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(SAPs) and self-avoiding polygon trails (SAPTs) we prove that the mean unknotting

time grows exponentially in the length of the SAPT and at least exponentially with the

length of the SAP. The proof uses Kesten’s pattern theorem, together with results for

mean first-passage times in the two-parameter Ehrenfest urn model. We use the pivot

algorithm to generate random SAPTs of up to 3000 steps and calculate the corresponding

unknotting times, and find that the mean unknotting time grows very slowly even at

moderate lengths. Our methods are quite general—for example the lower bound on the

mean unknotting time applies also to Gaussian random polygons.

Keywords. Rigorous results in statistical mechanics, Stochastic processes (Theory),

Classical Monte Carlo simulations, Mechanical properties (DNA, RNA, membranes, bio-

polymers) (Theory).

March 14, 2007



Mean unknotting times of random knots and embeddings 2

Figure 1. Reversing a crossing.

Figure 2. A type I Reidemeister move.

1. Introduction

1.1. Mean unknotting times

An embedded knot can be transformed into the unknot by a sequence of crossing reversals

(see Figure 1). The minimum number of crossing reversals needed to change a knot into

the unknot is called its unknotting number. This quantity has been extensively studied

(see for example [12, 5, 3, 25, 11]), but its value is known only for small knots. In this

paper we study the average number of random crossing reversals required to transform a

“typical” knot to the unknot, where random knots are modelled by self-avoiding polygon

trails (SAPTs) on the square lattice Z
2 and by self-avoiding polygons (SAPs) on the cubic

lattice Z
3. We call this average number of crossing reversals the mean unknotting time.

Consider the embeddings in Table 1. At each time step, choose a crossing uniformly

at random and reverse it. If the new embedding is the unknot then stop, otherwise repeat.

For embeddings with such a small number of crossings, the mean unknotting times under

this process can be computed exactly.

Although the unknotting number depends only on the knot type (since it is a minimum

over all embeddings of that knot), the mean unknotting time depends strongly on the

embedding. To see this, observe that the knot type is unchanged by adding a simple twist

to any knot via a type I Reidemeister move [21] (see Figure 2). Reversing this new crossing

has no effect on the knot type and so its presence increases the mean unknotting time. In

particular, the mean unknotting time of a given knot type is not well defined.

A self-avoiding polygon (SAP) is a path on the cubic lattice which starts and ends at

the same point, in which each vertex has degree two. A self-avoiding polygon trail (SAPT)

is a path on the square lattice which starts and ends at the same point, in which each edge

may only be visited once, but sites may be visited multiple times. Note that SAPs and

SAPTs are neither rooted nor directed. We declare each SAP of length n to be equally

likely, and similarly for SAPTs.

An example of a self-avoiding polygon trail is depicted in Figure 3. At the points
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Table 1. Exact mean unknotting times and variances under random crossing reversals.

Unknotting

Knot Embedding number Mean Var

31 1 1 0

41 1 1 0

51 2 5
2

5
4

52 1 20
11

105
121

61 1 15
8

51
64

31#31 2 10
3

34
9

Figure 3. Converting a SAPT to a knot.

where the trail ‘veers off’ from a vertex, it actually touches that vertex and moves off at a

right angle, but we draw it in this way to differentiate from the case where it crosses itself.

At each crossing, we assign one strand to be the overpass (so that it lies above the other

strand). This gives an embedding of a knot. Note that due to the necessity of choosing

overpasses, a SAPT with m crossings can generate 2m distinct embeddings.

It is well-known that SAPs are knotted with high probability [20, 26, 24]. The proof
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of this fact, which uses Kesten’s pattern theorem [13], extends also to SAPTs [6] (as we

explain in more detail in Section 2.1). In addition, the pattern theorem implies that with

high probability a typical SAP or SAPT contains a number of tight local trefoils that

is linear in the length n of the polygon. It is the combination of a linear number of

tight trefoils, together with a fixed positive probability that an unknotted trefoil might be

reknotted, which allows us to prove that with high probability a randomly chosen SAP

or SAPT will have a mean unknotting time that is at least exponentially large in n. For

SAPs, the exponential behaviour of the mean unknotting time persists even when we bias

our local unknotting processes to be much more likely to perform crossing reversals that

unknot local knots than to create local knots, as long as there is a fixed positive probability

to (mistakenly) create a knot. Moreover, the mean time to unknot all but a small linear

fraction of the tight local trefoils is also at least exponentially large — there is no need

to require complete unknotting to observe the exponential behaviour. The proof of this

lower bound is based on an analysis of the two-parameter Ehrenfest urn model. For the

case of SAPTs, we also prove an exponential upper bound on the mean unknotting time.

Our SAPT model is reminiscent of the flat knots studied by Guitter and Orlandini

[9] and Metzler et al. [16]. However, the focus of [9, 16] is on 2-dimensional embeddings of

knots of a fixed knot type, and on the localised nature of the knot. In contrast, in the SAP

or SAPT models, the pattern theorem ensures that with high probability the knot type

becomes increasingly complex as the size of the polygon increases. It is the increasingly

large number of localised trefoils in a typical SAP or SAPT that lies at the heart of our

analysis.

Our unknotting processes mimic the action of type II topoisomerases, which act in

similar ways to reduce the topological complexity of DNA strands within cells in order for

biological processes to take place. These enzymes simplify the topology of a DNA strand

by breaking it at one point, passing another section of the strand though the break and

then rejoining the broken ends — effectively the reversal of a crossing. See [29, 22, 28, 27]

for examples. There is evidence [23, 30] that this enzyme drives the system towards

the unknotted state rather than simply crossing and recrossing strands at random. The

parameters in our SAP model allow for a bias towards unknotting, consistent with this

“intelligent” action of type II topoisomerase.

1.2. The processes

We consider two unknotting processes, one acting on 2-dimensional SAPTs and the other

acting on 3-dimensional SAPs.

1.2.1. Unknotting SAPTs Consider a SAPT with m crossings. Each crossing (be it

initially an overpass or an underpass) is defined to be initially in state 0. When the

crossing is reversed it moves from 0 to 1 or vice versa. At each time step one of the m

crossings is selected uniformly at random and reversed. The process continues until the

SAPT becomes unknotted. This models a naive topoisomerase enzyme which performs

crossing reversals randomly. We will mimic more intelligent unknotting behaviour in our
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Figure 4. A trefoil arc in a self-avoiding polgyon. One possible way it can be unknotted

is by passing the highlighted strands through each other.

SAP model.

1.2.2. Unknotting SAPs Guitter and Orlandini [9] and Metzler et al. [16] have studied

flat knots and found that the topological details of the knots are tightly localised. Metzler

et al. speculate that such behaviour continues in three dimensions. With such localised

knots in mind, we define our unknotting process on 3-dimensional SAPs by considering

the probabilities of knotting and unknotting tight trefoil arcs (an example is given in

Figure 4) rather than a process on individual strands of the polygon. According to the

pattern theorem [13, 20, 26], a SAP contains a linear number of tight trefoils with high

probability.

Consider a SAP with at least m tight trefoil arcs. In their initial (knotted) state each

of these m arcs is assigned state 0 and when they are unknotted we assign them state 1.

At each time step one of the m arcs (be they knotted or unknotted) is selected uniformly

at random. If the arc is knotted then it is unknotted with probability s (moving from

state 0 to state 1). If the arc is in state 1 then it is reknotted with probability t (moving

from state 1 to state 0). We do not consider the effect of this process on other knotted

arcs within the polygon.

By reducing the chance that an arc in state 1 can be changed back to state 0 the

process can be driven away from it initial (knotted) state more quickly than the unbiased

s = t = 1 process. Thus choosing s > t mimics the action of an “intelligent” type II

topoisomerase. For all 0 < s, t ≤ 1 we find that the mean time to unknot or nearly unknot

the SAP grows at least exponentially with length. These results are stated more precisely

below.

1.3. Main analytic results

The following theorem proves an exponential lower bound on our two unknotting processes:

Theorem 1.1. (i) [Lower bound for SAPTs.] There is a constant C > 1 such that a

randomly chosen 2-dimensional SAPT of length n has mean unknotting time at least Cn,
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with a probability that tends to 1 exponentially rapidly in n. Further, there is a δ > 0

such that, again with exponentially high probability, there are at least δn tight knotted arcs

initially present in a randomly chosen SAPT, and there exist ǫ > 0 and Cǫ > 1 (both

independent of n) so that the mean time it takes to unknot all but ǫδn of these initially

knotted arcs is at least Cn
ǫ .

(ii) [Lower bound for SAPs.] Let s > 0 be the probability of unknotting a tight trefoil arc

in a SAP and let t > 0 be the probability of it being reknotted. There is a constant D > 1

(depending on s and t) such that a randomly chosen 3-dimensional SAP of length n has

mean unknotting time at least Dn with a probability that tends to 1 exponentially rapidly

in n. Further, there is a δ > 0 such that, again with exponentially high probability, there

are at least δn tight knotted arcs initially present in a randomly chosen SAP, and there

exist ǫ > 0 and Dǫ > 1 (depending on s and t but independent of n) so that the mean time

it takes to unknot all but ǫδn of these initially knotted arcs is at least Dn
ǫ .

We also prove the following upper bound on the mean unknotting time of the 2-

dimensional process:

Theorem 1.2. [Upper bound for SAPTs.] There is a λ > 1 such that the mean unknotting

time of every 2-dimensional SAPT of length n is bounded above by λn.

The upper bound does not extend to our SAP model. Indeed, consider any unknotting

process that only works on either local crossings (where strands are at most some constant

k lattice spacings apart) or on very localised knots (with diameter of at most k), then by

a pattern-theorem argument (see Section 2.1 below), with very high probability a polygon

will contain “bloated” trefoil arcs whose strands are far more than k lattice spacings

apart. The local unknotting process can never unknot these arcs. However, the lower

bound holds regardless of whether or not such large knotted arcs are present. On the

other hand, the existence of an exponential upper bound for the naive crossing reversal

SAPT model implies that any more intelligent unknotting process by definition should not

have a larger mean unknotting time.

We have also measured the mean unknotting time of the unknotting process on SAPTs

of lengths up to 3000, using numerical simulations. The mean unknotting time is quite

small and its exponential growth is very weak.

In Section 2, we give the proof of the lower bound of Theorem 1.1; the proof relies

on Kesten’s pattern theorem and on an analysis of the two-parameter Ehrenfest urn

model. The upper bound for SAPTs is proved in Section 3. In Section 4, we detail our

simulation results from generating random SAPTs. Finally, in Section 5 we summarise

our conclusions.

2. Lower bound on the mean unknotting time of SAPs and SAPTs

We first use the pattern theorem to show that a typical SAP or SAPT contains a positive

density of trefoil arcs (such as those illustrated in Figures 4 and 6). We then describe the

random unknotting process in terms of the mean first-passage time of the two-parameter

Ehrenfest urn model. An exponential lower bound for the latter then implies that the
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(a) (b)

Figure 5. Two types of trails: (a) a bridge, with a cutting line; and (b) a prime bridge.

The starting vertices are denoted by hollow circles.

mean unknotting time grows exponentially with the number of trefoil arcs and hence the

length.

2.1. Kesten’s pattern theorem

A crucial ingredient in our proof of the exponential lower bound on the mean unknotting

time is Kesten’s pattern theorem. The original pattern theorem for self-avoiding walks

was proved by Kesten in 1963 [13]. The pattern theorem was applied to prove that SAPs

are knotted with high probability in [20, 26]. In this section, we describe an extension to

SAPTs; the corresponding discussion for SAPs is very similar.

Loosely speaking, the pattern theorem tells us that a SAPT or SAP of length n will

contain a given pattern of edges at least δn times (for some δ > 0) with a probability that

tends to 1 exponentially rapidly in n. We give the following definitions for SAPTs:

Definition 2.1. Let t = (x0, y0), (x1, y1), . . . , (xn, yn) be a self-avoiding trail in Z
2. We

call t a bridge if x0 < xi ≤ xn for all i > 0.

We call the line x = x′ a cutting line of the bridge t if there exists an index j where

0 < j < n, xj = x′, and the x-coordinates satisfy the conditions

x0 < xi ≤ xj ∀ 0 < i < j (1)

and

xj < xk ≤ xn ∀ j < k < n. (2)

A cutting line divides a bridge into two separate non-empty bridges. If a non-empty bridge

has no cutting line, we call it prime. Note that bridges can be trivial, but prime bridges

cannot.

Examples illustrating the above definition are given in Figure 5.

Definition 2.2. A pattern is a synonym for self-avoiding trail. It is used mainly in the

context where is it part of another trail or SAPT. A prime pattern is a pattern which is a

prime bridge.
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(a) (b)

Figure 6. Trefoil arc; (a) without crossings specified and (b) with crossings specified.

The following is the pattern theorem for SAPTs. The proof for SAPTs is given in [6];

it is similar in spirit to proofs of the equivalent theorems for self-avoiding walks [13, 15]

and lattice ribbons [10]. With the obvious modifications, the theorem (and its corollary)

applies also to SAPs.

Theorem 2.3. Let T o(n; p, m) be the number of SAPTs of length n in which the prime

pattern p occurs at most m times. Then there exists a number δ(p) > 0 such that

lim sup
n→∞

1

2n
ln T o(2n; p, 2nδ(p)) < ln µo (3)

where µo denotes the growth constant for SAPTs.

Corollary 2.4. Given a prime pattern p, let Np denote the number of occurrences of p in

a SAPT of length n. Then the probability that Np is at least δ(p)n goes to 1 exponentially

rapidly as n → ∞.

Proof. This is a restatement of Theorem 2.3.

Consider the pattern depicted in Figure 6(a), which we call the trefoil arc τ . This

pattern is clearly a prime pattern, so Corollary 2.4 implies that with overwhelmingly

high probability it occurs in a SAPT of length n at least δ(τ)n times. If we allocate

the crossings in the right way, e.g., as in Figure 6(b), then this generates a trefoil in the

knot. There are exactly 2 ways (out of 8 possibilities) that the crossings can create a

trefoil, so the probability of this occurring is 1
4
. Similarly, the trefoil arc in Figure 4 (left)

occurs a positive density of times in 3-dimensional SAPs (except with exponentially small

probability). These observations will be important in our proof of the lower bound on the

mean unknotting time.

2.2. Mapping to the Ehrenfest urn model

We now use the pattern theorem results to map the mean unknotting time to the mean

first-passage time in the two-parameter Ehrenfest urn model. The latter has been well

studied [7, 14, 19], and the exponential growth of its mean first-passage time will imply

exponential growth for the mean unknotting time.
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2.2.1. The two-parameter Ehrenfest urn model The two-parameter Ehrenfest urn is the

Markov chain with state space {0, 1, . . . , m} and transition probabilities

qi,i−1 = b
i

m
, qi,i = 1 − qi,i−1 − qi,i+1, qi,i+1 = a

(

1 −
i

m

)

, (4)

where a, b ∈ [0, 1] are parameters, and i = 0, . . . , m. Explicit formulas for mean first-

passage times are derived in [7, 14, 19]. We will state one of these formulas in (8) below, but

to help keep our analysis self-contained, we also apply the following elementary reasoning.

The Markov chain (4) has the following interpretation: a total of m balls are divided

between two urns A and B. A ball is chosen uniformly at random. If it is chosen from

urn A then it is placed in urn B with probability b and otherwise it is returned to urn A.

Similarly, if the ball is chosen from urn B then it is placed in urn A with probability a

and otherwise it is returned to urn B. The state of the system is the number of balls in

urn A.

It is easy to guess the stationary distribution of the two-parameter Ehrenfest urn, as

follows. We label the balls from 1 to m and note that balls move independently. Each

ball when selected moves from urn A to urn B with probability b and moves from urn B

to urn A with probability a. In equilibrium, it is therefore in urn A with probability a
a+b

.

The number of balls in urn A in equilibrium therefore has a binomial distribution with

parameters m and b
a+b

, i.e., the stationary distribution of the Markov chain is given by

πi =

(

m

i

) (

a

a + b

)i (
b

a + b

)m−i

(i = 0, . . . , m). (5)

Checking that detailed balance is satisfied (i.e., πiqij = πjqji) then proves that this is indeed

the stationary distribution. This stationary distribution can also be found in [7, 14].

For our purposes, we first note that in general the mean first-return time to a state i

in a Markov chain is given by 1/πi, so that the mean first-return time Mm,m to state m

starting from m is given by Mm,m = 1/πm = (a+b
a

)m. By conditioning on the first step, we

see that

Mm,m = (1 − b) + b(1 + Mm−1,m) = 1 + bMm−1,m, (6)

where Mm−1,m is the mean first-passage time from state m − 1 to state m. Therefore

Mm−1,m =
1

b
Mm,m −

1

b
=

1

b

(

a + b

a

)m

−
1

b
, (7)

which is a special case of Theorem (b) on p.968 of [14], where more general hitting times

are also considered. Since every passage from 0 to m must pass through m− 1, the mean

first-passage time from 0 to m is at least as large as the mean first-passage time from

m − 1 to m.

In general, it is shown in [7] that the mean first-passage time from state i to state j

is given by

Mi,j =
m

a + b

j
∑

k=1

1

k(−m)k

(

a + b

a

)k

((−j)k − (−i)k) , (8)

where (n)0 = 1, (n)k = n(n + 1) · · · (n + k − 1) is the Pochhammer symbol. We will find

this formula useful in Section 2.2.4.
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Figure 7. All possible crossing reversals of a trefoil arc. The two knots in the centre are

knotted; the outer knots are unknotted. The circled crossings are the ones which differ

from the connected centre knot.

2.2.2. Lower bound for SAPTs Let Kτ denote the number of times that the trefoil arc

τ occurs in knotted form in a SAPT of length n. According to the remarks following

Corollary 2.4, with a probability that is exponentially close to 1, Kτ is at least δn, for

some δ > 0. We will show that there is a c1 > 1 such that a SAPT with Kτ knotted trefoil

arcs has a mean unknotting time that is at least cKτ

1 and so prove the lower bound on the

mean unknotting number stated in Theorem 1.1 for SAPTs.

Given a SAPT of length n with Kτ = m trefoil arcs whose crossings are all arranged

to form trefoils (i.e., knotted), we associate to this knot the site 0 of the m-dimensional

unit cube. As we perform reversals, some of these trefoil arcs can become unknotted. To

each trefoil arc, we assign the state 0 if it is knotted, and 1 if it is unknotted. We seek a

lower bound on the time needed to move from state 0 (all trefoil arcs knotted) to state 1

(all trefoil arcs unknotted). This will also provide a lower bound on the mean unknotting

time of the embedding, since each trefoil arc must be unknotted if the embedding is to be

the unknot. It is only a lower bound, because the entire knot may still be knotted even

after all the trefoil arcs have been unknotted.

Analysing the possible crossing reversals of a trefoil, shown in Figure 7, shows that if a

trefoil arc is in state 0, a crossing reversal has probability 1 of unknotting it (and therefore

sending it to state 1), but if the arc is unknotted, only one of the three crossings makes the

arc knotted again when reversed. If the number of 1’s (unknotted trefoil arcs) is i, then

the crossing reversal process corresponds to a Markov chain with transition probabilities

pi,i−1 =
1

3

i

m
, pi,i =

2

3

i

m
, pi,i+1 = 1 −

i

m
(i = 0, . . . , m). (9)
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Comparing with (4), we see that this is the two-parameter Ehrenfest urn model with a = 1,

b = 1
3
. The mean unknotting number is bounded below by the mean first-passage time

from state 0 to state m, which by (7) is at least 3(4
3
)m − 3.

2.2.3. Lower bound for SAPs The proof for SAPs is essentially identical. By the pattern

theorem, a SAP of length n contains at least m = δn tight local trefoils, with probability

exponentially close to 1. If we denote by i the number of these trefoils in a knotted state,

then the transition probabilities of our process are

pi,i−1 = t
i

m
, pi,i = 1 − pi,i−1 − pi,i+1, pi,i+1 = s

(

1 −
i

m

)

. (10)

This is equivalent to the urn model with a = s and b = t. The mean unknotting number

is at least as large as the mean first-passage time M0,m of the urn model, which by (7)

grows exponentially in n, provided that the probability of reknotting a trefoil is nonzero

(i.e., t > 0).

2.2.4. Lower bound to “nearly unknot” We can now extend these results to compute the

mean time to “nearly unknot” a configuration; i.e., the mean time it takes to remove all

but a small positive fraction ǫ of the knotted arcs. This quantity is equivalent to the mean

first-passage time from 0 to (1 − ǫ)m in the two-parameter Ehrenfest urn model, with

a = b = 1 for the SAPT model, and with a = s and b = t for the SAP model. When

i = 0, all the summands in (8) are positive and so any particular summand provides a

lower bound. In particular,

M0,j ≥
m

a + b

1

j

(

m

j

)

−1 (

a + b

a

)j

. (11)

When j = (1 − ǫ)m this gives

M0,(1−ǫ)m ≥
m

a + b

1

(1 − ǫ)m

(

m

(1 − ǫ)m

)

−1 (

a + b

a

)(1−ǫ)m

. (12)

The binomial coefficient is
(

m
ǫm

)

∼ Aǫ(ǫ
−ǫ(1 − ǫ)ǫ−1)mm−1/2. By choosing ǫ close to 0, we

can make ǫ−ǫ(1 − ǫ)ǫ−1 arbitrarily close to 1. Hence for any given a, b > 0 we can choose

ǫ > 0 so that ǫǫ(1 − ǫ)1−ǫ(1 + b/a)1−ǫ > 1 and the mean first-passage time from 0 to

(1 − ǫ)m will grow exponentially. This completes the proof of Theorem 1.1.

3. Upper bound on the mean knotting time of SAPTs

We now prove the upper bound of Theorem 1.2 for the SAPT process. Consider a SAPT of

length n which contains m crossings. Since a SAPT must visit each crossing exactly twice

and cannot visit more than n distinct vertices, it follows that m ≤ n/2. Each crossing

(be it initially an overpass or an underpass) is in state 0. When the crossing is reversed it

moves from 0 to 1 and vice versa. Hence the process of reversing crossings is equivalent

to a simple random walk on a unit m-dimensional cube.
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At least one way of allocating strands in the crossings must result in the unknot, and

so at least one point in the m-cube is equivalent to the unknot. The mean unknotting

time must therefore be less than or equal to the mean first-passage time from the origin

to that point. We bound this quantity from above by the mean first-passage time from 0

to 1, using the following lemma.

Lemma 3.1. Let x be a site in the m-cube. The mean first-passage time from 0 to x is

less than or equal to the mean first-passage time from 0 to 1.

Proof. We define addition of sites x and y in the m-cube by componentwise addition mod

2. Let Tx,y denote the first-passage time from x to y. By symmetry, Tx,y and Tx+a,y+a have

the same probability distribution for any a in the n-cube. In particular, ET0,x = ETx̄,1,

where x̄ = 1−x is the site obtained by interchanging coordinates 0 and 1 in x. Therefore

it suffices to show that ET0,1 ≥ ETx̄,1.

Let A denote the set of sites y which contain exactly the same number of coordinates

1 as x̄, and let X denote the first site in A that is hit by a walk started from 0. By

symmetry, the conditional expectation E[T0,1|X = y] is the same for every y ∈ A, and

therefore ET0,1 = E[T0,1|X = x̄]. However, conditional on X = x̄, we can decompose a

first-passage path from 0 to 1 into the path from 0 to x̄ responsible for X = x̄, followed

by a first-passage path from x̄ to 1. By neglecting the time taken to achieve X = x̄,

we obtain the lower bound ET0,1 ≥ E[Tx̄,1|X = x̄]. But the random variable Tx̄,1 is

independent of the event that X = x̄, and hence E[Tx̄,1|X = x̄] = ETx̄,1, which gives the

desired result.

The mean unknotting time is thus at most the mean first-passage time f(m) from 0

to 1 on the m-cube, with m at most n/2. It is well-known that f(m) is equivalent to the

mean first-passage time from state 0 to state m in the classical Ehrenfest urn model with

m balls, which has the transition probabilities (4) with a = b = 1. The quantity f(m)

has been studied in [1, 4, 17, 18]. In particular, the asymptotic formula f(m) ∼ 2m was

obtained in [1]. Setting i = 0 and j = m in equation (8) gives

f(m) = M0,m =
m

2

m
∑

k=1

1

k
2k ≤ m2m. (13)

We can then absorb the factor m into the exponential growth. Since m ≤ n/2, we obtain

an upper bound λn. This completes the proof of Theorem 1.2.

4. Numerical results

We now turn to simulation to estimate the exponential growth rate of the mean unknotting

time of SAPTs via random crossing reversals. The pivot algorithm is a standard algorithm

for the simulation of self-avoiding walks and self-avoiding polygons [15]. It is explained

in [6] how to adapt the pivot algorithm to SAPTs. In particular, it is shown in [6]

that the pivot algorithm is a valid algorithm for SAPTs, in the sense that its stationary

distribution is uniform. We apply the pivot algorithm to generate random SAPTs of a
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Figure 8. Mean unknotting time vs. length of generating SAPT.

given length. Crossings are then randomly assigned to be over- or under-passes. We then

observe how long they take to unknot by random crossing reversals — i.e., crossings are

picked uniformly at random and reversed until the unknot is obtained.

To decide whether or not the current embedding is the unknot we use the Alexander

polynomial. The Alexander polynomial of an embedding with n crossings can be computed

in O(n3) time (using the algorithm described in [2]). The Alexander polynomial is not a

perfect knot invariant, and it is possible that it incorrectly identifies an embedding as the

unknot; the smallest non-trivial knot whose Alexander polynomial is equal to that of the

unknot contains 11 crossings. We observe that the vast majority of crossings in a SAPT

are twists such as those in Figure 2 and so can be removed without changing the knot type.

Since other knot invariants, such as the Jones polynomial, are far more time consuming

to compute, we have worked under the assumption that misclassifying the unknot is very

unlikely.

We calculated the mean unknotting times for SAPTs of lengths up to 3000. The

results are shown in Figure 8, with error bars computed using autocorrelation times.

Since our analytic results indicate that the mean unknotting time grows exponentially

with length, we tried to fit our data to a curve of the form Aeλn. However, the exponential

growth is extremely weak, and so we were unable to form precise estimates. For example,

fitting the last four data points to an exponential curve gives:

mean unknotting time ∼ 0.15 (1.0008)n, (14)

where n is the length of the SAPT. We do not give error bars for these parameters, as

they should only be considered as a rough guide to demonstrate that the growth rate is

indeed small. We did not attempt to fit corrections to scaling since our estimates of the
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exponential term are so imprecise.

The exponential growth implied by our analytic results comes about because a typical

very large SAPT has a positive density of trefoils, but we have no estimate of how large

the SAPT has to be to observe this behaviour. At length 3000, for example, we find

that the average number of crossings is approximately 50. One might expect that this is

sufficient to guarantee that the embedding contains several trefoils. However, we found

that typically almost all of these crossings are twists that can be removed using a type I

Reidemeister move (see Figure 2). So while a typical configuration of length 3000 contains

far more crossings than is necessary to produce a knot, we find that only about 1 in 10

configurations are actually knotted. Furthermore, the knotted configurations typically

have low unknotting number — of the knotted configurations, a further 9 out of 10 are

trefoils at this length. This is consistent with the highly localised nature of flat knots

found in [9, 16].

To obtain a better estimate of the growth of the mean unknotting time, we would need

to extend the simulations to far greater lengths, which would require far greater computing

resources. Alternatively, one could skew the distribution used to sample SAPTs, to favour

more compact configurations with a higher number of crossings. This would lead to more

complicated knots for the same SAPT length.

5. Conclusion

We have studied the mean unknotting time of random self-avoiding polygons, and of

random self-avoiding polygon trails with random crossing allocations, using both analytic

and numerical methods. We have proved an exponential lower bound on the mean

unknotting time of both SAPs and SAPTs by relating the models to the problem of

the mean first-passage time in the two-parameter Ehrenfest urn model. We have also

proved an exponential upper bound for the mean unknotting time of SAPTs. Simulations

of random SAPTs of length up to 3000 show that the exponential growth is very weak:

configurations of moderate lengths can be unknotted using only a small number of random

crossing reversals.

The exponential lower bound for SAPs still holds in the case of s > t > 0, in which

the process is driven towards the unknotted state. A long SAP will typically contain a

linear number of trefoil arcs and the process will quickly unknot many of these. However,

as long as there is a non-zero probability of reknotting a trefoil, it will always be difficult to

find and unknot the last few trefoils without reintroducing knots. Indeed we have shown

that the mean time to nearly unknot either a SAP or SAPT (by removing all but a small

fraction of the knots) also grows exponentially.

Our lower bound is quite robust and will apply generally in situations in which a

typical closed curve contains a positive density of tight trefoil arcs. In particular, Diao et

al. [8] have proved a continuum version of Kesten’s pattern theorem for Gaussian random

polygons (GRPs). A GRP is a piecewise linear curve in R
3 whose edges are normally

distributed vectors. Theorem 3 in [8] shows that there exist positive β and ǫ such that for

large enough n, a GRP of n steps contains nβ trefoils with probability at least 1 − e−nǫ

.
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Our results then imply that the mean unknotting time of a randomly chosen GPR grows

at least as fast as λnβ

for some λ > 1 (with probability at least 1 − e−nǫ

).

Our upper bound has been proved for the case of 2-dimensional SAPTs with uniformly

random crossing reversals. Since random crossing reversal is a naive strategy for trying to

reach the unknot, any more intelligent process should reach the unknot more quickly, and

we expect our upper bound also to apply quite generally.
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