-partite hypergraph with parts V1, V2, . . . , Vp each of size m/p so that
{v1, v2, . . . , vp} is an edge if and only if vi ∈ Vi for i = 1, 2, . . . , p. These products
sometimes yield the asymptotically best (in growth rate) constructions avoiding F as a
Berge hypergraph.

Remark 1.4 Let F be a given k × ` (0,1)-matrix so that F 6Î Im/p × Im/p × · · · × Im/p
(a p-fold product). Then Bh(m,F ) is Ω(mp).
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Sometimes the product may contain the best construction using the following idea
from [5], that when given two matrices F, P where P is m-rowed then

f(F, P ) = max
A
{‖A‖ |A is m−rowed,A Î P and F 6Î A}.

Thus Theorem 4.3 yields Bh(m, I2 × I2) is Θ(f(I2 × I2, Im/2 × Im/2)) but Lemma 6.2
indicates that things must be more complicated for F = Is × It for general s, t.

A shifting process works nicely here. Let Ti(A) denote the matrix obtained from A
by attempting to replace 1’s in row i by 0’s . Do not replace a 1 by a 0 in row i and
column j if the resulting column is already present in A otherwise do replace the 1 by
a 0. Then ‖Ti(A)‖ = ‖A‖ and, if A is simple, then Ti(A) is simple.

Lemma 1.5 Given A ∈ BAvoid(m,F ), there exists a matrix T (A) ∈ BAvoid(m,F )
with ‖A‖ = ‖T (A)‖ and Ti(T (A)) = T (A) for i = 1, 2, . . . ,m.

Proof: It is automatic that ‖A‖ = ‖Ti(A)‖. We note that F 6Î A implies F 6Î
Ti(A). Replace A by Ti(A) and repeat. Let T ∗(A) = Tm(Tm−1(· · ·T1(A) · · · )). Ei-
ther T ∗(T ∗(A)) contains fewer 1’s than T ∗(a) or we have Ti(T

∗(A)) = T ∗(A) for i =
1, 2, . . . ,m. In the former case replace A by T ∗(A) and repeat. In the latter case let
T (A) = T ∗(A). Since the number of 1’s in A is finite, then the process will terminate
with our desired matrix T (A).

Typically T (A) is referred to as a downset since when the columns of T (A) are
interpreted as a set system T then if B ∈ T and C ⊂ B then C ∈ T . Note that if T (A)
has a column of sum k with 1’s on rows S, then Kk Î T (A)|S and moreover the copy
of Kk on rows S can be chosen with 0’s on all other rows. An easy consequence is that
for A ∈ BAvoid(m,F ) where F is k-rowed and simple then we may assume A has no
columns of sum k.

2 General results

This section provides a number of results about Berge hypergraphs that are used in the
paper. The following results from forbidden configurations were useful.

Theorem 2.1 [2] Let k, t be given with t ≥ 2. Then forb(m, t · 1k) = forb(m, t · Kk)
and is Θ(mk).

Theorem 2.2 [6] Let k, t be given. Then forb(m, [1k | t ·Kk−1
k ]) is Θ(mk−1).

Theorem 2.3 [3] Let F be a k-rowed simple matrix. Assume there is some pair of rows
i, j so than no column of F contains 0’s on rows i, j, there is some pair of rows i, j so
than no column of F contains 1’s on rows i, j and there is some pair of rows i, j so than
no column of F contains I2 on rows i, j. Then forb(m,F ) is O(mk−2).
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Definition 2.4 Let F be a k-rowed (0,1)-matrix. Define G(F ) as the graph on k vertices
such that we join vertices i and j by an edge if and only if there is a column in F with
1’s in rows i and j. Let ω(G(F )) denote the size of the largest clique in G(F ) and let
χ(G(F )) denote the chromatic number of G(F ). Let α(G(F )) denote the size of the
largest independent set in G(F ).

Lemma 2.5 Let F be given. Then Bh(m,F ) is Ω(mχ(G(F ))−1) and hence Ω(mω(G(F ))−1).

Proof: Let p = m/(χ(G(F ))− 1). Let

A =

χ(G(F ))−1︷ ︸︸ ︷
Ip × Ip × · · · × Ip .

Assume F Î A and the rows of the χ(G(F ))− 1 fold product containing F are S then
we obtain χ(G(F ))− 1 disjoint sets S1, S2, . . . , SX(F )−1 with Si = S ∩ {(i− 1)p+ 1, (i−
1)p + 2, . . . , ip} and A|Si

Î I|Si|. This contradicts the definition of χ(G(F )) and so
F 6Î A. Thus Bh(m,F ) is Ω(mχ(G(F ))−1). Note that χ(G) ≥ ω(G).

Lemma 2.6 If 2 · 1t Î F then Bh(m,F ) is Ω(mt)

Proof: F is not a Berge hypergraph of the t-fold product Im/t×Im/t×· · ·×Im/t.

Theorem 2.7 Let k be given and assume m ≥ k − 1. Then Bh(m, Ik) = 2k−1.

Proof: The construction consisting of Kk−1 with m − k + 1 rows of 0’s added yields
Bh(m, Ik) ≥ 2k−1.

We use induction on k. The largest m-rowed matrix which avoids I1 = [1] as a Berge
hypergraph is [0m]. This proves the base case k = 1 and the following is the inductive
step.

Let A ∈ BAvoid(m, Ik). Let B be obtained from A by removing any rows of 0’s so
that B is simple and every row of B contains a 1. If B has k − 1 rows then ‖A‖ =
‖B‖ ≤ 2k−1 which is our bound. Assume B has at least k rows. Either ‖B‖ ≤ 2k−1 in
which case we are done or ‖B‖ > 2k−1 > 2k−2 and so by induction, B must contain Ik−1
as a Berge hypergraph. Permute B to form the block matrix

B =

[
C
E

D
G

]
where C is (k − 1)× (k − 1) with Ik−1 Î C. Then G must be the matrix of 0’s or else
Ik Î B. Thus D is simple. Since all rows of B contain a 1, then E must have a 1. If
E contains a 1 then Ik−1 6Î D and so ‖D‖ ≤ 2k−2. This gives ‖B‖ = ‖C‖ + ‖D‖ =
k − 1 + 2k−2 ≤ 2k−1. Thus ‖A‖ = ‖B‖ ≤ 2k−1.

Theorem 2.7 establishes a constant bound for the Berge hypergraph Ik. The existence
of a constant bound follows from a result of Balogh and Bollobás [8]. Let Ick = Kk−1

k

denote the k × k (0,1)-complement of Ik and let Tk denote the k × k upper triangular
(0,1)-matrix with a 1 in row i and column j if and only if i ≤ j.
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Theorem 2.8 [8] Let k be given. Then there is a constant ck so that
forb(m, {Ik, Ick, Tk}) = ck.

A corollary of Koch and the first author [4] gives one way to apply this result.

Theorem 2.9 [4] Let F = {F1, F2, . . . , Ft} be given. There are two possibilities. Either
forb(m,F) is Ω(m) or there exist `, i, j, k with Fi ≺ I`, with Fj ≺ Ic` and with Fk ≺ T`
in which case there is a constant c with forb(m,F) = c.

We apply this result to a k× ` forbidden Berge hypergraph F using the family B(F )
from (1) which contains the k × ` matrix of 1’s. Noting that Ick+`+1 contains a k × `
block of 1’s and Tk+` contains a k × ` block of 1’s we obtain the following.

Corollary 2.10 Let F be a k × ` (0,1)-matrix. Then either Bh(m,F ) is Ω(m) or
F Î Ik+` in which case Bh(m,F ) is O(1).

The following Lemma (from ‘standard induction’ in [7]) was useful for forbidden
configurations.

Lemma 2.11 Let F be a k× ` (0,1)-matrix and let F ′ be a (k− 1)× ` submatrix of F .
Then Bh(m,F ) = O(m · Bh(m,F ′)).

Proof: Let A ∈ BAvoid(m,F ). If we delete row 1 of A, then the resulting matrix may
have columns that appear twice. We may permute the columns of A so that

A =

[
0 0 · · · 0 1 1 · · · 1
B C C D

]
,

where [B C D] and C are simple (m−1)-rowed matrices. We have [B C D] ∈ BAvoid(m−
1, F ) and C ∈ BAvoid(m− 1, F ′) (if F ′ Î C then F Î A). Then

‖A‖ = ‖[BCD]‖+ ‖C‖ ≤ Bh(m− 1, F ) + Bh(m− 1, F ′),

which yields the desired bound, by induction on m.

Lemma 2.12 Let A be a k-rowed (0,1)-matrix, not necessarily simple, with all row
sums at least kt. Then t · Ik Î A.

Proof: We use induction on k where the case k = 1 and I1 = [1] is easy. Choose
t columns from A containing a 1 in row 1 and remove them and row 1 resulting in a
matrix A′. The row sums of A′ will be at least (k− 1)t and so we may apply induction.
Thus (t− 1) · Ik Î A′ and so we obtain t · Ik Î A.

An interesting corollary is that if we have an m-rowed matrix A with all rows sums
at least kt then t · Ik Î A|S for all S ∈

(
[m]
k

)
.
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Lemma 2.13 Let A be a given m-rowed matrix and let S be a family of subsets of [m]
with the property that |S| ≤ k for all S ∈ S. Let c be given. Then by deleting at most
c
((
m
k

)
+
(
m
k−1

)
+ · · ·+

(
m
1

))
columns from A we can obtain a matrix A′ so that for each

S ∈ S, A′|S either has more than c columns with 1’s on all the rows of S or has no
columns with 1’s on all the rows of S.

Proof: For each subset of S ∈ S, if the number of columns of A|S with 1’s on the rows
of S is at most c, then delete all such columns. Repeat. The number of deleted columns
is at most

∑
S∈S c ≤ c

((
m
k

)
+
(
m
k−1

)
+ · · ·+

(
m
1

))
.

Lemma 2.14 (Reduction Lemma) Let F = [G | t · [HK]]. Assume H,K are simple and
have column sums at most k. Also assume for each column α of K, there is a column γ
of [GH] with α ≤ γ. Then there is a constant c so that Bh(m,F ) ≤ Bh(m, [GH])+cmk.

Proof: We let A ∈ BAvoid(m, [G | t · [HK]]) and c = ‖G‖ + t‖H‖ + t‖K‖. Applying
Lemma 1.5, assume Ti(A) = A for all i and so, when columns are viewed as sets, the
columns form a downset. Form S as the union of all sets S ⊆ [m] so that [HK] has a
column with 1’s on the rows S. Then, applying Lemma 2.13, delete at most cmk columns
to obtain a matrix A′. Now if [GH] Î A′ on rows S, then each column contributing to
H will appear c times in A′|S.

Moreover each column γ of G will appear at least c times in A′|S and so if α is a
column of K and γ is a column of G with α ≤ γ, then we have t · α Î t · γ. Hence
[G | t · [HK]] Î A|S, a contradiction. The choice of c above is required, for example,
when the columns contributing to [GH] all have A|S = 1.

The following are two important applications. We use the notation Kp\1p to denote
the matrix obtained from Kp by deleting the column of p 1’s.

Theorem 2.15 Let H(p, k, t) = [1p × Ik−p | t · [ 1p × 0k−p | (Kp\1p)× [0k−p Ik−p]], i.e.

H(p, k, t) =



1 1 · · · 1
...

... · · · ...
1 1 · · · 1
1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

t ·



1
...
1
0
0
...
0

Kp\1p
×

0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1






. (2)

Then Bh(m,H(p, k, t)) is Θ(mp). Moreover if we add to H(p, k, t) any column not
already present t times in H(p, k, t) to obtain F ′, then Bh(m,F ′) is Ω(mp+1).

Proof: Let F = H(p, k, t). Given that F has a column of p+1 1’s then ω(G(F )) ≥ p+1
and so Lemma 2.5 yields Bh(m,F ) is Ω(mp).
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To apply Reduction Lemma 2.14, set F = [G | t · [HK]] with G to be the first k − p
columns of F and with K to be the remaining 1 + (2p − 1) × (k − p) columns of F
when t = 1 and with H absent. Now Bh(m,F ) ≤ Bh(m,G) + cmp for c = ‖G‖+ t‖K‖.
Applying Lemma 2.11 repeatedly (in essence deleting the first p rows of G) we obtain
Bh(m,G) = O(mkBh(m, Ik−p)) and so with Lemma 2.7 this yields Bh(m,G) is O(mp).
Then Bh(m,H(p, k, t)) is Θ(mp).

The remaining remarks concerning adding a column to H(p, k, t) are covered in
Lemma 2.17.

Note that Bh(m,H(k − 1, k, t)) follows from Theorem 2.2. There is a more general
form of H(p, k, t) as follows.

Definition 2.16 Let A be a given (0,1)-matrix. Let S(A) denote the matrix of all
columns α so that there exists a column γ of A with α ≤ γ and α 6= γ.

Let H((a1, a2, . . . , as), t) = [Ia1 × Ia2 × · · · × Ias | t · S([Ia1 × Ia2 × · · · × Ias ])]. (3)

Then H(p, k, t) is H((a1, a2, . . . , as), t) where s = p+ 1 and a1 = a2 = · · · = ap = 1 and
ap+1 = k− p. The upper bounds of Theorem 2.15 do not generalize but the second part
of the proof continues to hold.

Lemma 2.17 Let H((a1, a2, . . . , as), t) be defined as in (3). Then
Bh(m,H((a1, a2, . . . , as), t)) is Ω(ms−1). Moreover if we add to H((a1, a2, . . . , as), t) any
column α not already present t times in H((a1, a2, . . . , as), t) then
Bh(m, [H((a1, a2, . . . , as), t) |α]) is Ω(ms).

Proof: The lower bound for Bh(m,H((a1, a2, . . . , as), t)) follows from (s−1)-fold prod-
uct Im/(s−1) × Im/(s−1) × · · · × Im/(s−1) since H((a1, a2, . . . , as), t)) has columns of sum
s.

There are two choices for α. First we can choose α to be a column in Ia1×Ia2×· · ·×Ias
and so α has s 1’s. Then 2 · 1s Î [αα] so that Bh(m, [αα]) is Θ(ms) by Theorem 2.1.

Second choose α to be a column not already present in H((a1, a2, . . . , as), t). Let
G = G(H((a1, a2, . . . , as), t)) be the graph defined in Definition 2.4 on a1 + a2 + · · ·+ ss
vertices corresponding to rows of H((a1, a2, . . . , as), t). Our choice of α has a pair of
rows h, ` so that α has 1’s in both rows h and ` and the edge h, ` is not in G. We deduce
that [H((a1, a2, . . . , as), t) |α] has s + 1 rows S such that for every pair i, j ∈ S, there
is a column with 1’s in both rows i and j, i.e. G has a clique of size s + 1. Thus by
Lemma 2.5, Bh(m, [H((a1, a2, . . . , as), t) |α]) is Ω(ms).

Thus all but the upper bounds for Theorem 2.15 follow from Lemma 2.17. The
following application requires Conjecture 7.1 to be true. Note that 11×C4 is I1×I2×I2.
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Theorem 2.18 Assume Bh(m,11×C4) is Θ(m2). Then Bh(m,H((1, 2, 2), t)) is Θ(m2).
Moreover if we add to H((1, 2, 2), t) any column α not already present t times in
H((1, 2, 2), t) to obtain [H((1, 2, 2), t) |α], then Bh(m, [H((1, 2, 2), t) |α]) is Ω(m3).

Proof: Take G = 11 × I2 × I2 = 11 × C4 and take K to be the remainder of the
columns of H((1, 2, 2), 1) and then apply Reduction Lemma 2.14 and the hypothesis
that Bh(m,11 × C4) is Θ(m2) to obtain the upper bound.

The rest follows from Lemma 2.17.

The following monotonicty result seems obvious but note that monotonicity is only
conjectured to be true for forbidden configurations.

Lemma 2.19 Assume F is a k × ` matrix and assume m ≥ k, Then Bh(m,F ) ≥
Bh(m− 1, F ).

Proof: Let F ′ be the matrix obtained from F by deleting rows of 0’s, if any. Then
for m ≥ k, A ∈ BAvoid(m,F ) if and only if A ∈ BAvoid(m,F ′). Now assume A ∈
BAvoid(m − 1, F ′) with m ≥ k. Then form A′ from A by adding a single row or 0’s.
Then A′ ∈ BAvoid(m,F ′) with ‖A‖ = ‖A′‖.

The following allows F to have rows of 0’s contrasting with Reduction Lemma 2.14.

Lemma 2.20 Let F be a k× ` matrix. Then Bh(m, [F | t · Ik]) ≤ Bh(m,F ) + (tk+ `)m.

Proof: Let A ∈ BAvoid(m, [F | t · Ik]. For any row in A of row sum r we may remove
that row and the r columns containing a 1 on that row and the remaining (m − 1)-
rowed matrix is simple. In this way remove all rows with row sum at most tk + l
and call the remaining simple matrix B and assume it has m′ rows. Then ‖A‖ ≤
‖B‖ + (tk + `)(m − m′). Suppose B contains F on some k-rows S ⊆

(
[m′]
k

)
. Remove

the columns containing F from B to obtain B′ and now the rows of B′ have row sum
≥ tk. By Lemma 2.12, t · Ik is contained in B′|S. Consequently [F | t · Ik] is contained
in B. This is a contradiction so we conclude that B ∈ BAvoid(m′, F ). Hence ‖B‖ ≤
Bh(m′, F ) ≤ Bh(m,F ) (by Lemma 2.19). We also know that ‖B‖ ≥ ‖A‖ − (tk + `)m
and so ‖A‖ ≤ Bh(m,F ) + (tk + `)m for all A.

Lemma 2.21 Let F be a given k-rowed (0,1)-matrix. Let F ′ denote the matrix ob-
tained from F by adding a row of 0’s. Then Bh(m,F ′) = Bh(m,F ) for m > k. Also
Bh(m, [0k F ]) = max{‖F‖,Bh(m,F ))}.

Proof: Let A be a simple m-rowed matrix with ‖A‖ > Bh(m,F ). Then F Î A. Now
as long as m ≥ k + 1 we have that F ′ Î A. Similarly if ‖A‖ > ‖F‖, then [0k F ] Î A.

A more general result would be the following.
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Theorem 2.22 Let F1, F2 be given. For F as below, Bh(m,F ) is
O(‖F1‖+ ‖F2‖+ max{Bh(m,F1),Bh(m,F2)}).

F =

[
F1

0
0
F2

]
.

Proof: Assume F1 is k-rowed. Let A ∈ BAvoid(m,F ). If ‖A‖ > Bh(m,F1), then
F1 Î A. Assume F1 appears in the first k rows so that

A =

[
F1

∗
∗
B

]
.

If F2 Î B then F Î A and so we may assume F2 6Î B. Now the multiplicity of any
column of B is at most 2k. Thus ‖B‖ ≤ 2kBh(m,F2) and so ‖A‖ ≤ ‖F1‖ + 2kBh(m −
k, F2) ≤ ‖F1‖ + 2kBh(m,F2) by Lemma 2.19. Interchanging F1, F2 yields the result.

3 3× ` Berge hypergraphs

This section provides an explcit classification of the asymptotic bounds Bh(m,F ). Let

G1 =

 1 1
1 0
0 1

 , G2 =

 1 1 0
1 0 1
0 1 1

 .
Theorem 3.1 Let F be a 3× ` (0,1)-matrix.
(Constant Cases) If F Î [I3 | t · 03], then Bh(m,F ) is Θ(1).
(Linear Cases) If F has a Berge hypergraph 2 · 11 or 12 and if F Î [G1 | t · [0 | I3]] =
H(1, 3, t) then Bh(m,F ) = Θ(m).
(Quadratic Cases) If F has a Berge hypergraph 2·12 or G2, or 13 and if F Î [13 | t·G2] =
H(2, 3, t) for some t, then Bh(m,F ) = Θ(m2).
(Cubic Cases) If F has a Berge hypergraph 2 · 13 then Bh(m,F ) = Θ(m3).

Proof: The lower bounds follow from Lemma 2.5 and Lemma 2.6.
The constant upper bound for [I3 | t · 03] is given by Theorem 2.7 combined with

Lemma 2.21 to add columns of 0’s. An exact linear bound for G1 is in Theorem 3.2.
The linear bound for [G1 t · [0 | I3]] = H(1, 3, t) and the quadratic upper bound for
[13 | t · G2] = H(2, 3, t) follow from Theorem 2.15. The cubic upper bound for t · K3

follows from Theorem 2.1.
To verify that all 3-rowed matrices are handled we first note that Bh(m, 2 · 13) is

Θ(m3). Consider matrices F with 2 · 13 6Î F . Then F Î H(2, 3, t) and so Bh(m,F )
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is O(m2). If 2 · 12, 13 or G2 Î F then Bh(m,F ) is Ω(m2). Now assume 2 · 12, 13 and
G2 6Î F . Then G(F ) (from Definition 2.4) has no 3-cycle nor a repeated edge and so
F Î H(1, 3, t). Then Bh(m,F ) is O(m). If 2 · 11 or 12 Î F then Bh(m,F ) is Ω(m).
The only 3-rowed F with 2 · 11 6Î F and 12 6Î F satisfies F Î [I3 | t · 03].

The following theorem is an example of the difference between Berge hypergraphs
and configurations. Note that forb(m,G1) = 2m [7].

Theorem 3.2 Bh(m,G1) = b3
2
mc+ 1

Proof: Let A ∈ BAvoid(m,F ). Then A has at most m + 1 columns of sum 0 or 1.
Consider two columns of A of column sum at least 2. If there is a row that has 1’s
in both column i and column j then we find a Berge hypergraph G1. Thus columns
of column sum at least 2 must occupy disjoint sets of rows and so there are at most
bm

2
c columns of column sum at least 2. This yields the bound. Then we can form an

A ∈ BAvoid(m,F ) with ‖A‖ = b3
2
mc+ 1.

4 4× ` Berge hypergraphs

Given a (0,1)-matrix F , we denote by r(F ) (the reduction of F ) the submatrix obtained
by deleting all columns of column sum 0 or 1. In view of Lemma 2.20, we have that
Bh(m,F ) is O(Bh(m, r(F ))). On 4 rows, there is an interesting and perhaps unexpected
result.

Theorem 4.1 [5] forb(m, {I2 × I2, T2 × T2}) is Θ(m3/2) where

I2 × I2 = C4 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , T2 × T2 =


1 1 1 1
0 0 1 1
1 1 1 1
0 1 0 1

 .
The above result uses the lower bound construction (projective planes) from the

much cited paper of Kővari, Sós and Turán.

Theorem 4.2 [17] f(C4, Im/2 × Im/2) is Θ(m3/2).

We conclude a Berge hypergraph result much in the spirit of Gerbner and Palmer
[15]. They maximized a different extremal function: essentially the number of 1’s in a
matrix in BAvoid(m,C4).

Theorem 4.3 Bh(m,C4) is Θ(m3/2)
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Proof: The lower bound follows from [17]. It is straightforward to see that C4 Î T2×T2
and then we apply Theorem 4.1 for the upper bound.

We give an alternative argument in Section 6 that handles F = I2 × Is for s ≥ 2.
Other 4-rowed Berge hypergraph cases are more straightforward. Let

H1 =


1 0 0
1 1 0
0 1 1
0 0 1

 , H2 =


1 1 1
1 0 0
0 1 0
0 0 1

 , H3 =


1 1
1 1
1 0
0 1

 , H4 =


1 1 1 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 ,

H5 =


1 1 0
1 1 1
1 0 1
0 1 1

 , H6 =


1 1 0
1 1 0
1 0 1
0 1 1

 , H7 =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1

 .
Theorem 4.4 Let F be a 4× ` (0,1)-matrix.
(Constant Cases) If F Î [I4 | t · 04], then Bh(m,F ) is Θ(1).
(Linear Cases) If F has a Berge hypergraph 2 · 11 or 12 and if r(F ) is a configuration
in H1 or H2 then Bh(m,F ) = Θ(m).
(Subquadratic Cases) If r(F ) is C4, then Bh(m,F ) is Θ(m3/2).
(Quadratic Cases) If F has a Berge hypergraph 2 · 12 or G2, or 13 and if F Î H(2, 4, t)
for some t, then Bh(m,F ) = Θ(m2).
(Cubic Cases) If F has a Berge hypergraph 2 · 13 or 14 or K2

4 or H6 or H7 and if
F Î H(3, 4, t) then Bh(m,F ) = Θ(m3).
(Quartic Cases) If F has a Berge hypergraph 2 · 14 then Bh(m,F ) = Θ(m4).

Proof: The lower bounds follow from Lemma 2.5, Lemma 2.6 and Theorem 4.2.
The constant upper bound for [I4 | t · 04] is given by Theorem 2.7 combined with

Lemma 2.21 to add columns of 0’s. The linear upper bound for F where G(F ) is a tree
(or forest) follows from Theorem 6.5. There are only two trees on 4 vertices namely
H1 and H2. Note [H2 | t · [04 | I4]] = H(1, 4, t). Thus Bh(m, [H2 | t · [04 | I4]]) is O(m) by
Theorem 2.15. Also Bh(m, [H1 | t · [04 | I4]]) is O(m) by Reduction Lemma 2.14. Now
Theorem 4.3 establishes Bh(m,C4). The quadratic upper bound for H(2, 4, t) and the
cubic upper bound for H(3, 4, t) follow from Theorem 2.15. The quartic upper bound
for t ·K4 follows from Theorem 2.1.

To verify that all 4-rowed matrices are handled we first note that Bh(m, 2 · 14) is
Θ(m4). Consider matrices F with 2 · 14 6Î F . Then F Î H(3, 4, t) and so Bh(m,F ) is
O(m3). If 2 · 13 Î F , then Bh(m,F ) is Ω(m3) by Lemma 2.6. If 14, K

2
4 , H6 or H7 Î F

then ω(G(F )) = 4 and so Bh(m,F ) is Ω(m3) by Lemma 2.5.
The column minimal simple (0,1)-matrices F with ω(G(F )) = 4 and with column

sums at least 2 are 14, K
2
4 , H5, H6 and H7. Since H6 Î H5 it suffices to drop H5

from the list. Now assume ω(G(F )) ≤ 3 and so 14, K
2
4 , H6 or H7 6Î F . Also assume
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2 · 13 6Î F . Let 3, 4 be the rows of F so that no column has 1’s in both rows 3, 4. Then
there are only two possible different columns of sum 3 in F and since 2 · 13 6Î F , F has
at most 2 (different) columns of sum 3. Hence F Î H(2, 4, t) and Bh(m,F ) is O(m2).

If 2 · 12 Î F , then Bh(m,F ) is Ω(m2) by Lemma 2.6. If 13 or G2 Î F , then
Bh(m,F ) is Ω(m2) by Lemma 2.5. Now assume F Î H(2, 4, t) but 2 · 12, 13 and
G2 6Î F . Then G(F ) (from Definition 2.4) has no 3-cycle nor a repeated edge and so
G(F ) is a subgraph of K2,2 or K1,3. In the latter case, F Î H(1, 4, t). Then Bh(m,F )
is O(m). In the former case, F Î H((2, 2), t) and so Theorem 4.3 applies to show that
Bh(m,F ) is O(m3/2).

If 2 · 11 or 12 Î F then Bh(m,F ) is Ω(m). If C4 Î F , then Bh(m,F ) is Ω(m3/2) by
Theorem 4.3. The only subgraph of K2,2 that contains C4 and has no 3-cycle is C4. The
only 4-rowed F with 2 · 11 6Î F , 12 6Î F and C4 6Î F satisfies F Î [I4 | t · 04].

We give some exact linear bounds.

Let H8 =


1 0
1 0
0 1
0 1


For the following you may note that forb(m,H8) is

(
m
2

)
+ 2m − 1 and forb(m,H2) is

Θ(m2) [7].

Theorem 4.5 Assume m ≥ 5. Then Bh(m,H8) = 2m.

Proof: Let A ∈ BAvoid(m,H8). Assume that A is a downset by Lemma 1.5. Let
A′ = r(A). Since H8 has column sums 2 then Bh(m,H8) ≤ ‖A′‖ + m + 1. If A′ has
a column of column sum 4 (or more), then H8 Î A′ since H8 has only 4 rows and is
simple. If A′ has a column of sum 3 say with 1’s on rows 1,2,3, then we find [K3

3K
2
3 ]

in those 3 rows. Assume A′ has a column of column sum 3, say with 1’s in rows 1,2,3.
Then if A′ has either a column of sum 3 with at least one 1 in rows 1,2,3 and one 1
not in rows 1,2,3 or a column with at least 2 1’s not in rows 1,2,3 then H8 Î A′ (using
the fact that A is a downset). Thus if A′ has a column of sum 3 with 1’s in rows 1,2,3
then it has no columns with 1’s not in rows 1,2,3 and so ‖A′‖ = 4. Thus for m ≥ 5,
‖A′‖ ≤ m− 1 and so Bh(m,H8) ≤ 2m.

If A′ has only columns of sum 2 then we deduce that ‖A′‖ ≤ m − 1 and so
Bh(m,H8) ≤ 2m.

The construction to achieve the bound is to take the m − 1 columns of sum 2 that
have a 1 in row 1 as well as all columns of sum 0 or 1. We conclude that Bh(m,H8) = 2m.

Theorem 4.6 Bh(m,H2) = 4bm/3c+m+ 1.
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Proof: Proceed as above. Let A ∈ BAvoid(m,H2). Assume that A is a downset by
Lemma 1.5. Let A′=r(A) then Bh(m,H2) ≤ ‖A′‖ + m + 1 since H2 has column sums
all 2. If A′ has a column of column sum 4 (or more), then H2 Î A′ since H2 has only
4 rows and is simple. If A′ has a column of sum 3, say with 1’s on rows 1,2,3, then we
find [K3

3K
2
3 ] in those 3 rows. If A′ has such a column of column sum 3, then A′ cannot

have a column with a 1 in row 1 and a 1 in row 4 else F Î A′ using the fact that A is
a downset (using the columns with 1’s in rows 1,2 and the column with 1’s in rows 1,3
and the column with 1’s in rows 1,4). Thus the number of columns of sum 3 is at most
bm/3c.

Let t be the number of columns of sum 3. If m = 3t, then we can include all columns
of sum 2 that are in the downset of the columns of sum 3. All other columns of sum 2
have their 1’s in the m− 3t rows disjoint from those of the 1’s in the columns of sum 3.
The columns of sum 2, when interpreted as a graph, cannot have a vertex of degree 3
else H2 Î A. So the number of columns of sum 2 is at most m− 3t for m− 3t ≥ 3 and
0 otherwise. This yields an upper bound.

A construction to achieve our bound is to simply take bm/3c columns of sum 3 each
having their 1’s on disjoint sets of rows and then, for each column of sum 3, add 3
columns of sum 2 whose 1’s lie in the rows occupied by the 1’s of the column of sum 3.

5 5× ` Berge hypergraphs

First we give the 5-rowed classification which requires Conjecture 7.1 to be true.

Theorem 5.1 Let F be a 5× ` (0,1)-matrix. Assume Bh(m,11 × C4) is Θ(m2).
(Constant Cases) If F Î [I5 | t · 05], then Bh(m,F ) is Θ(1).
(Linear Cases) If F has a Berge hypergraph 12 or [1 1] and if r(F ) is a vertex-edge
incidence matrix of a tree then Bh(m,F ) = Θ(m).
(Subquadratic Cases) If r(F ) is is a vertex-edge incidence matrix of a bipartite graph G
with a cycle then Bh(m,F ) is Θ(ex(m,G)) i.e. Θ(m3/2).
(Quadratic Cases) If F has a Berge hypergraph 2 · 12 or χ(G(F )) ≥ 3, and if r(F )
is a configuration in H(2, 5, t) from (2) for some t or in H((1, 2, 2), t) from (3) , then
Bh(m,F ) = Θ(m2).
(Cubic Cases) If F has a Berge hypergraph 2 · 13 or 14 or K2

4 or H6 or H7 and if
F Î H(3, 5, t) from (2) for some t then Bh(m,F ) = Θ(m3).
(Quartic Cases) If F has a Berge hypergraph 2 ·14 or if ω(G(F )) = 5 and F Î H(4, 5, t)
then Bh(m,F ) = Θ(m4).
(Quintic Cases) If F has a Berge hypergraph 2 · 15 then Bh(m,F ) = Θ(m5).

Proof: The lower bounds follow from Lemma 2.5, Lemma 2.6 and also Theorem 4.2.
Note that a bipartite graph on 5 vertices with a cycle must have a 4-cycle. In the
quadratic cases, we could have listed three minimal examples of Berge hypergraphs

14



with χ(G(F )) ≥ 3, namely 13, G2 or the 5 × 5 vertex edge incidence matrix of the
5-cycle.

The constant upper bound for [I5 | t · 05] is given by Theorem 2.7 combined with
Lemma 2.21 to add columns of 0’s. The linear upper bound for F where G(F ) is a tree
(or forest) follows from Theorem 6.5. There are a number of trees on 5 vertices. Let F be
the vertex-edge incidence matrix of a bipartite graph on 5 vertices that contains a cycle
and hence contains C4. Thus F Î I2×I3 and so Theorem 6.1 establishes that Bh(m,F )
is O(m3/2). The quadratic upper bound for H(2, 5, t) and the cubic upper bound for
H(3, 5, t) and the quartic upper bound for H(4, 5, t) follow from Theorem 2.15. The
quadratic bound for H((1, 2, 2), t) is Theorem 2.18 under the assumption Bh(m,11×C4)
is Θ(m2). The quintic upper bound for t ·K5 follows from Theorem 2.1.

To verify that all 5-rowed matrices are handled we first note that Bh(m, 2 · 15) is
Θ(m5). Consider matrices F with 2 · 15 6Î F . Then F Î H(4, 5, t) and so Bh(m,F ) is
O(m4).

If 2 ·14 Î F , then Bh(m,F ) is Ω(m4) by Lemma 2.6. If ω(G(F )) = 5 then Bh(m,F )
is Ω(m4) by Lemma 2.5.

Now assume ω(G(F )) ≤ 4 and 2 · 14 6Î F . Let 4, 5 be the rows so that no column
has 1’s in both rows 4, 5. Three columns of sum 4 in F either force ω(G(F ) = 5 or we
have a column of sum 4 repeated. So F has at most 2 (different) columns of sum 4 and
so F Î H(3, 5, t) for some t which yields that Bh(m,F ) is O(m3).

If 2 · 13 Î F , then Bh(m,F ) is Ω(m3) by Lemma 2.6. If 14 or K2
4 or H6 or H7 Î F ,

then ω(G(F )) ≥ 4 and then Bh(m,F ) is Ω(m3) by Lemma 2.5.
Now assume ω(G(F )) ≤ 3 and 2 ·13 6Î F . If α(G(F )) ≥ 3, then by taking rows 3,4,5

to be the rows of an independent set of size 3, we have F Î H(2, 5, t) and so Bh(m,F )
is O(m2). The maximal graph on 5 vertices with ω(G(F )) ≤ 3 and α(G(F )) ≤ 2 is in
fact G(11 × C4). Thus F Î H((1, 2, 2), t) for some t and by assumption Bh(m,F ) is
O(m2).

Now if 2 · 12 Î F , then Bh(m,F ) is Ω(m2) by Lemma 2.6. If 13 or K2
3 Î F then

ω(G(F )) ≥ 3 and then Bh(m,F ) is Ω(m2) by Lemma 2.5. Now assume ω(G(F )) ≤ 2
and 2 · 12 6Î F . Thus the columns of F of sum at least 2 must have column sum 2 and
there are no repeats of columns of sum 2. The graph G(F ) has no triangle. If it is not
bipartite then χ(G(F )) ≥ 3 and then Bh(m,F ) is Ω(m2).

Now assume 2 · 12 6Î F and χ(G(F )) ≤ 2 and so the columns of sum 2 of F form a
bipartite graph G(F ) and there are no columns of larger sum. The graph G(F ) is either
a tree in which case Bh(m,F ) is O(m) by Theorem 6.5 or if there is a cycle it must be
C4 and so Bh(m,F ) is Ω(m3/2). But G(F ) is a subgraph of K2,3 and so we may apply
Theorem 6.1 (and Theorem 2.20) to obtain Bh(m,F ) is Ω(m3/2).

If 2 · 1 or 12 Î F then Bh(m,F ) is Ω(m). The only F with 2 · 11 6Î F and 12 6Î F
satisfies F Î [I5 | t · 05] for some t.

Attempting the classification for 6-rowed F would require bounds such as Bh(m, I1×
I2 × I3) and Bh(m, I2 × I2 × I2).
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6 Berge hypergraphs from graphs

Let G be a graph and let F be the vertex-edge incidence graph so that G(F ) = G. This
section explores some connections of Berge hypergraphs F with extremal graph theory
results. The first results provides a strong connection with ex(m,Ks,t) and the related
problem ex(m,T,H) (the maximum number of subgraphs T in an H-free graph on m
vertices). Then we consider the case G is a tree (or forest).

Theorem 6.1 Let F = I2 × It be the vertex-edge incidence matrix of the complete
bipartite graph K2,t. Then Bh(m,F ) is Θ(ex(m,K2,t)) which is Θ(m3/2).

Proof: It is immediate that Bh(m,F ) is Ω(ex(m,K2,t)) since the vertex-edge incidence
matrix A of a graph on m vertices with no subgraph K2,t has A ∈ BAvoid(m,F ).

Now consider A ∈ BAvoid(m,F ). Applying Lemma 1.5, assume Ti(A) = A for all i
and so, when columns are viewed as sets, the columns form a downset. Thus for every
column γ of A of column sum r, we have that there are all 2r columns α in A with
α ≤ γ. Assume for some column α of A of sum 2 that there are 2t−1 columns γ of A
with α ≤ γ. But the resulting set of columns have the Berge hypergraph 12 × It by
Theorem 2.7 and then, using the downset idea, will contain the Berge hypergraph F .
Thus for a given column α of sum 2, there will be at most 2t−1− 1 columns γ of A with
α < γ. Thus ‖A‖ ≤ (2t−1)p where p is the number of columns of sum 2 in A. We have
p ≤ ex(m,K2,t) which proves the upper bound for Bh(m,F ).

Results of Alon and Shikhelman [1] are surprisingly helpful here. They prove very ac-
curate bounds. For fixed graphs T and H, let ex(m,T,H) denote the maximum number
of subgraphs T in an H-free graph on m vertices. Thus ex(m,K2, H) = ex(m,H). The
following is their Lemma 4.4. The lower bound for s = 3 can actually be obtained from
the construction of Brown [9]. The lower bounds for larger s have also been obtained
by Kostochka, Mubayi and Verstraëtte [16].

Lemma 6.2 [1] For any fixed s ≥ 2 and t ≥ (s−1)!+1, ex(m,K3, Ks,t) is Θ(m3−(3/s)).

We can use this directly in analogy to Theorem 6.1.

Theorem 6.3 Bh(m, I3 × It) is Θ(m2).

Proof: Let A ∈ BAvoid(m, I3 × It). Applying Lemma 1.5, assume Ti(A) = A for all i
and so, when columns are viewed as sets, the columns form a downset. Thus for every
column γ of A of column sum r, we have that there are all 2r columns α in A with
α ≤ γ. Let G be the graph associated with the columns of sum 2 and so a column
of sum r corresponds to Kr in G. In particular the number of columns of sum 3 is
bounded by ex(m,K3, K3,t) since each column of sum 3 yields a triangle K3. Assume
for some column α of A of sum 3 that there are 2t−1 columns γ of A with α ≤ γ. But
the resulting set of columns have the Berge hypergraph 13 × It by Theorem 2.7 and
then, using the downset idea, will contain the Berge hypergraph I3 × It. Thus for a

16



given column α of sum 3, there will be at most 2t−1 − 1 columns γ of A with α < γ.
Thus ‖A‖ ≤ (2t−1)p + |E(G)| where p is the number of columns of sum 3 in A. We
have p ≤ ex(m,K3, K3,t). This yields ‖A‖ ≤ 2t−1ex(m,K3, K3,t) + ex(m,K3,t). Now
the standard inequalities yield ex(m,K3,t) is O(m5/3) and combined with Lemma 6.2
we obtain the upper bound. The lower bound would follow from taking construction of
Θ(m3−(3/t)) columns of sum 3 from the triangles K3 in Lemma 6.2.

We could follow the above proof technique and verify, for example, that

Bh(m, I4 × I7) is O (ex(m,K4,7) + ex(m,K3, K4,7) + ex(m,K4, K4,7))

using the idea that we can restrict our attention, for an asymptotic bound, to columns of
sum 2,3,4. Note that Lemma 6.2 yields ex(m,K3, K4,7) is Θ(m2+(1/4)) and so Bh(m, I4×
I7) is Ω(m2+(1/4)). Thus Im/2× Im/2 won’t be the source of the construction. The paper
[6] has some lower bounds (Lemma 4.3 in [6]):

Lemma 6.4 [6] For any fixed r, s ≥ 2r − 2 and t ≥ (s− 1)! + 1. Then

ex(m,Kr, Ks,t) ≥
(

1

r!
+ o(1)

)
mr− r(r−1)

2s .

Thus for some choices r, s, t, ex(m,Kr, Ks,t) grows something like Ω(mr−ε) which shows
we can take many columns of sum r and still avoid Ks,t, i.e. Bh(m,Ks,t) grows very
large.

Theorem 6.5 Let F be the vertex-edge incidence k× (k−1) matrix of a tree (or forest)
T on k vertices. Then Bh(m,F ) is Θ(m).

Proof: We generalize the result for trees/forests in graphs. It is known that if a graph
G has all vertices of degree k − 1, then G contains any tree/forest on k vertices as a
subgraph. We follow that argument but need to adapt the ideas to Berge hypergraphs.
Let A ∈ BAvoid(m,F ) with A being a downset. We will show that ‖A‖ ≤ 2k−1m.

If A has all rows sums at least 2k−1 + 1 then we can establish the result as follows.
If we consider the submatrix Ar formed by those columns with a 1 in row r, then Ik−1
is a Berge hypergraph contained in the rows [m]\r of Ar (by Theorem 2.7). Thus the
vertex corresponding to row r in G(A) has degree at least k− 1. Then G(A) has a copy
of the tree/forest T and since A is a downset, F Î A, a contradiction.

If A has some rows of sum at most 2k−1, then we use induction on m. Assume row
r of A has row sum t ≤ 2k−1. Then we may delete that row and the t columns with 1’s
in row r and the resulting (m− 1)-rowed matrix A′ is simple with ‖A‖ = ‖A′‖+ t. By
induction ‖A′‖ ≤ 2k−1(m− 1) and this yields ‖A‖ ≤ 2k−1m.

The following results shows a large gap between Berge hypergraph results and for-
bidden configurations results.
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The following matrices will be used in our arguments.

F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

 , H9 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , H10 =


1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

 . (4)

Lemma 6.6 For k ≥ 5, forb(m,H1 × 0k−4) is Θ(mk−3).

Proof: The survey [7] has the result forb(m,F7) is Θ(m2) listed in the results on 5-
rowed configurations F . We have H1 × 01 ≺ F7. Thus forb(m,H1 × 01) is O(m2). The
upper bound for k ≥ 6 follows by ‘standard induction’ in analogy to Lemma 2.11. We
note that H1 × 0k−4 has a (k − 2)× l submatrix with K0

2 on every pair of rows and so
forb(m,H1 × 0k−4) is Ω(mk−3) by [3].

Lemma 6.7 forb(m,H2 × 0k−4) is Θ(mk−2).

Proof: Theorem 6.1 of [7] yields forb(m,H2) is Θ(m2) and so by ‘standard induction’
in analogy to Lemma 2.11 we have forb(m,H2×0k−4) is O(mk−2). Now H2×0k−4 has a
(k−1)× l submatrix with K0

2 on every pair of rows and so by [3], H2×0k−4 is Ω(mk−2).

Lemma 6.8 forb(m,H9 × 0k−6) is Θ(mk−1).

Proof: H9 × 0k−6 has K0
2 on every pair of rows and so by [3], H9 × 0k−6 is Θ(mk−1).

Theorem 6.9 Assume k ≥ 5 and let F be the k × l vertex-edge incidence matrix of a
forest T . There are 3 cases covering all possible F :

i. forb(m,F ) is Θ(mk−3) if and only if F ≺ H1 × 0k−4.

ii. forb(m,F ) is Θ(mk−2) if and only if F ⊀ H1 × 0k−4 and H9 ⊀ F .

iii. forb(m,F ) is Θ(mk−1) if and only if H9 ≺ F .

Proof:
Assume k ≥ 5. The three cases cover all possible F . Note that forb(m,F ) is Ω(mk−3)
by [3] since a single edge in T produces a column which has k− 2 rows with 02 on every
pair of rows. Also, because F is simple, then forb(m,F ) is O(mk−1) [7].

We note that H1 corresponds to a path of three edges and H2 corresponds to a vertex
of degree 3 (three edges incident with the same vertex) and H9 corresponds to three
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vertex disjoint edges and H10 corresponds to a path of two edges and an additional edge
vertex disjoint from the path.
Case i): forb(m,F ) is Θ(mk−3) if and only if F ≺ H1 × 0k−4.

Assume forb(m,F ) is Θ(mk−3). If T has at most 2 edges (F has only two columns)
then F ≺ H1 × 0k−4. Using Lemma 6.7, we deduce H2 × 0k−4 ⊀ F . Thus if T has 3
edges while it does not have a path of three edges (H1 × 0k−4 ⊀ F ) and no vertex of
degree 3 (H2× 0k−4 ⊀ F ) then by a simple graph argument, T either consists of a path
of two edges (x, y), (y, z) and a vertex disjoint edge (u, v) and so F = H10× 0k−5 (up to
isomorphism) or three vertex disjoint edges soH9×0k−6 ≺ F . In the case F = H10×0k−5,
12 ⊀ F |{2,3} and 02 ⊀ F |{1,4} and I2 ⊀ F |{1,2}. Now Theorem 2.3 yields Bh(m,F ) is
O(mk−2). Considering that 02 ≺ F |{i,j} for all pairs 2 ≤ i < j ≤ k we deduce that F
is not a configuration of the k − 2 fold product Icm/k−2 × Icm/k−2 × · · · × Icm/k−2 and so

Bh(m,F ) is Ω(mk−2), a contradiction. In the case H9 × 0k−6 ≺ F , then Lemma 6.8,
yields forb(m,F ) is Θ(mk−1), a contradiction. There is no forest T with 4 or more edges
which does not have a path of three edges, has no vertex of degree 3, no three edges
with two incident and the other edge vertex disjoint from the first two (H10×0k−5 ⊀ F )
, and no three vertex disjoint edges (H9 ⊀ F ). We conclude that F ≺ H1 × 0k−4.

If F ≺ H1×0k−4 then forb(m,F ) is O(mk−3) by Lemma 6.6 and so Θ(mk−3) by our
observation for any tree T . This concludes Case i).

Case ii): forb(m,F ) is Θ(mk−2) if and only if F ⊀ H1 × 0k−4 and H9 ⊀ F .
Assume forb(m,F ) is Θ(mk−2). Using Case i), we deduce that F ⊀ H1 × 0k−4. We

deduce that H9 ⊀ F by Lemma 6.8. We now consider a forest T that is not contained
in a path of three edges (F ⊀ H1 × 0k−4) and does not have three vertex disjoint edges
( H9 ⊀ F ). Using the properties of the forest we will show that there is a pair of rows
r1, r2 with 12 ⊀ F |{r1,r2} and there is a pair of rows s1, s2 with 02 ⊀ F |{s1,s2} and a pair
of rows t1, t2 with I2 ⊀ F |{t1,t2}. Then Theorem 2.3 yields that forb(m,F ) is O(mk−2).

If a tree does not have two vertex disjoint edges then the tree is a star say with a
root u and edges (u, v1), (u, v2), . . . (u, vt). If T has three non-trivial components, then
H9 ≺ F so we may assume T has at most two non-trivial components. If T has two
non-trivial components then no (non trivial) component has two vertex disjoint edges
(else T has three vertex disjoint edges) and so each component is a star. Let the roots of
the two stars be u1, u2 and let v1 be joined to u1. Then 12 ⊀ F |{u1,u2} and 02 ⊀ F |{u1,u2}
and I2 ⊀ F |{u1,v1}.

Assume the forest T has only one non-trivial component. If T is a star with root
u and edges to v1, v2, . . . , vt with t ≥ 3, then 12 ⊀ F |{v1,v2} and 02 ⊀ F |{u,v1} and
I2 ⊀ F |{u,v1}. If T is not a star, then T has a path of at least 3 edges. T cannot have
a path of 5 edges since then T has three vertex disjoint edges. Assume the longest
path in T is x, u1, u2, y. Then every other edge is incident with either u1 or U1 and
moreover, since F ⊀ H1 × 0k−4, there is one such edge say (u1, z). Then 12 ⊀ F |{x,z}
and 02 ⊀ F |{u1,u2} and I2 ⊀ F |{u1,x}.

Assume the longest path in T is x, u1, y, u2, z. To avoid creating 3 vertex disjoint
edges then the only edges incident with y are (u1, y) and (y, u2). All other edges of T are
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incident with either u1 or u2. Then 12 ⊀ F |{x,z} and 02 ⊀ F |{u1,u2} and I2 ⊀ F |{u1,x}.
Thus in all possibilities Theorem 2.3 yields forb(m,F ) is Θ(mk−2)

If F ⊀ H1 × 0k−4 and H9 ⊀ F then by Case i), forb(m,F ) is Ω(mk−2). Now in all
the forests above we have forb(m,F ) is O(mk−2). Hence forb(m,F ) is Θ(mk−2) and this
concludes Case ii).

Case iii): forb(m,F ) is Θ(mk−1) if and only if H9 ≺ F .
Assume forb(m,F ) is Θ(mk−1). Then by our observations in Case ii), we deduce

H9 ≺ F .
If H9 ≺ F , then because F has column sums 2, H9 × 0k−6 ≺ F and so forb(m,F ) is

Ω(mk−1) by Lemma 6.8. By our general observations above, forb(m,F ) is O(mk−1) and
so forb(m,F ) is Θ(mk−1). This concludes Case iii).

7 Conjecture and Problems

We have used the following conjecture in Theorem 5.1.

Conjecture 7.1 Bh(m,11 × C4) is Θ(m2).

What are the equivalent difficult cases for larger number of rows? The above would
yield Bh(m,12×C4) is Θ(m3) by Lemma 2.11 but we do not predict Bh(m,11×I2×I3).
For k = 6, we believe that F = I2 × I2 × I2 will be quite challenging given an old result
of Erdős [10].

Theorem 7.2 [10] f(I2 × I2 × I2, Im/3 × Im/3 × Im/3) is O(m11/4) and Ω(m5/2).

We might predict that Bh(m, I2 × I2 × I2) = Θ(f(I2 × I2 × I2, Im/3 × Im/3 × Im/3)).
and so Bh(m, I2 × I2 × I2) is between quadratic and cubic. Unfortunately we offer no
improvement to the bounds of Erdős.
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