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1 Last passage percolation

Recall the last passage percolaiton model: Let Xu be i.i.d. random variables for
u ∈ Zd. We assume throughout that a.s. Xu ≥ 0. We write u ≤ v for u, v ∈ Zd
if ui ≤ vi for all i = 1, 2, . . . , d. Define the last passage time for u ≤ v

G(u, v) = max
γ:u→v

∑
w∈γ

Xw,

where the maximum is over all monotone increasing paths from u to v. For
certain computations it is convenient to assume that the sum over γ includes
its end point v but not its starting point u. We shall abbreviate G(x) = G(0, x)
in some cases.

We shall see that G has a deterministic asymptotic value, in the following
sense.

Theorem 1. There exists a function g : Rd+ → R∪{∞}, depending only on the
law of Xu, such that a.s. for every x ∈ Rd+,

1

n
G(nx) −−−−→

n→∞
g(x).

Either g = ∞ for all x ∈ (0,∞)d, or else it is finite everywhere. Moreover, g
is continuous, increasing in each coordinate, homogeneous (g(ax) = ag(x) for
a > 0), superadditive (g(x+ y) ≥ g(x) + g(y)) and concave.

Recall that G is monotone, which implies monotonicity of g. Homogene-
ity follows from the form of the limit, given that it exists. Together with
monotonicity, homogeneity implies continuity in (0,∞)d: the box with corners
(1 − δ)x, (1 + δ)x is a neighbourhood of x in which the values of g are within
factor δg(x) of g(x).

To see that g is superadditive, namely g(x+ y) ≥ g(x) + g(y), note that

≥ 1

n
G(0, nx+ ny)

1

n
G(0, nx) +

1

n
G(nx, nx+ ny).

A.s. the LHS converges to g(x+y) and the first term on the RHS to g(x). While
we have not proven a.s. conergence of the second term to g(y), we have from
translation invariance of last passage percolation

G(nx, nx+ ny)G(0, ny).

Therefore 1
nG(nx, nx+ ny) converges to g(y) in distribution. It follows that it

converes a.s. along a subsequence, yielding the desired inequality.
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Figure 1: Splitting of the box of size n into smaller boxes of size p−1/d.

Concavity is just a combination of superadditivity and homogeneity:

g(αx+ ᾱy) ≥ g(αx) + g(ᾱy) = αg(x) + ᾱg(y).

Finally, since g is monotone, if g(x) = ∞ for some x ∈ (0 infty)d, then
g(y) =∞ for all y ≥ x, and by homogeneity, on all of (0,∞)d.

The case g ≡ ∞ is indeed possible, even if EXu <∞ (so that each particular
path still has total sum of order ‖x‖. It is a generally open problem to find a
necessary and sufficient condition on the law of each Xu so that g < ∞. One
sufficient condition for g <∞ is given by following theorem of [?]

Theorem 1. In Zd, if for some ε > 0,

E
[
Xd logd+εX

]
<∞,

then g <∞.

This result is tight in that if X doesn’t have finite dth moment, then g ≡ ∞:

Proposition 2. If E
[
Xd
]

=∞, then g ≡ ∞.

Proof. First note that
G(n, n) ≥ max

u≤(n,n)
Xu

Now, if EXd = ∞, then for any constant c and infinitely many n, there is
u ≤ (n, n), suth that Xu ≥ cn. Therefore G cannot be constant, so it cannot
be concentrated either.

Theorem 2. If ∫ ∞
0

P(X > t)1/ddt <∞,

then g <∞.

Lemma 3. Let Xu = Bernoulli(p), then

E [G(n, n)] . np1/d,

where . means and inequality up to a constant that may depend on d, but not
on p.

Proof. Note that when p is large the statement in easy, so we will only consider
the case when p→ 0. Then, after rescaling, we obtain a Poisson process.

We split the box into smaller boxes of size p−1/d as in figure 1. The number
of 1’s in each box coverges to Poisson(1) as p→ 0.

E [G(n, n)] ≤ E
[
Gpoisson(np1/d)

]
≤ np1/dgpoisson((1, 1)) <∞.

The finiteness of gpoisson follows from the fact that the Poisson distribution has
a very fast decaying tail.
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Proof of Theorem. Since

X =

∫ ∞
0

1X>tdt,

we have

G(0, x) = max
γ:0→x

∑
γ

∫ ∞
0

1Xu>tdt.

So, by Fubini,

E [G(0, x)] = E

[
max
γ:0→x

∑
γ

∫ ∞
0

1Xu>tdt

]

≤
∫ ∞
0

E

[
max
γ:0→x

∑
γ

1Xu>t

]
dt.

Now, 1Xu>t is a Bernoulli random variable, so we obtain the estimate

E [G(0, x)] ≤
∫ ∞
0

E
[
Gbernoulli(pt)(0, x)

]
dt

where pt := P [Xu > t].
Finally, if we set x = n1 and use the result of Lemma 3, we get

1

n
E [G(0, x)] .

∫ ∞
0

P(X > t)1/ddt.

The problem of finding a necessary and sufficient condition for g < ∞ re-
mains open.

Remark 4. Let X̃ := X ∧M , for some constant M . The above argument gives
us that

0 ≤ g(1)− g̃(1) .
∫ ∞
M

P(X > t)1/ddt.

The above remark allows us to approximate general weights by truncated
ones.

For example, the following theorem could be used to say something more
about g̃(1) than what we already know about g(1).

Theorem 3 (Talagrand, Martin). Given sets Ci of size less than R, we consider
iid weights Zu bounded by M , i.e. |Zu| < M . If

Q = max
i

∑
u∈Ci

Zu,

Then

P [|Q− EQ| > s] . exp

[
− cs2

M2R

]
.

A typical application of this theorem is to conclude that G(nx) is within
√
n

of E[G(nx)], which is about ng(x).
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Conjecture For a bounded Xu,

G(nx)− ng(x)

Cxn1/3
n→∞−→ F2,

where F2 is a Tracy-Widom distribution (maximum eigenvalue of a Gaussian
Unitary Matrix) and Cx is a constant depending on x and the distribution of
Xu.

Fluctuations of G(nx) are thus of order n1/3 and so, it is easy to see that the
fluctuations of the limiting shape are also of the order n1/3. To be more precise,
the fluctuations of ht(x) in t are of the order n1/3, while the correlations in x
are of the order n2/3. Therefore,{

n−1/3h(n2/3t)
}
t

(weakly)
=⇒ A(t).

This is a general property of the KPZ univerality class, where our corner growth
model lies.

• Is g continuous at the boundary?

• If
∫∞
0

P(X > t)1/ddt < ∞, then g the answer to the previous question is
yes, but is the weaker condition g <∞ sufficient?

• Is g strictly concave? Generally no. In fact for the Bernoulli(p) case, there
is a range of x such that g(x) = ‖x‖1, so that the level sets of g are not
strictly convex. This also implies that g itself is not strictly concave.

Theorem 4. Let St = {x : G(0, x) < t}. If
∫∞
0

P(X > t)1/ddt <∞, then

1

t
St −→ {x : g(x) < 1}.

Proof. We prove the statement by using concentration inequalities and Borel-
Cantelli lemma.

By concentration (for truncated version), fo a fixed ε > 0,

P [|G(x)− EG(x)| > ε ‖x‖] . exp

(
−c ‖x‖

2
ε2

M2 ‖x‖

)
.

Since the RHS is summable over the whole quadrant, the even only occurs
finitely many times for all ε > 0 by Borel-Cantelli.

So, the limit shape is known for Xu
(d)
= Exp(1), and in fact for

Xu
(d)
= Geom(p), where P(X = k) = pp̄k−1.

In the exponential case it is g(x, y) = (
√
x+
√
y)2, and for the geometric case,

g(x, y) =
1

p
(p̄(x+ y) + 2

√
xyp̄).
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These results come from the memoryless property of the exponential and ge-
ometric distribution, which makes St into a Markov Chain. Studying Markov
Chains requires the knowledge of their stationary distributions. We will see
that for every ρ ∈ [0, 1], there is a stationary measure µρ, which is a product
measure. Under µρ, every site is occupied with probability ρ independently of
the others.
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