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We shall give a proof of Burke’s theorem. Let A(s, t)(D(s, t)) denote the
number of arrivals (departures) between times s and t.

Theorem 1 (Burke). Let A and S denote the arrival process and the service

process of an M/M/1 queue at equilibrium with rates λ and µ respectively with

λ < µ. Then the departure process D is poisson with rate λ.

Proof. The process Q(t) = sups≤t[A(s, t) − D(s, t)]+ is a reversible process.
Recall that a CTMC with state space Z is time reversible if we have for all
(i, j) ∈ Z

2 we have piqij = pjqji where {qij} are the transition rates and {pj}
is the stationary distribution. Note that qii+1 = λ, qii−1 = µ and qij = 0
otherwise. Now it is easy to see that pi = cµλ(λ/µ)

i−1(λ + µ)−1 for i ≥ 1 and
p0 = cµλµ/(λ+µ) for some proper normalizing constant cµλ. From this one can
check that the condition for reversibility is satisfied. So the number of decreases
of Q which are precisely the departures are equal in distribution to the number
of arrivals which are the number of arrivals of Q (just look at the process with
time running backwards). This completes the proof as the arrival process is a
poisson process with rate λ.

Remark 2. The proof also shows that since the arrival process on [t,∞) is
independent of Q(t) (by memorylessness), the departure process on (−∞, t] is
independent of Q(t).

0.1 Shape of LPP

We proved that G(x+x0)−G(x0) converges to some limit as x0 goes to infinity
in some direction. Recall that if

X(u) ∼ exp(α) if u ∈ {0} × Z
+

∼ exp(1− α) if u ∈ Z
+ × {0}

∼ exp(1) if u ∈ (Z2)+

Let G0(x) = maxγ:0→x

∑

w∈γ X(w). We have already seen

G0(x) =
x1

1− α
+

x2

α
+ o(||x||) (1)

Now note that

G0(x) = (max
k≤x1

(G0(k, 0)+(G((k, 1), x))+X(k, 1))∨(max
k≤x2

(G0(0, k)+(G((1, k), x))+X(1, k))

the above equation is just stating the fact that the longest path to x must leave
the X or Y axis at some point and after that the path takes up the same weights
on its way as an LPP. Fixing x = (n, n) we get from (1) that

n

1− α
+
n

α
+o(n) = max

k≤n

(

k

1− α
+G((k, 1), x)

)

∨max
k≤n

(

k

α
+G((1, k), x)

)

+o(n)
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Note that the maximum of X(k, n) is of logarithmic order as the maximum is
taken over n variables. Now dividing by n and taking the limit, we get

1

1− α
+

1

α
= sup

s≤1

(

g(1, 1− s) +
s

1− α
∨ s

α

)

This follows from the convergence theorem ?? and the fact that g is symmetric
about the line y = x. So we get the following equation for α ∈ [0, 1/2]:

1

1− α
+

1

α
= sup

s≤1

(

g(1, 1− s) +
s

α

)

(2)

Now to solve the equation (2), we need the theory of convex duality. For a
convex function f : R → R ∪ {∞}, we define the convex dual f∗ as follows:

f∗(y) = sup
x
{xy − f(x)}

If f is continuous, it can be proved that f∗∗ = f (exercise).
Let t = 1− s. Then f(t) = −g(1, t) is convex. From (2), we get

1

1− α
+

1

α
= sup

t≤1

(

−f(t) +
1− t

α

)

= f∗(− 1

α
)

which simplifies to
f∗(−1/α) = 1/(1− α).

So f∗(y) = y/(y + 1). From convex duality,

f(x) = sup
y

(xy − y/(y + 1)) (3)

The function xy− y(y+ 1) maximises at y = −1 + 1/
√
x. Plugging in, we have

f(x) = (1 +
√
1− t)2

where t = −1/x.

0.2 TASEP with general initial conditions

For any general intial height function, the slope of the function at any given
time at any position approximately determines the density of particles present
in that position at that time. Namely if the slope is q ∈ [−1, 1], then the density
is given approximately by p = (1− q)/2. Now locally we might assume that the
process has achieved stationarity. Hence for i.i.d steps we know that the rate of
increase is roughly given by 2p(1− p) = (1− q2)/2. So, we believe

∂

∂t
ht(x) =

1− (h′
t)

2

2
(4)
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Figure 1: Growth process in a self similar structure. Locally the process grows
like a parabole given by solutions to the initial function being |x| ultimately
converging to an equilibrium.

Equation (4) is known as the Burger’s equation. By similar heuristics, if Ut(x)
denote the density of particles in position x at time t, Burger’s equation takes
the form:

∂

∂t
Ut(x) = − ∂

∂x
(U(1− U))

Our goal is to obtain a scaling limit of the form

1

k
hkt(kx) → limit shape

for some general initial function h0(x). This type of limit is known as the
hydrodynamic limit in the literature. Here is a theorem which sheds some light
on the problem.

Theorem 3. Suppose h
(k)
kt (kx)/k converges as k goes to infinity to some func-

tion f0(x), then
1

k
h
(k)
kt (kx) → ft(x)

as k → ∞ where f satisfies burger’s equation (4).

Remark 4. For corner growth with h0(x) = |x| is self similar, that is, h
(k)
kt (kx)/k =

|x|. We can also consider functions not self similar which will grow like the Fig-
ure 1

Remark 5. The scaling here is also kind of special. For example if we con-
sider simple random walk without exclusion on the line, then Ut(x) is roughly
given by U0 ∗ pt(x) where pt(x) is the gaussian kernel: 1/

√
2πt exp(−x2/2t).

So if 1/kU
(k)
0 (kx) converge to f0(x), then 1/kU

(k)
k2t

(kx) converge to ft(x) where
ft(x) = f0(x) ∗ pt(x).

Suppose {hi
0(x)}i∈I be a set of height functions for some index set I. Let

g0(x) = infi h
i
0(x). Define gt(x) and {hi

t(x)} using the standard coupling.
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Lemma 6. If {gt(x)}t≥0 and {hi
t(x)}i∈I,t≥0 be defined as above. Then

gt(x) = inf
i
hi
t(x)

Assuming the lemma we can now derive a form of the limiting shape for a
general initial condition. Given g0 define hi

0 := g0(i)+ |x− i|. So it is clear that
g0 = infi h

i
0. But we know that hi

t(x) = g0(i) + φt(x− i) + o(t) where φt is the
solution for the TASEP with the initial condition h0(x) = |x| as proved earlier.
Hence from Lemma 6 we get that

gt(x) = inf
i
{g0(i) + φt(x− i) + o(t)}

This is known as the variational solution of the Burger’s equation.

Proof of Lemma 6. Since g0 ≤ hi
0, we have gt ≤ hi

t from the monotonicity of the
standard coupling. Suppose we make a step at x in time t and the hypothesis
is satisfied upto time t. Then if g(x) has increased, we are fine because of
monotonicity. Otherwise either gt(x + 1) = gt(x) − 1 or gt(x − 1) = gt(x) − 1
or both. Then for some i So hi

t(x+ 1) = hi
t(x)− 1 or hi

t(x− 1) = hi
t(x) − 1 or

both. Hence hi
t is also not increased. Hence the proof.

0.3 Density of particles

Now let us give a brief summary of what happens when we look at the density of
particles Ut at time t with different initial configurations of densities U0 (known
as steps). The initial corner growth process corresponded to a density function

U0(x) = 1 if x < 0

= 0 if x > 0

In this case we know that the limit shape is a parabola. So the density at time
t is given by

Ut(x) = 1 if x ≥ t

= 0 if x ≤ −t

=
t− x

2t
if − t < x < t

But there is a big difference if we start with a decreasing step or an increasing
step. Suppose we start with the density f0(x) = α if x < 0 and f0(x) = β if
x ≥ 0 where β < α. Then we get a linear spread with slope 1/2t (according to
the Burger’s equation). Thus we get

Ut(x) = β if x ≥ at

= α if x ≤ −bt

=
t− x

2t
if − bt < x < at
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Figure 2: Density profiles of TASEP with different initial conditions

where (1 − a)/2 = α and (1 − b)/2 = β. If on the other hand we have an
increasing step, that is, β > α then the discontinuity is known as a “shock” (see
figure 2). We know that if the density was identically β or α, it would have been
stationary. However now the “shock” will move at a constant speed of 1+α−β
to the right.
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