
Forbidden Configurations
A shattered history

Richard Anstee
UBC Vancouver

Columbia College, December 7, 2015

Richard AnsteeUBC Vancouver Forbidden Configurations A shattered history



I have had the good fortune of working with a number of
coauthors in this area: Farzin Barekat, Laura Dunwoody, Ron
Ferguson, Balin Fleming, Zoltan Füredi, Jerry Griggs, Nima
Kamoosi, Steven Karp, Peter Keevash, Christina Koch, Linyuan
(Lincoln) Lu, Connor Meehan, U.S.R. Murty, Miguel Raggi, Lajos
Ronyai, and Attila Sali. A survey paper is available.
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Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

i.e. if A is m-rowed then A is the incidence matrix of some family
A of subsets of [m] = {1, 2, . . . ,m}.

A =

 0 0 0 1 1
0 1 0 0 1
0 0 1 1 1


A =

{
∅, {2}, {3}, {1, 3}, {1, 2, 3}

}
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Definition Given a matrix F , we say that A has F as a
configuration written F ≺ A if there is a submatrix of A which is a
row and column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]
≺


1 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0

 = A
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Our Extremal Problem

Definition We define ‖A‖ to be the number of columns in A.

Avoid(m,F ) = {A : A is m-rowed simple, F 6≺ A}

forb(m,F ) = maxA{‖A‖ : A ∈ Avoid(m,F )}

Example: forb(m,

[
1 0
0 1

]
) = m + 1.

Richard AnsteeUBC Vancouver Forbidden Configurations A shattered history



Our Extremal Problem

Definition We define ‖A‖ to be the number of columns in A.

Avoid(m,F ) = {A : A is m-rowed simple, F 6≺ A}

forb(m,F ) = maxA{‖A‖ : A ∈ Avoid(m,F )}

Example: forb(m,

[
1 0
0 1

]
) = m + 1.

Richard AnsteeUBC Vancouver Forbidden Configurations A shattered history



Our Extremal Problem

Definition We define ‖A‖ to be the number of columns in A.

Avoid(m,F ) = {A : A is m-rowed simple, F 6≺ A}

forb(m,F ) = maxA{‖A‖ : A ∈ Avoid(m,F )}

Example: forb(m,

[
1 0
0 1

]
) = m + 1.

Richard AnsteeUBC Vancouver Forbidden Configurations A shattered history



Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
= Θ(mk−1)

Corollary Let F be a k × ` simple matrix. Then
forb(m,F ) = O(mk−1) (F ≺ Kk)
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We say a set of rows S is shattered by A if K|S| ≺ A|S .

Definition VC-dimension(A)= max{k : Kk ≺ A}

VC-dimension gets used in Learning Theory and applied probability.
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Let sh(A) = {S ⊆ [m] : A shatters S}

e.g.

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0


sh(A) = {∅, {1}, {2}, {3}, {4}, {2, 3}, {2, 4}}

So |sh(A)| = 7 ≥ 6 = ‖A‖
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Let sh(A) = {S ⊆ [m] : A shatters S}

Theorem (Pajor 85) |sh(A)| ≥ ‖A‖.
Proof: Decompose A as follows:

A =

[
0 0 · · · 0 1 1 · · · 1

A0 A1

]

‖A‖ = ‖A0‖+ ‖A1‖.
By induction |sh(A0)| ≥ ‖A0‖ and |sh(A1)| ≥ ‖A1‖.
|sh(A0) ∪ sh(A1)| = |sh(A0)|+ |sh(A1)| − |sh(A0) ∩ sh(A1)|
If S ∈ sh(A0) ∩ sh(A1), then 1 ∪ S ∈ sh(A).
So (sh(A0) ∪ sh(A1)) ∪

(
1 +

(
sh(A0) ∩ sh(A1)

))
⊆ sh(A).

|sh(A)| ≥ |sh(A0)|+ |sh(A1)|.
Hence |sh(A)| ≥ ‖A‖.
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Remark If A shatters S then A shatters any subset of S .

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
Proof: Let A ∈ Avoid(m,Kk).

Then sh(A) can only contain sets of size k − 1 or smaller.
Then (

m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
≥ |sh(A)| ≥ ‖A‖.
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Critical Substructures

Definition A critical substructure of a configuration F is a
minimal configuration F ′ ≺ F such that

forb(m,F ′) = forb(m,F ).

When F ′ ≺ F ′′ ≺ F , we deduce that

forb(m,F ′) = forb(m,F ′′) = forb(m,F ).

Let 1k0` denote the (k + `)× 1 column of k 1’s on top of ` 0’s.
Let K `

k denote the k ×
(k
`

)
simple matrix of all columns of sum `.

Miguel Raggi Steven Karp
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Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

The same is conjectured to be true for Kk for k ≥ 5.
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We can extend K4 and yet have the same bound

[K4|1202] =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0


Theorem (A., Meehan) For m ≥ 5, we have
forb(m, [K4|1202]) = forb(m,K4).

We expect in fact that we could add many copies of the column
1202 and obtain the same bound, albeit for larger values of m.

Connor Meehan
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A Product Construction

The building blocks of our product constructions are I , I c and T :

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I c4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , T4 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


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Definition Given an m1 × n1 matrix A and a m2 × n2 matrix B we
define the product A× B as the (m1 + m2)× (n1n2) matrix
consisting of all n1n2 possible columns formed from placing a
column of A on top of a column of B. If A, B are simple, then
A× B is simple. (A, Griggs, Sali 97)

1 0 0
0 1 0
0 0 1

×
1 1 1

0 1 1
0 0 1

 =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1


Given p simple matrices A1,A2, . . . ,Ap, each of size m/p ×m/p,
the p-fold product A1 × A2 × · · · × Ap is a simple matrix of size
m × (mp/pp) i.e. Θ(mp) columns.
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The Conjecture

Definition Let x(F ) denote the largest p such that there is a
p-fold product which does not contain F as a configuration where
the p-fold product is A1 × A2 × · · · × Ap where each
Ai ∈ {Im/p, I cm/p,Tm/p}.

Conjecture (A, Sali 05) forb(m,F ) is Θ(mx(F )).

In other words, we predict our product constructions with the three
building blocks {I , I c ,T} determine the asymptotically best
constructions. The conjecture has been verified in many cases.

Attila Sali
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An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

forb(m, {Ik , I ck ,Tk}) ≤ 22
k

Note that the bound does not depend on m! Also note that there
is no obvious product construction of I , I c ,T simultaneously
avoiding Ik , I

c
k ,Tk so this is consistent with the conjecture. It has

the spirit of Ramsey Theory.

Theorem (A., Lu 14) Let k be given. Then there is a constant c

forb(m, {Ik , I ck ,Tk}) ≤ 2ck
2

A construction taking all columns of column sum at most k − 1
that arise from the k − 1-fold product Tk−1 × Tk−1 × · · · × Tk−1
yields forb(m, {Ik , I ck ,Tk}) ≥

(2k−2
k−1

)
≈ 22k .

Probabalistic constructions of Balogh and Bollobás yield
forb(m, {Ik , I ck ,Tk}) ≥ c · 2k log k .
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The proof uses lots of induction and multicoloured Ramsey
numbers: R(k1, k2, . . . , k`) is the smallest value of n such than any
colouring of the edges of Kn with ` colours 1, 2, . . . , ` will have
some colour i and a clique of ki vertices with all edges of colour i .
These numbers are readily bounded by multinomial coefficients:

R(k1, k2, . . . , k`) ≤
( ∑`

i=1 ki
k1 k2 k3 · · · k`

)
R(k1, k2, . . . , k`) ≤ 2k1+k2+···+k`

Linyuan (Lincoln) Lu
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As part of our proof we wish to show that we cannot have a
u × 2u large (0,1)-matrix of the form

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a a 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
b b c c 0 1 ∗ ∗ ∗ ∗ ∗ ∗
d d e e f f 0 1 ∗ ∗ ∗ ∗
g g h h i i j j 0 1 ∗ ∗
k k l l m m n n o o 0 1

One can interpret the entries of the matrix as 1× 2 blocks yielding
a u × u matrix with the blocks below the diagonal either 0 0 or

1 1 with blocks on the diagonal 0 1 and arbitrary (0,1)-blocks
above the diagonal.

We consider a colouring of the complete graph Ku with edge i , j
getting a colour based on the entries in the block j , i and the block
i , j .
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We consider a colouring of the complete graph Ku with edge i , j
getting a colour based on the entries in the block j , i and the block
i , j .

There are 6 colours to consider[
0 0
0 0

]
,

[
1 ∗
0 0

]
,

[
∗ 1
0 0

]
,

[
1 1
1 1

]
,

[
0 ∗
1 1

]
,

[
∗ 0
1 1

]
We are able to show that u < R(k, k + 1, k, k , k + 1, k) and so we
get a singly exponential bound on u ≤ 26k+3. The proof has more
to do than this but this is a critical step.
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We say that the edge i , j is colour

[
1 ∗
0 0

]
if we have 0 0 in entry

(j , i) and 1 ∗ in entry (i , j):

i j
i 0 1 1 ∗

. . .

j 0 0 0 1

Now consider a clique of size k + 1 of colour

[
1 ∗
0 0

]
:

0 1 1 ∗ 1 ∗ 1 ∗ 1 ∗
0 0 0 1 1 ∗ 1 ∗ 1 ∗
0 0 0 0 0 1 1 ∗ 1 ∗
0 0 0 0 0 0 0 1 1 ∗
0 0 0 0 0 0 0 0 0 1

yields Tk

Richard AnsteeUBC Vancouver Forbidden Configurations A shattered history



We say that the edge i , j is colour

[
1 ∗
0 0

]
if we have 0 0 in entry

(j , i) and 1 ∗ in entry (i , j):

i j
i 0 1 1 ∗

. . .

j 0 0 0 1

Now consider a clique of size k + 1 of colour

[
1 ∗
0 0

]
:

0 1 1 ∗ 1 ∗ 1 ∗ 1 ∗
0 0 0 1 1 ∗ 1 ∗ 1 ∗
0 0 0 0 0 1 1 ∗ 1 ∗
0 0 0 0 0 0 0 1 1 ∗
0 0 0 0 0 0 0 0 0 1

yields Tk

Richard AnsteeUBC Vancouver Forbidden Configurations A shattered history



We say that the edge i , j is colour
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Design Theory

Let s · F denote

s︷ ︸︸ ︷
[F |F | · · · |F ].

Theorem (A, Füredi 86) Let s ≥ 2 be given. Then forb(m, s · Kk)
is Θ(mk).

Corollary (Füredi 83) Let F be a k × ` (0,1)-matrix. Then
forb(m,F ) is Θ(mk).

Theorem (A, Sali 14) Let α be given. forb(m,mα · Kk) is
Θ(mk+α)

Note that we are having s grow with m. Our forbidden
configuration is not fixed but depends on m.
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Theorem forb(m,m ·
[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
.

Proof: We note that [K 0
mK

1
mK

2
mK

3
m] ∈ Avoid(m,m ·

[
1
1

]
).

Thus forb(m,m ·
[
1
1

]
) ≥

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
.

(note that each pair of rows of has (m − 1) ·
[
1
1

]
)

We can argue, using the pigeonhole argument,

forb(m,m ·
[

1

1

]
) ≤

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

m − 2

3

(
m

2

)

Thus forb(m,m ·
[
1
1

]
) is Θ(m3).

Can we deduce the growth of forb(m,mα ·
[
1
1

]
)?
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Theorem

forb(m, (m+

(
m − 2

2

)
)·
[

1

1

]
) =

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

(
m

3

)
+

(
m

4

)
.

Note [K 0
mK

1
mK

2
mK

3
mK

4
m] ∈ Avoid(m, (m +

(m−2
2

)
) ·
[
1
1

]
).
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Definition Given integers k ≤ m, let
([m]

k

)
denote all k- subsets of

[m].

Definition Given parameters t,m, k, λ, a t-(m, k , λ) design D is a

multiset of subsets in
([m]

k

)
such that for each S ∈

([m]
t

)
there are

exactly λ blocks B ∈ D containing S .

Definition A t-(m, k , λ) design D is simple if D is a set
(i.e. no repeated blocks).
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If we have a t-(m, k , λ) simple design D, then we can form a
matrix M as the element-block incidence matrix associated with D
and we deduce that

‖M‖ =
(
λ
(m
k

)
/
(k
t

))
and M ∈ Avoid(m, (λ+ 1) · 1t)

M has all columns of sum k . We can extend M:

A = [K 0
m K 1

m K 2
m · · ·K k−1

m M]

If we let µ =
(m−t

0

)
+
(m−t

1

)
+ · · ·

( m−t
k−1−t

)
+ λ+ 1, then

A ∈ Avoid(m, µ · 1t)

We can deduce that

forb(m, µ·1t) =

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+· · ·+

(
m

k − 1

)
+λ

(
m

k

)
/

(
k

t

)
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Breakthrough of Keevash on the Existence of Designs

Theorem (Keevash 14) Let 1/m� θ � 1/k ≤ 1/(t + 1) and
θ � 1. Suppose that

(k−i
t−i
)

divides
(m−i
t−i
)

for 0 ≤ i ≤ r − 1. Then

there exists a t-(m, k , λ) simple design for λ ≤ θmk−t .

Corollary (Weak Packing Idea) forb(m,mα · 1k) is Θ(mk+α).

For our purposes we don’t care about equality but merely
asymptotics. We use the Keevash result to establish lower bounds.
His result is the first to establish this (of course his results do
much more!).
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Using the shifting idea, we have

forb(m, s · Kk) = forb(m, s · 1k)

And this establishes the result:

Theorem (A., Sali 14) Let α be given. forb(m,mα · Kk) is
Θ(mk+α)
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Main Upper Bound Proof

Lemma Let F be a simple matrix and let s > 1 be given.
forb(m, s · F ) ≤

∑m−1
i=1 (s − 1) · forb(m − i ,F )

Proof: We use the induction idea of A. and Lu 13. The idea is to
temporarily allow the matrices to be non-simple in a restricted way.
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Let F =


1 1
1 0
0 1
0 0


We have forb(m,F ) = 4m,

i.e. forb(m,F ) is O(m).

Theorem Let α > 0 be given. Using the Weak Packing idea,
forb(m,mα · F ) is Θ(m2+α).

Proof:
forb(m,mα · F ) ≤

∑m−1
i=1 mα · forb(m− i ,F ) = mα

∑m−1
i=1 4(m− i).

Now
[
1
1

]
≺ F and so mα ·

[
1
1

]
≺ mα · F from which we have

forb(m,mα · F ) ≥ forb(m,mα ·
[
1
1

]
).
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An Open Problem

Let F =


1 0
1 0
0 1
0 1


Theorem (Frankl, Füredi, Pach 87) forb(m,F ) =

(m
2

)
+ 2m − 1

i.e. forb(m,F ) is O(m2).

Theorem (A. and Lu 13) Let s be given. Then forb(m, s · F ) is
Θ(m2).

Conjecture forb(m,mα · F ) is Θ(m2+α).

We can only prove that forb(m,mα · F ) is O(m3+α).
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Thanks to Ana Culibrk for the invite.
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