
Force signature of the unzipping transition for strip

confined two-dimensional polymers

Aleksander L Owczarek1 and Andrew Rechnitzer2

1School of Mathematics and Statistics,

The University of Melbourne, Victoria 3010, Australia.

owczarek@unimelb.edu.au

2Department of Mathematics,

University of British Columbia,

Vancouver V6T 1Z2, British Columbia, Canada.

andrewr@math.ubc.ca

August 4, 2017

Abstract

We find and analyse the exact solution of two friendly walks, modelling polymers,

confined between two parallel walls in a strip (or slit) where the polymers interact

with each other via an attractive contact interaction. In the bulk, where the poly-

mers are always far from any walls, there is an unzipping transition between phases

where the two walks drift away for low attractive fugacity (high temperatures) and

bind together for high attractive fugacities (low temperatures). Previously this has

been used to model the denaturation of DNA. In a strip the transition is not sharp.

However, we demonstrate that there is abrupt change in the repulsive force exerted

on the walls of the strip that can be calculated exactly. This provides a physical

mechanism for denaturation to be seen in a colloidal dispersion.

1 Introduction

There has been a continued interest in models of the adsorption of polymers on a sticky

wall, or walls, and related work on models of the pulling, or stretching, of a polymer away

from a wall [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: this has been in part due to the development of the

ability in experiments to micro-manipulate single polymers [11, 12, 13]. The modelling of

DNA denaturation [14, 15, 16, 17, 18, 19, 20] has also played a part in this interest.
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Consider a polymer in dilute solution that is attached to a wall at one or at both

ends. Moreover, consider a situation where the wall has an attractive contact interaction

with the non-attached monomers of the polymer. In such a case there is a second-order

phase transition between a high temperature state, where the polymer drifts away from the

surface due to entropic repulsion, and a low temperature state, where the polymer stays

close to the surface. When the polymer stays close to the surface it is described as adsorbed.

This is the so-called adsorption transition which has been well studied [1, 2, 21, 3, 22] both

through exact solutions of directed walk models in two and three dimensions, and through

numerical techniques, such as Monte Carlo and analysis of exact enumeration data. If

one considers more than one polymer chain and a single sticky wall there has been some

exact solution of models of two polymers with different types of contact interaction [23]

on the square lattice but also where one includes an interaction between the two polymers

[24]. This inter-polymer interaction is a simple attempt at modelling the interaction that

may lead to a unzipping transition as in DNA denaturation. Hence, Tabarra et al. [24]

studied a model where there was a competition between polymer adsorption and polymer

unzipping. There has also been a recent study of a model of three polymers interacting

with multiple inter-polymer interactions without a surface [25]. This was an attempt at

providing a simple model of polymer gelation with fixed polymerisation.

The situation becomes more complex when a polymer is confined between two sticky

walls. This situation has been studied by various directed and non-directed lattice walk

models [7, 9, 26, 10, 27, 28, 29], in both two and three dimensions. It should be noted

that, both for one wall adsorption and two wall models, two and three dimensional system

behave in similar ways. Here the phase diagram of two wall models can depend on the

relative mesoscopic size of the polymer relative to the width of the slab/strip and the

strengths of the interactions on both walls. A motivation for studying this type of system

is related to modelling the stabilization of colloidal dispersions by adsorbed polymers (steric

stabilization) and the destabilization when the polymer can adsorb on surfaces of different

colloidal particles (sensitized flocculation). A polymer confined between two parallel plates

exerts a repulsive force on the confining plates because of the loss of configurational entropy

unless the polymer is attracted to both walls when it can exert an effective attractive force

at large distances. Once again far less is known when one considers multiple polymers

confined in this way. A recent exact solution has considered two polymers in two-dimensions

where the polymers interact with the two walls via a contact interaction as in the adsorption

model [30]. This was motivated by work [28] on ring polymers modelled by self-avoiding

polygons, which demonstrate intriguing profiles of the force as a function of Boltzmann

weights and strip width.

In this work we will consider two two-dimensional polymers in a strip where the poly-
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mers interact via an inter-polymer attraction and calculate exactly the free energy and

forces between the walls of the strip for large strip widths. We show that there is a dis-

tinct signature to the force profile arising from the bulk unzipping phase transition. This

perhaps could be used experimentally to detect the unzipping transition as it occurs near

the force minimum.

In Section 2 we define our model in the strip and in the bulk. We then derive the bulk

free energy, using the functional equation methodology, in Section 3. We then set up the

functional equations in Section 4 and apply the kernel method to obtain a single equation in

Section 5 that we analyse for singularities in Section 6. This allows us to analyse the large

width asymptotics of the free energy in Section 7 and the force between the walls induced

by the polymers in Section 8. Our central finding from our exact results is that there is a

signature of the bulk unzipping transition in the force as a function of temperature, which

we note is not monotonic for large widths. We provide a brief summary in Section 9 and

point to future directions.

2 Model

We consider pairs of directed paths, taking steps (1,±1), of equal total length n in the

width w strip of the square lattice — namely Z × {0, 1, . . . , w}. These paths may touch

(ie share edges and vertices) but not cross. We consider those pairs of paths whose initial

vertices lie at (0, 0) and (0, w). See Figure 1.

Figure 1: Two walks confined between two walls spaced w lattice units apart. The walks

may share vertices and each shared vertex (contact) contributes a Boltzmann weight c to

the partition function. The configuration above will contribute a weight c4 for length n = 11

and width w = 4.

Let ϕ ∈ Ωn be such a pair of paths in the set of fixed length walks Ωn and define n = |ϕ|
to be the length of the paths. If the width of the strip, w, is odd then the paths never

share vertices and the combinatorics that follows is more complicated. Because of this we
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only consider even widths. Note that this implies that the distance between the endpoints

of the paths is always even.

To be specific let ϕ be a configuration and add the energy −εc for each shared vertex

(contact) of the two walks. The number of contacts will be denoted v(ϕ). Note that the

leftmost vertices being on the walls do not share a vertex as w ≥ 2. The main model we

discuss in the paper is based on pairs of walks, ϕ, that finish with endpoints together at

the same height. Define the corresponding fixed-length partition function to be

Zn(c;w) =
∑
ϕ∈Ωn

eεcv(ϕ)/kBT =
∑
ϕ∈Ωn

cv(ϕ), (2.1)

where T is the temperature, kB the Boltzmann constant and c = eεc/kBT is the Boltzmann

weight associated with contacts. The thermodynamic reduced free energy at finite width

is given in the usual fashion as

κ(c;w) = lim
n→∞

1

n
log [Zn(c;w)] . (2.2)

Because the model at finite w is essentially one-dimensional, the free energy is an

analytic function of c and no thermodynamic phase transitions occur [31]. As noted above,

the infinite strip limit for the single walk model does display singular behaviour and so

we consider the same limit for this model. The infinite strip free energy for the two walk

model is found analogously by

κ(c) = lim
w→∞

κ(c;w) = lim
w→∞

lim
n→∞

1

n
log [Zn(c;w)] . (2.3)

We see that the above quantity may be different when the order of limits is swapped.

In fact, if the walks are tethered to different walls then when one takes the width off

to infinity first, for any finite walks, the two walks do not see each other: the system is

independent of the value of c since no contacts every occur. This double-half plane limit

is then uninteresting. On the other hand, if one fixes the initial vertices of the two walks

at (0, w/2) for both walks then for w > 2n the two walks do not ever see the wall. Hence

considering the infinite width limit for such configurations results in the bulk problem

without walls.

Let us define the free energy of the bulk problem (bulk limit) as

κb(c) = lim
n→∞

1

n
logZb

n(c), (2.4)

where Zb
n(c) is the partition function of the bulk system. The bulk generating function is

defined as

Gb(c; z) =
∞∑
n=0

Zb
n(c)zn . (2.5)
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We will calculate the bulk free energy in the next section using the fact that the radius of

convergence zbc(c) of the generating function Gb(c; z) is related to the free energy as

κb(c) = − log
(
zbc(c)

)
. (2.6)

Subsequently, once we analyse the finite strip, we shall find that the infinite strip limit is

given by this bulk problem so that

κb(c) = κ(c) = lim
w→∞

κ(c;w) . (2.7)

It should be noted that these two limit need not be the same in other systems [7].

Motivated by the single walk model, we consider the effective force applied to the walls

by the polymers

Fn =
1

2n
[log(Zn(w))− log(Zn(w − 2))] (2.8)

with a thermodynamic limit of

F(c;w) =
1

2
[κ(c;w)− κ(c;w − 2)] . (2.9)

Note that since we only consider systems of even width we use the argument w− 2 rather

than w − 1 in this definition.

Given that the double half-plane limit is known from the discussion above, we shall

concentrate on the infinite strip limit. In this limit, the free energy does not depend on

where the walks end. It turns out that the combinatorics of the model in which the walks

end together are easier. Accordingly, we study the generating function

Gw(c; z) =
∞∑
n=0

Zn(c;w)zn, (2.10)

where the partition function now counts only those walks which end together. The radius

of convergence of the generating function zc(c;w) is directly related to the free energy via

κ(c;w) = − log (zc(c;w)) . (2.11)

3 Solution of system in bulk

Before moving to the full model, we first analyse the model in the bulk without any

constraining walls. Consider the pair of walks depicted in Figure 2. This pair of directed

walks must start at the same vertex, may share edges of the underlying lattice but they

may not cross. We have drawn the two walks as though they have been separated by a
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small vertical translation; this was done so as to depict the vertices and edges of each walk

clearly. While we are primarily interested in walks whose final vertices coincide, we will

actually count the superset of walks whose final vertices may lie at any vertical separation.

To this end form the generating function

H(r; z, c) =
∑
ϕ

z|ϕ|cv(ϕ)r`(ϕ), (3.1)

where the sum if over all valid conformations ϕ, |ϕ| denotes the number of edges in one

walk (or equivalently the horizontal span of the conformation), v(ϕ) denotes the number of

times the walks coincide at a vertex (excluding the starting vertex) and `(ϕ) denotes half

the vertical separation of the end vertices (since this vertices are always separated by an

even distance). The generating function G is a power series in z with coefficients that are

polynomials in r and c. The generating function for the bulk problem we want to calculate

Gb(c; z) is given as

Gb(c; z) = H(0; z, c). (3.2)

Figure 2: A pair of friendly directed walks in the bulk — these have been drawn after a

small vertical translation so as to depict the vertices and edges of each walk clearly. This

walk contributes z9c4r0 to the generating function H(r; z, c).

We now establish a functional equation satisfied byH(r; z, c) via a standard step-by-step

construction. A similar construction will be used to derive a functional equation satisfied

by the generating function of the full model in a confining strip. Any legal conformation

either contains no edges (having horizontal span 0) or can be constructed by appending

↗,↘ edges to the last vertices of each walk (see Figure 3-left).

Translating this to operations on the generating function we obtain

H(r) = 1 + z(r + 2 + r̄)H(r), (3.3)

where r̄ = 1/r. However, this counts invalid conformations. In particular (see Figure 3-

right), we have constructed paths that cross when appending steps to two walks that end

at the same vertex: specifically when adding a ↘ edge to the top walk and a ↗ edge to
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Figure 3: (left) Any conformation either contains no edges or can be constructed by ap-

pending ↗,↘ edges to the last vertices of each walk. (right) When we append edges to

the end of the walks we must take care to not construct a conformation in which the two

paths cross. This occurs precisely when the two walks end together and we append a ↘
to the top walk and a ↗ to the bottom walk.

the bottom walk. These invalid conformations are counted by zr̄[r0]H and so we subtract

this contribution:

H(r) = 1 + z(r + 2 + r̄)H(r)− zr̄[r0]H. (3.4)

where we have used [rk]H to denote the coefficient of rk in H(r; z, c).

Figure 4: The two figures show how new bound vertex pairs are created in the construction

and correspond to the terms in equation (3.5). In both cases, these conformations have

already been counted by the construction described in Figure 3 but underweighted by

a factor of c. Consequently, we can correct this underweighting by subtracting off the

contributions of those conformations and then adding them back with an additional factor

of c.

While this construction produces all legal conformations, it does not produce them with

the correct weight — we must ensure that walks that end together after appending steps

are counted with an additional factor of c. Consider any conformation in which the walks
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end together (see Figure 4). This was either obtained by appending a pair of parallel ↗
or ↘ edges to the end of a conformation in which the walks end together (Figure 4-left)

or by appending ↘↗ to the ends of walks that are separated by 2 lattice spacings (Figure 4-

right). To correct the weight of such conformations we subtract their contributions from the

functional equation and then put them back with an additional factor of c. Consequently,

they contribute the following terms to the functional equation

2z(c− 1) · [r0]H + z(c− 1) · [r1]H. (3.5)

Putting everything together we arrive at the full functional equation

H(r) = 1 + z(r + 2 + r̄)H(r) + zr̄ · [r0]H + 2z(c− 1) · [r0]H + z(c− 1) · [r1]H. (3.6)

We can eliminate one of the unknowns from this equation by establishing a relationship

between [r0]H and [r1]H. Extracting the coefficient of r0 in the equation (3.6):

[r0]H = 1 + 2z[r0]H + z[r1]H + 2z(c− 1) · [r0]H + z(c− 1) · [r1]H

= 1 + 2zc[r0]H + zc[r1]H. (3.7)

This can also be established by an equivalent combinatorial construction; again examine

Figure 4. Every pair of walks that ends together is either a single pair of vertices or is

constructed by appending parallel ↗ or ↘ edges to the end of a pair of walks that end

together, or by appending ↘↗ edges to a pair of walks that end 2 lattice spacings apart.

Using equation (3.7) we can write [r1]H in terms of [r0]H and then substitute that into

equation (3.6). Rearranging the result we have

K(r) ·H(r) =
1

c
+

(
1− 1

c
− z

r

)
· [r0]H, (3.8)

where the kernel, K(r; z) ≡ K(r), is given by

K(r) = 1− z(r + 2 + r̄).

We can also arrive at equation (3.8) in an alternative fashion. First rearrange the

equation as follows:

H(r) +
1

c
[r0]H =

1

c
+ z(r + 2 + r̄)H(r)− zr̄[r0]H + [r0]H. (3.9)

The left-hand side of the equation counts all conformations but double-counts those in

which walks end together. Those conformations are counted once with their correct weights

(by the H(r) term) and then again but with weights reduced by a factor of c (the 1
c
[r0]H

term). Now split the right-hand side into two parts —the first 3 terms and then the last
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term. The first 3 terms count all conformations with their correct weights excepting that

those in which walks end together are underweighted by a factor of c. The last term then

counts conformations in which the walks together with their correct weights. Hence both

sides of the equation count the same set of weighted objects.

We solve this equation by setting the kernel to zero by a choice of r. Solving K(r) = 0

gives

r+(z) =
1− 2z +

√
1− 4z

2z
= z−1 − 2− z − 2z2 +O(z3) (3.10a)

r−(z) =
1− 2z −

√
1− 4z

2z
= z + 2z2 +O(z3). (3.10b)

Standard arguments show that H(r+(z)) is not convergent in the space of formal power

series, whileH(r−(z)) is convergent. Consequently, substituting r = r−(z) into equation 3.8

gives

0 =
1

c
+

(
1− 1

c
− z

r−(r)

)
· [r0]H, (3.11)

which rearranges to give us the required generating function:

Gb(c; z) = [r0]H =
2− c− 2zc− c

√
1− 4z

2(c2z2 + 2(c− 1)cz − c+ 1)
. (3.12)

The full H(r; z, c) generating function can also be found (if needed) by substituting this

back into equation (3.8).

From this solution we can find the dominant singularity:

zbc(c) =

1
4

c ≤ 4/3

1−c+
√
c2−c

c
c ≥ 4/3

(3.13)

and so the bulk free energy, κb(c) = − log zbc(c). This is plotted in Figure 5.

Notice that the form of the dominant singularity changes at c = 4/3 and that this change

indicates a phase transition from an unzipped regime with few contacts to a zipped regime

with a positive density of contacts. We can compute the density of contacts by taking

the log-derivative of the dominant singularity, or we can obtain more detailed asymptotics

using (now standard) analytic combinatorics methods (see [32]). These give

mean number of contacts =


3c+4
4−3c

+O(n−1) c < 4/3

3
√
π

2
· √n+O(1) c = 4/3

c−2+
√
c(c−1)

2(c−1)
· n+O(1) c > 4/3.

(3.14)
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Figure 5: The free energy of the system in the bulk as a function of the zipping interaction

c. We have indicated the location of the phase transition at c = 4/3 with the blue vertical

dashed line. The red horizontal dashed line indicates the free energy of the system at small

c, namely κ = log 4.

We note here that the transformation

c 7→ (d+ 1)2

2d+ 1
(3.15)

rationalises the radius of convergence:

zbc(d) =

1
4

d ≤ 1

d
(1+d)2

d ≥ 1.
(3.16)

We will make use of this transformation when we study the large-c asymptotic behaviour

of the full model.

4 The functional equation of the model in a strip

In this section we derive the functional equation satisfied by the generating function of the

full model. This is very similar to that of the previous section excepting that we now have

to take into account the possibility that in appending steps to the end of the walks that we

might produce a confirmation that escapes from the bounding walls. Form the generating

function

Fw(r, s; z, c) =
∑
ϕ

z|ϕ|cv(ϕ)r⊥(ϕ)s>(ϕ), (4.1)
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where, as before, z and c are conjugate to the horizontal span and the number of shared

vertices respectively, while ⊥ (ϕ) denotes the distance between the bottom wall and the

last vertex of the bottom walk. Similarly, >(ϕ) denotes the distance between the top wall

and the final vertex of the top walk. Note that, where the context is clear, we will also

write Fw(r, s; z, c) ≡ Fw(r, s) ≡ F (r, s). Once again the generating function of interest

occurs when our extra variables are set to zero:

Gw(c; z) = Fw(0, 0; z, c). (4.2)

By grouping coefficients of r and s together we can write F (r, s) as

F (r, s) =
∑

0≤i,j≤w

fi,j(z; c)risj. (4.3)

This in turn allows us to express a number of auxillary functions that we require to state

the functional equation satisfied by F (r, s):

[risj]F = fi,j(z; c) (4.4a)

[ri]F =
∑
j

fi,j(z; c)sj (4.4b)

[sj]F =
∑
i

fi,j(z; c)ri (4.4c)

Fd(x) =
w∑
i=0

fi,w−i(z; c)xi (4.4d)

Fn(x) =
w∑
i=0

fi,w−i−2(z; c)xi. (4.4e)

The generating function [risj]F (r, s) counts walks whose final vertices lie at a vertical

distance i, j (respectively) from the walls, while Fd counts walks that end on the same

vertex and Fn counts walks that end 2 units apart. Notice that Fd(x) and Fn(x) play much

the same role as [r0]H and [r1]H did in the bulk system.

In this system any conformation either has horizontal span 0, or can be constructed by

appending ↗,↘ steps to the end of each walk (see Figure 6). This leads to

F (r, s) = 1 + z(r + r̄)(s+ s̄)F (r, s). (4.5)

Notice that this bulk term is different from that of the previous section because the auxillary

variables are conjugate to the distance from each wall rather than the distance between

the endpoints. In appending edges to the ends of the walk in this way we will produce

invalid conformations — some will will escape from the confining walls while others will

produce walks that cross. Walks can escape in 3 different ways: the lower walk escapes
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Figure 6: Any conformation either contains no edges or can be constructed by appending

↗,↘ edges to the last vertices of each walk.

over the bottom wall, the upper walk escapes over the top wall, or the walks escape over

opposite walls at the same time. Notice that the case of both walks escaping together over

the same wall will be counted by one of the first two cases.

Figure 7: (left) An invalid conformation is generated when a ↘ step is appended to a

conformation in which the bottom walk ends on the bottom wall. A similarly invalid

conformation will be generated when a ↗ step is appended to a conformation in which

the top walk ends on the top wall. (right) An invalid conformation is generated when a↘
and↗ are (respectively) appended to a conformation in which each walk ends on opposite

walls. This conformation is actually a special case of that illustrated on the left.

See Figure 7-left. Conformations in which the bottom walk ends on the bottom wall

are counted by [r0]F , and so invalid conformations in which the bottom walk escapes over

the bottom wall are counted by

zr̄(s+ s̄)[r0]F. (4.6a)

Similarly, invalid conformations in which the top walk escapes over the top wall are counted

by

zs̄(r + r̄)[s0]F. (4.6b)
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Finally invalid conformations in which the walks escape over opposite walls at the same

time (see Figure 7-right) are counted by

zr̄s̄[r0s0]F. (4.6c)

Care must be taken not to double-count these invalid conformations. The conformations

counted by (4.6c) are counted by both (4.6a) and (4.6b). Hence we must subtract off

(4.6a) and (4.6b) from equation 4.5 and then add back (4.6c).

Figure 8: An invalid conformation in which the walks cross is generated by appending a

↗ step to the bottom walk and a ↘ step to the top walk in a conformation in which the

walks end together.

We must also remove conformations in which the walks cross. These are generated by

appending steps to walks that end together (see Figure 8). These invalid conformations

are counted by

zrsw+1Fd(r/s). (4.6d)

To see this note that swFd(r/s) counts all conformations in which both walks end together,

and appending a ↗ step to the lower walk increases the weight by a factor of r, while

appending a ↘ step to the top walk increases the weight by a factor of s. Putting these

contributions we arrive at the (still incomplete) functional equation

F (r, s) = 1 + z(r + r̄)(s+ s̄)F (r, s)

− zs̄(r + r̄)F (r, 0)− zr̄(s+ s̄)F (0, s) + zr̄s̄F (0, 0)− zrsw+1Fd(r/s).
(4.7)

To complete the equation we must correctly weight new shared vertices. See Figure 9.

Such vertices occur in two ways (just as was the case in the analysis of walks in the bulk in

the previous section) — either a parallel pair of edges is added to a conformation in which

the walks end together or by appending ↘↗ edges to the ends of walks that are separated by

2 lattice spacings. As was the case in the previous section, these conformations have already

been counted but with the wrong weight. Hence we must subtract off their contributions

and add them back with an additional factor of c:

z(c− 1)(rs̄+ sr̄)swFd(r/s) + z(c− 1)swFn(r/s). (4.8a)
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Figure 9: A new shared vertex is created by either appending a pair of parallel edges to a

pair of walks that ends together (left) or by appending appending ↘↗ edges to the ends of

walks that are separated by 2 lattice spacings.

Unfortunately, the first of these two cases may generate conformations in which the

walks escape over one of the walls (see Figure 10) and so we must subtract off those

contributions. Such walks are counted by

z(c− 1)r̄sw+1[r0sw]F + z(c− 1)rw+1s̄[rws0]F. (4.8b)

The first of these terms counts walks stepping over the bottom wall, while the latter counts

those escaping over the top wall.

Figure 10: When adding parallel edges and a shared vertex, we must be careful not to

construct a new conformation that steps over either wall.

Putting all of these contributions together we arrive at the full functional equation

F (r, s) = 1 + z(r + r̄)(s+ s̄)F (r, s)

− zs̄(r + r̄)F (r, 0)− zr̄(s+ s̄)F (0, s) + zr̄s̄F (0, 0)− zrsw+1Fd(r/s)

+ z(c− 1)(rs̄+ sr̄)sWFd(r/s) + z(c− 1)swFn(r/s)

− z(c− 1)rw+1s̄ · [rws0]F (r, s)− z(c− 1)sw+1r̄ · [r0sw]F (r, s).

(4.9)

We can eliminate two unknowns from the system by establishing the following relationships

[rws0]F = [r0sw]F (4.10a)

swFd(r/s) = z(rs̄+ sr̄)cswFd(r/s) + zcswFn(r/s)

− zc(sw+1r̄ · [r0sw]F + rw+1s̄ · [rws0]F ). (4.10b)
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The first of these follows from the vertical symmetry of the model. The second can

be obtained by considering the “diagonal” coefficients of equation (4.9) — ie computing∑w
i=0[risw−i] of both sides:

swFd(r/s) = 0 + z(rs̄+ sr̄)swFd(r/s) + zswFn(r/s)

− zrw+1s̄[rws0]F − zr̄sw+1[r0sw]F + 0− 0

+ z(c− 1)(rs̄+ sr̄)sWFd(r/s) + z(c− 1)swFn(r/s)

− z(c− 1)rw+1s̄ · [rws0]F (r, s)− z(c− 1)sw+1r̄ · [r0sw]F (r, s).

(4.11)

Collecting like terms in the above gives (4.10b). One can also establish the same equation

combinatorially by considering all the ways in which one can produce a conformation in

which the walks end at the same vertex. See Figure 9. Any pair of walks that end at

the same vertex can be obtained by either appending parallel edges to the end of a walk

counted by Fd or by appending ↘↗ edges to the ends of a walk counted by Fn. However, in

so doing, one constructs walks that escape over the top or bottom wall (see Figure 10).

We can now eliminate [rws0]F and Fn(r/s) by solving equations (4.10a) and (4.10b)

for those terms and substituting them back into (4.9). Cleaning up the result gives us

K(r, s) · F (r, s) = 1− zs̄(r + r̄)F (r, 0)− zr̄(s+ s̄)F (0, s) + zr̄s̄F (0, 0)

+

(
1− 1

c
− zrs

)
swFd(r/s),

(4.12)

where K is the kernel of the equation and is given by

K = 1− z(r + r̄)(s+ s̄). (4.13)

In the next section we will use symmetries of the kernel to remove more unknowns from

this functional equation.

Notice that by rearranging the equation as follows

F (r, s) +
1

c
· sWFd(r/s) = 1 + z(r + r̄)(s+ s̄)F (r, s)

− zs̄(r + r̄)F (r, 0)− zr̄(s+ s̄)F (0, s) + zr̄s̄F (0, 0)

− zrsw+1Fd(r/s)

+ swFd(r/s), (4.14)

we can interpret it combinatorially in an analogous way as we did for the bulk case. The

left-hand side counts all walks but also double-counts walks which end together — one

copy has the correct weight, while another copy is underweighted by a factor of c. The

right-hand side counts the same set of walks — the terms on the first 3 lines construct all

valid conformations, but any walks that finish together are underweighted by a factor of

c. The last line then adds back in walks which finish together but with the correct weight.

Hence both sides count the same set of conformations with the correct weights.
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5 The kernel method

Consider again the full functional equation (4.12) and its kernel (4.13):

K(r, s) · F (r, s) = 1− zs̄(r + r̄)F (r, 0)− zr̄(s+ s̄)F (0, s) + zr̄s̄F (0, 0)

+

(
1− 1

c
− zrs

)
swFd(r/s)

K(r, s) = 1− z(r + r̄)(s+ s̄).

(5.1)

This is a single equation in 5 unknown (but related) functions. We will remove some

of these unknowns by taking advantage of symmetries of the kernel — this approach is

frequently referred to as the kernel method [33] and shares many similarities with the

classical method of images. The approach we describe below is very similar to that used

in [34, 30].

Notice that the kernel is invariant under the involutions

r 7→ r̄ and s 7→ s̄ (5.2)

Using this we construct three new equations by setting (r, s) 7→ (r̄, s), (r, s̄), (r̄, s̄):

K(r, s) · F (r̄, s) = 1− zs̄(r + r̄)F (r̄, 0)− zr(s+ s̄)F (0, s) + zrs̄F (0, 0)

+

(
1− 1

c
− zr̄s

)
swFd(1/rs), (5.3a)

K(r, s) · F (r, s̄) = 1− zs(r + r̄)F (r, 0)− zr̄(s+ s̄)F (0, s̄) + zr̄sF (0, 0)

+

(
1− 1

c
− zrs̄

)
s−wFd(rs), (5.3b)

K(r, s) · F (r̄, s̄) = 1− zs(r + r̄)F (r̄, 0)− zr(s+ s̄)F (0, s̄) + zrsF (0, 0)

+

(
1− 1

c
− zr̄s̄

)
s−wFd(s/r). (5.3c)

In so doing we have introduced more unknowns, but we can eliminate several of these by

taking appropriate linear combinations of the original functional equation and these 3 new

equations:

c ·K(r, s) [rsF (r, s)− r̄sF (r̄, s)− rs̄F (r, s̄) + r̄s̄F (r̄, s̄)] = c(s− s̄)(r − r̄)
− (crsz − c+ 1)rsw+1Fd(r/s)− (cz − crs+ rs)r−2s−2−wFd(s/r)

+ (crz − cs+ s)rs−2−wFd(rs) + (csz − cr + r)r−2s1+wFd(1/rs). (5.4)

This combination eliminates the unknowns F (r, 0), F (r̄, 0), F (0, s), F (0, s̄), F (0, 0).

We can eliminate two more unknowns by again taking advantage of the vertical sym-

metry of the system and noting that

Fd(s/r) = (s/r)wFd(r/s) and Fd(1/rs) = (rs)−wFd(rs). (5.5)
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This gives us

c ·K(r, s) [rsF (r, s)− r̄sF (r̄, s)− rs̄F (r, s̄) + r̄s̄F (r̄, s̄)] = c(s− s̄)(r − r̄)
−
[
(crsz − c+ 1)rsw+1 + (cz − crs+ rs)r−2−ws−2

]
Fd(r/s)

+
[
(crz − cs+ s)rs−2−w + (csz − cr + r)r−2−ws

]
Fd(rs). (5.6)

We can now remove the unknowns from the left-hand side of this equation by choosing val-

ues of r, s that set the kernel equal to zero, providing that the functions F (r, s), F (r̄, s), F (r, s̄)

and F (r̄, s̄) all converge at those choices.

Now let r̂, ŝ be a solution of K(r, s) = 0, and in general r̂, ŝ will be Laurent series

in z. Notice that the series F (r̂, ŝ) will be well defined because the coefficient of zn

in F (r, s) is a polynomial of degree at most w in both r and s. Similarly the series

F (1/r̂, ŝ), F (r̂, 1/ŝ), F (1/r̂, 1/ŝ) are all well defined and converge in the space of formal

power series. Substituting (r, s) 7→ (r̂, ŝ) into equation (5.6) then eliminates all but two

unknowns from the functional equation:

0 = c(ŝ− ¯̂s)(r̂ − ¯̂r)

−
[
(cr̂ŝz − c+ 1)r̂ŝw+1 + (cz − cr̂ŝ+ r̂ŝ)r̂−2−wŝ−2

]
Fd(r̂/ŝ)

+
[
(cr̂z − cŝ+ ŝ)r̂ŝ−2−w + (cŝz − cr̂ + r̂)r̂−2−wŝ

]
Fd(r̂ŝ).

(5.7)

At this point it makes sense to make a change of variables

rs 7→ p and r/s 7→ q (5.8)

with corresponding kernel solutions

r̂ŝ 7→ p̂ and r̂/ŝ 7→ q̂ (5.9)

This maps the original kernel to a new kernel

K̂(p, q) = 1− z (p+ q)(1 + pq)

pq
. (5.10)

Changing variables in this way gives us the equation

0 = cp̂w/2−1q̂w/2−1(p̂q̂ − 1)(p̂− q̂) +
[
(cq̂z − c+ 1)q̂w+1 + (cz − cq̂ + q̂)q̂−2

]
Fd(p̂)

−
[
(cp̂z − c+ 1)p̂w+1 + (cz − cp̂+ p̂)p̂−2

]
Fd(q̂). (5.11)

Now using the kernel K̂ we can also eliminate z from this expression by noting that

z =
p̂q̂

(p̂+ q̂)(1 + p̂q̂)
. (5.12)
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This finally gives us (after clearing denominators) the equation

0 = cp̂w/2q̂w/2(p̂q̂ − 1)(p̂− q̂)(q̂ + p̂)(p̂q̂ + 1)

+
[
(cp̂q̂2 − p̂2q̂ − p̂q̂2 + cp̂+ cq̂ − p̂− q̂)p̂w+2q̂ + (cp̂2q̂ + cp̂q̂2 − p̂2q̂ − p̂q̂2 + cp̂− p̂− q̂)q̂

]
Fd(q̂)

−
[
(cp̂2q̂ − p̂2q̂ − p̂q̂2 + cp̂+ cq̂ − p̂− q̂)p̂q̂w+2 + (cp̂2q̂ + cp̂q̂2 − p̂2q̂ − p̂q̂2 + cq̂ − p̂− q̂)p̂

]
Fd(p̂).

(5.13)

6 Finding singularities

We adapt the method from [34] to establish the locations of the singularities of the function

Fd. Let us first do this when c = 1 to demonstrate the idea of the method. In this case

the functional equation simplifies considerably to

0 = p̂w/2q̂w/2(p̂q̂ − 1)(p̂− q̂)(q̂ + p̂)(p̂q̂ + 1) +
[
p̂w+4 + 1

]
q̂2Fd(q̂) +

[
q̂w+4 + 1

]
p̂2Fd(p̂).

(6.1)

Now choose p̂ so that the coefficient of Fd(q̂) is zero — that is p̂w+4 = −1 — call this

value p∗. This eliminates Fd(q̂) from the equation and we can isolate Fd(p∗) as

Fd(p∗) =
p
w/2−2
∗ q̂w/2(p∗q̂ − 1)(p∗ − q̂)(q̂ + p∗)(p∗q̂ + 1)

q̂w+4 + 1
. (6.2)

The function Fd(p∗) is a rational function of z and so has simple poles. The only sources

of such singularities in the above expression come from the zeros of the denominator, that

is when q̂w+4 + 1 = 0. Hence singularites z(p, q) satisfy

p̂w+1 + 1 = 0 and q̂w+4 + 1 = 0 with (pq̂ − 1)(p− q̂)(q̂ + p)(pq̂ + 1) 6= 0. (6.3)

More generally when c 6= 1 we have an expression of the form

X(p̂, q̂) + Y (p̂, q̂)Fd(p̂) + Z(p̂, q̂)Fd(q̂) = 0. (6.4)

Now if Y (p̂, q̂) = 0 by some choice of p̂ = p̂∗ then since (z, p, q) satisfy two polynomial

equations, we can consider both p̂∗, q̂∗ as functions of z and write

Fd(p̂∗) = −X(p̂∗, q̂∗)

Z(p̂∗, q̂∗)
. (6.5)

The simple poles of Fd now come from the zeros of Z(p̂∗q̂∗). Hence singularities z(p, q)

satisfy

Y (p, q) = 0 and Z(p, q) = 0 with X(p, q) 6= 0. (6.6)
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Substituting in Y, Z we get

p̂w+4 = −(Cp̂2q̂ + Cp̂q̂2 + Cp̂− q̂)
(Cp̂q̂2 − p̂2q̂ + Cp̂+ Cq̂)

, (6.7a)

q̂w+4 = −(Cp̂2q̂ + Cp̂q̂2 + Cq̂ − p̂)
(Cp̂2q̂ − p̂q̂2 + Cp̂+ Cq̂)

, (6.7b)

0 6= (p̂q̂ − 1)(p̂− q̂)(q̂ + p̂)(p̂q̂ + 1). (6.7c)

We have been unable to solve these equations in closed form except at c = 1. In the next

section we derive asymptotic expressions for the solutions when w is large.

7 Asymptotics of free energy

In order to determine the asymptotic solutions of the zero equations (6.7), we first solved

them numerically for small w at various values of c — see Figure 11. Notice that all the

Figure 11: A plot of the p̂-zeros of equations (6.7) for w = 8 and c = 1, 6/5, 4/3, 2 (top-left,

top-right, bottom-left, bottom-right respectively).

zeros lie on the unit circle for c ≤ 4/3 and either on the unit circle or the real line for

c > 4/3. Because of this we consider the three regimes — c < 4/3, c = 4/3 and c > 4/3 —
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in turn: recall from the bulk solution in section 3 that these parameter regimes corespond

to the unzipped, critical and zipped phases respectively.

7.1 Unzipped regime — c < 4/3

As noted above, when c = 1 the system reduces to the uncoupled equations

p̂w+4 = −1 q̂w+4 = −1. (7.1)

Hence both are (w + 4)th roots of −1:

p̂ = exp

(
πi

j

w + 4

)
q̂ = exp

(
πi

k

w + 4

)
. (7.2)

with j, k odd integers. Hence

z =
1

2
· 1

cos(πj/(w + 4)) + cos(πk/(w + 4))
. (7.3)

The dominant singularity should come from j, k chosen as small as possible. This suggests

j = k = 1, however this gives p̂ = q̂ which violates equation (6.7c). Hence the smallest

possible choice is j = 1, k = 3 or vice-versa. With this choice we obtain

zc(1) =
1

2
· 1

cos(π/(w + 4)) + cos(3π/(w + 4))
(7.4)

=
1

4
· 1

cos(π/(w + 4)) cos(2π/(w + 4))
(7.5)

∼ 1

4
+

5π

8
w−2 − 5πw−3 + · · · , (7.6)

which recovers the comparable result in [30].

We can then perturb around this solution by looking for (asymptotic) solutions of the

form

p̂, q̂ = exp

(
iπ

w + 4
·
∑
j

xjw
−j

)
. (7.7)

This leads to

p̂ = exp

(
π

w + 4
·
(

1 +
8(c− 1)

3c− 4
w−1 − 32(c− 1)(c− 2)

(3c− 4)2
w−2,+ · · ·

))
(7.8a)

q̂ = exp

(
3π

w + 4
·
(

1 +
24(c− 1)

3c− 4
w−1 − 96(c− 1)(c− 2)

(3c− 4)2
, w−2 + · · ·

))
(7.8b)

and so

zc(c) =
1

4
+

5π2

8
w−2 − 5π2(c− 2)

(3c− 4)
w−3 + · · · . (7.9)

Notice this recovers the desired asymptotics when c → 1. It is clearly divergent as c

approaches 4/3 and does not apply for c > 4/3. We have also verified this form by

computing zc(c) numerically for small w and fixed c by transfer matrix.

20



7.2 Transition point — c = 4/3

Applying the same ansatz when c = 4/3 gives asymptotics for zc(c) which are contradicted

by numerical transfer matrix data. Consequently, we examined the solutions of (6.7) in

detail for c = 4/3 and a range of w-values. More precisely we fixed w at some small

number and then computed the resultant to obtain a polynomial equation in p. We found

all solutions and verified that they lay on the unit circle. Next we took pairs of solutions

(since the system is symmetric in p, q) and computed z via the kernel. Of course, most

of these z values correspond to subdominant singularities, but we were able to identify

certain p, q pairs that give the dominant singularity as computed via a transfer matrix.

The (p, q) pair corresponding to the dominant singularity lay on the unit circle, but the

argument of that p (without loss of generality) decayed as w−3/2 rather than w−1. This

suggests the more general ansatz

p̂, q̂ = exp

(
2iπ ·

∑
j

xjw
−j/2

)
.

With this we find that

p̂ = exp

(
i
π√
2

(
w−3/2 − π2 + 45

12
w−5/2 +

11π4 + 690π2 + 17235

1140
w−7/2 + · · ·

))
q̂ = exp

(
2iπ

(
w−1 − 5

2
w−2 +

13

2
w−3 − π2 + 105

6
w−4 + · · ·

))
,

which gives

zc(4/3) =
1

4
+
π2

4
w−2 − 9π2

8
w−3 +

π2(7π2 + 186)

48
w−4 + · · · .

Notice that if we apply this same ansatz for c < 4/3 then we recover equation (7.8).

7.3 Zipped regime — c > 4/3

Consider the bottom-right plot in Figure 11 corresponding to large c. For c > 4/3 we

observe that some of the roots of equation (6.7) lie on the real axis. Consequently, we

repeat a similar analysis of the zeros, comparing them against the dominant singularity

computed by transfer matrix. This showed that the (p, q) pair corresponding to the domi-

nant singularity had (without loss of generality) its p-value on the real line and the q-value

on the unit circle. The position of the p-value was asymptotic to a constant plus a term

that decayed as w−1 and the argument of the q-value decayed as w−1.

Before we go further, notice that as w →∞ we expect to recover the free energy of the

bulk system:

lim
w→∞

zc =
d

(1 + d)2
, (7.10)
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where we have used the rationalising transformation

c 7→ (d+ 1)2

2d+ 1
, (7.11)

for c > 4/3 and d > 1. This suggests that p → 1
d

and q → 1 as w → ∞ which is also

suggested by the numerical work described above. If one sets p = 1
d

and q = 1 in the kernel

then one recovers this value of z. This suggests the following ansatz

p̂ =
1

d

∑
j

xjw
−j, (7.12)

q̂ = exp

(
2πi
∑
j

yjw
−j

)
. (7.13)

More care must be taken when fitting the asymptotic form because the term pw is now

exponentially smaller than all other terms. Thus to leading polynomial order in w we solve

the equations

0 =
d2p̂2q̂ + d2p̂q̂2 + d2p̂− 2dq̂ − q̂
d2p̂q̂2 − 2dp̂2q̂ + d2p̂+ d2q̂ − p̂2q̂

, (7.14a)

q̂w+4 = − d2p̂2q̂ + d2p̂q̂2 + d2q̂ − 2dp̂− p̂
d2p̂2q̂ − 2dp̂q̂2 + d2p̂+ d2q̂ − p̂q̂2

. (7.14b)

This leads to

p̂ =
1

d

(
1 +

π2d

2(1 + d)
w−2 +

2π2d(d− 2)

(1− d)(1 + d)
w−3

+

(
π4d(5d2 + d− 1)

24(1 + d)3
+

6π2(d− 2)2

(1− d)2(1 + d)

)
w−4 +O(w−5)

)
, (7.15a)

q̂ = exp

(
πi

(
w−1 +

2(d− 2)

1− d w−2 +
4(d− 2)2

(1− d)2
w−3

−
(
π2d(2d2 − 5d− 1)

3(1 + d)(1− d)3
+

8(d− 2)2

(1− d)3

)
w−4 + O(w−5)

))
. (7.15b)

The pw term in the original zero-equations does contribute to the asymptotics of these zeros,

however its contribution is exponentially small compared to the above. Consequently,

zc =
d

(1 + d)2

(
1 +

π2d

2(1 + d)
w−2 +

2π2d(d− 2)

(1− d)(1 + d)
w−3

+

(
π4d(5d2 + d− 1)

24(1 + d)3
+

6π2(d− 2)2

(1− d)2(1 + d)

)
w−4 +O(w−5)

)
. (7.16)
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In the limit as c → ∞ (and so d → ∞) we recover the asymptotics of a single non-

interacting walk in the strip (see [7]). Observe that if we compensate for the added energy

for bound vertices we have

lim
d→∞

(
zc ·

(1 + d)2

d

)
= 1 +

π2

2
w−2 + 2π2w−3 +

(
5π4

24
+ 6π2

)
w−4 + · · · ,

which compares with the similar quantity (from [7]) for a single walk in the strip:

2zc =
1

cos(π/(w + 2))
= 1 +

π2

2
w−2 + 2π2w−3 +

(
5π4

24
+ 6π2

)
w−4 + · · · .

8 Forces

The asymptotic expressions for the dominant singularity allow us to compute an effective

force exerted by the zipping polymer on the confining walls. We define the force (as per

the definition in [7]) to be the difference of free energies:

F(c;w) =
1

2
[log zc(c;w)− log zc(c;w + 2)] . (8.1)

Substituting in our asymptotic expansions of zc gives us

w3F(c;w) =


5π2 − 15π2(12−7c)

4−3c
w−1 +O(w−2) c < 4

3

2π − 39π2

2
w−1 +O(w−2) c = 4

3

π2
√
c(c−1)

c
− 3π2

(
2c(1−c)+(11c−16)

√
c(c−1)

)
c(3c−4)

w−1 +O(w−2) c > 4
3
.

(8.2)

For a compact expression, we also write the large c result in terms of d:

w3F(c;w) =
π2d

1 + d
− 3π2d(3d− 5)

(d− 1)(d+ 1)
w−1 +O(w−2) when d > 1. (8.3)

Note that the leading term is a monotonically increasing function of d (and so c), whose

value close to d = 1 is π2/2 which, we note, is smaller than the value at c ≤ 4/3. Hence, for

sufficiently large w, the force is not monotonic over the whole range c ≥ 1 and approaches

its minimum as c → 4/3+. This is clearly observable in the plots below. This effect is a

result of the competition between entropic and energetic contributions to the force in the

different regimes.

We have plotted the above function (8.3) against c for w = 128 (up to an including

the order w−1 terms) along with numerical estimates of w3F(c;w) for w = 32, 64, 128

computed via transfer matrices (by comparison of the eigenvalues at widths w and w+ 2).

See Figure 12. To see the small c and large c behaviour more clearly, we also plot the

functions restricted to the ranges [0, 4/3] and [4/3, 10] in Figure 13 and 14. Observe that

there is excellent agreement between our analytic and numerical results excepting close to

the critical value of c — as one might expect. We can also compare our numerical and

analytic results exactly at c = 4/3 and this is shown in Figure 15
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Figure 12: Numerical estimates of w3F for w = 32, 64, 128 computed using transfer matri-

ces (left) and compared to our predicted result for w = 128 (right).
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Figure 13: The region c < 4/3 for the numerical estimates of w3F compared to our

predicted result for w = 128.

9 Summary

A model of two polymers that can bind together such as DNA confined to be in a long

mesoscopic sized strip with parallel walls has been modelled by a directed walk system on

the square lattice. We have analysed this model exactly and demonstrated that the force

exerted by the polymers provides a signature of the unzipping or denaturation transition

seen in the bulk limit. It will be interesting to analyse a system in which there are inter-

actions with the surface as well as inter-polymer interactions such as found in [24] for one

wall.
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Figure 14: The region c > 4/3 for the numerical estimates of w3F compared to our

predicted result for w = 128.
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Figure 15: At c = 4/3 we compare our predicted asymptotic result with the transfer matrix

numerics as a function of w (left) and w−1 (right).
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