1 Last passage percolation

Recall the last passage percolaiton model: Let X_{u} be i.i.d. random variables for $u \in \mathbb{Z}^{d}$. We assume throughout that a.s. $X_{u} \geq 0$. We write $u \leq v$ for $u, v \in \mathbb{Z}^{d}$ if $u_{i} \leq v_{i}$ for all $i=1,2, \ldots, d$. Define the last passage time for $u \leq v$

$$
G(u, v)=\max _{\gamma: u \rightarrow v} \sum_{w \in \gamma} X_{w}
$$

where the maximum is over all monotone increasing paths from u to v. For certain computations it is convenient to assume that the sum over γ includes its end point v but not its starting point u. We shall abbreviate $G(x)=G(0, x)$ in some cases.

We shall see that G has a deterministic asymptotic value, in the following sense.

Theorem 1. There exists a function $g: \mathbb{R}_{+}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$, depending only on the law of X_{u}, such that a.s. for every $x \in \mathbb{R}_{+}^{d}$,

$$
\frac{1}{n} G(n x) \underset{n \rightarrow \infty}{ } g(x)
$$

Either $g=\infty$ for all $x \in(0, \infty)^{d}$, or else it is finite everywhere. Moreover, g is continuous, increasing in each coordinate, homogeneous ($g(a x)=a g(x)$ for $a>0)$, superadditive $(g(x+y) \geq g(x)+g(y))$ and concave.

Recall that G is monotone, which implies monotonicity of g. Homogeneity follows from the form of the limit, given that it exists. Together with monotonicity, homogeneity implies continuity in $(0, \infty)^{d}$: the box with corners $(1-\delta) x,(1+\delta) x$ is a neighbourhood of x in which the values of g are within factor $\delta g(x)$ of $g(x)$.

To see that g is superadditive, namely $g(x+y) \geq g(x)+g(y)$, note that

$$
\geq \frac{1}{n} G(0, n x+n y) \frac{1}{n} G(0, n x)+\frac{1}{n} G(n x, n x+n y) .
$$

A.s. the LHS converges to $g(x+y)$ and the first term on the RHS to $g(x)$. While we have not proven a.s. conergence of the second term to $g(y)$, we have from translation invariance of last passage percolation

$$
G(n x, n x+n y) G(0, n y)
$$

Therefore $\frac{1}{n} G(n x, n x+n y)$ converges to $g(y)$ in distribution. It follows that it converes a.s. along a subsequence, yielding the desired inequality.

Figure 1: Splitting of the box of size n into smaller boxes of size $p^{-1 / d}$.

Concavity is just a combination of superadditivity and homogeneity:

$$
g(\alpha x+\bar{\alpha} y) \geq g(\alpha x)+g(\bar{\alpha} y)=\alpha g(x)+\bar{\alpha} g(y)
$$

Finally, since g is monotone, if $g(x)=\infty$ for some $x \in(0 \text { infty })^{d}$, then $g(y)=\infty$ for all $y \geq x$, and by homogeneity, on all of $(0, \infty)^{d}$.

The case $g \equiv \infty$ is indeed possible, even if $\mathbb{E} X_{u}<\infty$ (so that each particular path still has total sum of order $\|x\|$. It is a generally open problem to find a necessary and sufficient condition on the law of each X_{u} so that $g<\infty$. One sufficient condition for $g<\infty$ is given by following theorem of [?]
Theorem 1. In \mathbb{Z}^{d}, if for some $\epsilon>0$,

$$
\mathbb{E}\left[X^{d} \log ^{d+\epsilon} X\right]<\infty
$$

then $g<\infty$.
This result is tight in that if X doesn't have finite d th moment, then $g \equiv \infty$:
Proposition 2. If $\mathbb{E}\left[X^{d}\right]=\infty$, then $g \equiv \infty$.
Proof. First note that

$$
G(n, n) \geq \max _{u \leq(n, n)} X_{u}
$$

Now, if $\mathbb{E} X^{d}=\infty$, then for any constant c and infinitely many n, there is $u \leq(n, n)$, suth that $X_{u} \geq c n$. Therefore G cannot be constant, so it cannot be concentrated either.

Theorem 2. If

$$
\int_{0}^{\infty} \mathbb{P}(X>t)^{1 / d} d t<\infty
$$

then $g<\infty$.
Lemma 3. Let $X_{u}=\operatorname{Bernoulli}(p)$, then

$$
\mathbb{E}[G(n, n)] \lesssim n p^{1 / d}
$$

where \lesssim means and inequality up to a constant that may depend on d, but not on p.

Proof. Note that when p is large the statement in easy, so we will only consider the case when $p \rightarrow 0$. Then, after rescaling, we obtain a Poisson process.

We split the box into smaller boxes of size $p^{-1 / d}$ as in figure 1. The number of 1 's in each box coverges to Poisson(1) as $p \rightarrow 0$.

$$
\mathbb{E}[G(n, n)] \leq \mathbb{E}\left[G_{\mathrm{poisson}}\left(n p^{1 / d}\right)\right] \leq n p^{1 / d} g_{\mathrm{poisson}}((1,1))<\infty
$$

The finiteness of $g_{\text {poisson }}$ follows from the fact that the Poisson distribution has a very fast decaying tail.

Proof of Theorem. Since

$$
X=\int_{0}^{\infty} \mathbb{1}_{X>t} d t
$$

we have

$$
G(0, x)=\max _{\gamma: 0 \rightarrow x} \sum_{\gamma} \int_{0}^{\infty} \mathbb{1}_{X_{u}>t} d t
$$

So, by Fubini,

$$
\begin{aligned}
\mathbb{E}[G(0, x)] & =\mathbb{E}\left[\max _{\gamma: 0 \rightarrow x} \sum_{\gamma} \int_{0}^{\infty} \mathbb{1}_{X_{u}>t} d t\right] \\
& \leq \int_{0}^{\infty} \mathbb{E}\left[\max _{\gamma: 0 \rightarrow x} \sum_{\gamma} \mathbb{1}_{X_{u}>t}\right] d t .
\end{aligned}
$$

Now, $\mathbb{1}_{X_{u}>t}$ is a Bernoulli random variable, so we obtain the estimate

$$
\mathbb{E}[G(0, x)] \leq \int_{0}^{\infty} \mathbb{E}\left[G_{\text {bernoulli }\left(p_{t}\right)}(0, x)\right] d t
$$

where $p_{t}:=\mathbb{P}\left[X_{u}>t\right]$.
Finally, if we set $x=n \mathbb{1}$ and use the result of Lemma 3, we get

$$
\frac{1}{n} \mathbb{E}[G(0, x)] \lesssim \int_{0}^{\infty} \mathbb{P}(X>t)^{1 / d} d t
$$

The problem of finding a necessary and sufficient condition for $g<\infty$ remains open.
Remark 4. Let $\tilde{X}:=X \wedge M$, for some constant M. The above argument gives us that

$$
0 \leq g(\mathbb{1})-\tilde{g}(\mathbb{1}) \lesssim \int_{M}^{\infty} \mathbb{P}(X>t)^{1 / d} d t
$$

The above remark allows us to approximate general weights by truncated ones.

For example, the following theorem could be used to say something more about $\tilde{g}(\mathbb{1})$ than what we already know about $g(\mathbb{1})$.

Theorem 3 (Talagrand, Martin). Given sets C_{i} of size less than R, we consider iid weights Z_{u} bounded by M, i.e. $\left|Z_{u}\right|<M$. If

$$
Q=\max _{i} \sum_{u \in C_{i}} Z_{u}
$$

Then

$$
\mathbb{P}[|Q-\mathbb{E} Q|>s] \lesssim \exp \left[-\frac{c s^{2}}{M^{2} R}\right]
$$

A typical application of this theorem is to conclude that $G(n x)$ is within \sqrt{n} of $\mathbb{E}[G(n x)]$, which is about $n g(x)$.

Conjecture For a bounded X_{u},

$$
\frac{G(n x)-n g(x)}{C_{x} n^{1 / 3}} \xrightarrow{n \rightarrow \infty} F_{2}
$$

where F_{2} is a Tracy-Widom distribution (maximum eigenvalue of a Gaussian Unitary Matrix) and C_{x} is a constant depending on x and the distribution of X_{u}.

Fluctuations of $G(n x)$ are thus of order $n^{1 / 3}$ and so, it is easy to see that the fluctuations of the limiting shape are also of the order $n^{1 / 3}$. To be more precise, the fluctuations of $h_{t}(x)$ in t are of the order $n^{1 / 3}$, while the correlations in x are of the order $n^{2 / 3}$. Therefore,

$$
\left\{n^{-1 / 3} h\left(n^{2 / 3} t\right)\right\}_{t} \stackrel{(\text { weakly })}{\Longrightarrow} A(t)
$$

This is a general property of the KPZ univerality class, where our corner growth model lies.

- Is g continuous at the boundary?
- If $\int_{0}^{\infty} \mathbb{P}(X>t)^{1 / d} d t<\infty$, then g the answer to the previous question is yes, but is the weaker condition $g<\infty$ sufficient?
- Is g strictly concave? Generally no. In fact for the $\operatorname{Bernoulli}(p)$ case, there is a range of x such that $g(x)=\|x\|_{1}$, so that the level sets of g are not strictly convex. This also implies that g itself is not strictly concave.
Theorem 4. Let $S_{t}=\{x: G(0, x)<t\}$. If $\int_{0}^{\infty} \mathbb{P}(X>t)^{1 / d} d t<\infty$, then

$$
\frac{1}{t} S_{t} \longrightarrow\{x: g(x)<1\}
$$

Proof. We prove the statement by using concentration inequalities and BorelCantelli lemma.

By concentration (for truncated version), fo a fixed $\epsilon>0$,

$$
\mathbb{P}[|G(x)-\mathbb{E} G(x)|>\epsilon\|x\|] \lesssim \exp \left(-\frac{c\|x\|^{2} \epsilon^{2}}{M^{2}\|x\|}\right) .
$$

Since the RHS is summable over the whole quadrant, the even only occurs finitely many times for all $\epsilon>0$ by Borel-Cantelli.

So, the limit shape is known for $X_{u} \stackrel{(d)}{=} \operatorname{Exp}(1)$, and in fact for

$$
X_{u} \stackrel{(d)}{=} \operatorname{Geom}(p), \text { where } \mathbb{P}(X=k)=p \bar{p}^{k-1}
$$

In the exponential case it is $g(x, y)=(\sqrt{x}+\sqrt{y})^{2}$, and for the geometric case,

$$
g(x, y)=\frac{1}{p}(\bar{p}(x+y)+2 \sqrt{x y \bar{p}}) .
$$

These results come from the memoryless property of the exponential and geometric distribution, which makes S_{t} into a Markov Chain. Studying Markov Chains requires the knowledge of their stationary distributions. We will see that for every $\rho \in[0,1]$, there is a stationary measure μ_{ρ}, which is a product measure. Under μ_{ρ}, every site is occupied with probability ρ independently of the others.

