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Abstract. We describe a novel algorithm for random sampling of freely re-

duced words equal to the identity in a finitely presented group. The algorithm
is based on Metropolis Monte Carlo sampling. The algorithm samples from a

stretched Boltzmann distribution

π(w) = (|w|+ 1)αβ|w| · Z−1

where |w| is the length of a word w, α and β are parameters of the algorithm,

and Z is a normalising constant. It follows that words of the same length are

sampled with the same probability. The distribution can be expressed in terms
of the cogrowth series of the group, which then allows us to relate statistical

properties of words sampled by the algorithm to the cogrowth of the group,

and hence its amenability.
We have implemented the algorithm and applied it to several group pre-

sentations including the Baumslag-Solitar groups, some free products studied
by Kouksov, a finitely presented amenable group that is not subexponentially

amenable (based on the basilica group), and Richard Thompson’s group F .

1. Introduction

In this article we propose a new random sampling algorithm for finitely presented
groups. The algorithm samples freely reduced words in the generators that are
equal to the identity of the group. This algorithm is based on ideas from statistical
mechanics and Markov chain theory. In particular, the algorithm is inspired by the
BFACF algorithm for sampling self-avoiding polygons (we refer the reader to [20, 26]
for a description of BFACF and self-avoiding polygons). The algorithm differs from
previous work on random walks in groups in that it only samples trivial words.
Indeed, it can be seen as executing a random walk on the space of trivial words,
rather than a random walk on the Cayley graph of the group.

We prove that the algorithm coverges to a specified distribution, and relate this
distribution to the cogrowth series of the group. By varying a parameter, we can
detect numerically the precise position of the radius of converge of the cogrowth
series, and hence numerically predict the amenability or non-amenability of the
group.

We have implemented the algorithm and have applied it to a selection of finitely
presentated groups. These include several Baumslag-Solitar groups, some free prod-
ucts whose cogrowth series were studied by Kouksov [23], a finitely presented rela-
tive of the basilica group, and R. Thompson’s group F .
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The present article continues previous work by the authors [15, 16], where various
techniques, also based in statistical mechanics and enumerative combinatorics, were
applied to the problem of estimating and computing the cogrowth of groups. This
in turn built on previous work of Burillo, Cleary and Wiest [6], and Arzhantseva,
Guba, Lustig, and Préaux [1], who applied experimental techniques to the problem
of deciding the amenability of Thompson’s group F . In other work, Belk and Brown
[5] proved the currently best known upper bound for the isoperimetric constant for
F , and Moore [30] gives lower bounds on the growth rate of Følner function for F .

More generally a (by no means exhaustive) list of others working in the area of
random walks on groups is Bartholdi [2, 3, 4], Diaconis and Saloff-Coste [10, 11, 12,
8, 9], Dykema [13, 14], Lalley [24], Smirnova-Nagnibeda [31, 32] and Woess [33, 37].

For the benefit of readers outside of group theory, and to establish notation, we
start with a precise definition of group presentations and cogrowth.

Definition 1.1 (Presentations and trivial words). A presentation

〈a1, . . . , ak | R1, . . . , R`, . . . 〉(1.1)

encodes a (finitely generated) group as follows.

• Let S = {a1, a−11 , . . . , ak, a
−1
k } be a set of 2k distinct letters, and S∗ the set

of all finite strings or words over the letters in S.
• A word in S∗ is called freely reduced if it contains no subword of the form
aia
−1
i or a−1i ai for any ai ∈ S.

• The set of all freely reduced words, together with the operation of concate-
nation followed by free reduction (deleting aia

−1
i and a−1i ai pairs) forms a

group, called the free group on the letters {a1, . . . , ak}, which we denote by
F (a1, . . . , ak).
• LetR1, . . . , R`, . . . be a finite or infinite list of distinct words in F (a1, . . . , ak).
• Let N(R1, . . . , R`, . . . ) be the normal subgroup of the free group consisting

of all words of the form

m∏
j=1

ρjRjρ
−1
j after free reduction, where ρi is any

element in the free group, and Rj is one of the relators or their inverses.
This subgroup is called the normal closure of the set of relators.
• The group encoded by the presentation 〈a1, . . . , ak | R1, . . . , R`, . . . 〉 is de-

fined to be the quotient group F (a1, . . . , ak)/N(R1, . . . , R`, . . . ).
• The letters ai are called generators, and the words Ri are called relations

or relators.
• A group G is called finitely generated if it can be encoded by a presentation

with the list a1, . . . , ak finite, and finitely presented if it can be encoded
by a presentation with both lists a1, . . . , ak and R1, . . . , R` finite. In this
article the list a1, . . . , ak will always be finite.
• It follows that a word in F (a1, . . . , ak) equals the identity element in G

if and only if it lies in the normal subgroup N(R1, . . . , R`, . . . ), and so is
equal to a product of conjugates of relators and their inverses.

We will make extensive use of this last point in the work below. We call a word
in F (a1, . . . , ak) that equals the identity element in G a trivial word.

Let c(n) be the number of freely reduced words, w ∈ S∗, of length n that
represent the identity of a finitely generated group. This function is called the
cogrowth function and the corresponding generating function is called the cogrowth
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series. The rate of exponential growth of the cogrowth function is the cogrowth of
the group (with respect to a chosen finite generating set). Equivalently the cogrowth
is the reciprocal of the radius of convergence of the cogrowth series. Grigorchuk
and independently Cohen [7, 18] proved that a finitely generated group is amenable
if and only if its cogrowth is |S| − 1.

For more background on amenability and cogrowth see [27, 36]. The free group
on two (or more) letters, as defined above, is known to be non-amenable. Also,
subgroups of amenable groups are also amenable. It follows that if a group contains
a subgroup isomorphic to the free group on 2 generators (F (a1, a2) above), then it
cannot be amenable.

It is important to note that in some cases the letters in S may represent the
same group element, for example, consider the presentation 〈a | a2〉, where the
relation a2 implies that a = a−1. In this example |S| = 2 (the letters a, a−1 are
considered distinct formal symbols), and the cogrowth function is c(0) = 1, c(2n) =
2, c(2n+ 1) = 0. The cogrowth series is then∑

c(n)zn = 1 + 2z2 + 2z4 + · · · = 1 + z2

1− z2 ,(1.2)

and one can see directly that the radius of convergence is 1 = |S| − 1. Note that
Kouksov [22] showed that a group has rational cogrowth series if and only if it is
finite.

The article is organised as follows. In Section 2 we describe the algorithm for
sampling trivial words from a given finite presentation. We then analyse the algo-
rithm and show that it samples from a stretched Boltzmann distribution (Corol-
lary 2.13). In Section 3 we apply the algorithm to several finite presentations. In
cases where the cogrowth series is known, we see excellent agreement between the
exact results and numerical data generated by our algorithm (for both amenable
and non-amenable groups). We also apply the algorithm to sample words from
groups for which the cogrowth series is not known, including Thompson’s group F .
We summmarise our results in Section 4.

2. Metropolis Sampling of Freely Reduced Trivial Words in Groups

Let G = 〈a1, . . . ak|R1, . . . , R`〉 be a finitely presented group, and let X be the
set of all freely reduced trivial words in G. We assume that the words Ri are freely
reduced and non-empty. Define a set R as follows. Take all the relators Ri, their
inverses R−1i , and all cyclic permutations of these. The set R consists of all of these
words after free reduction. For example, in the case of BS(2, 3) = 〈a, b | a2ba−3b−1〉
the single relator yeilds 2× 7 = 14 elements in R.

We will describe an algorithm which samples a sequence of freely reduced trivial
words

(w0, w1, w2, . . . , wn, . . .); wi ∈ X .(2.1)

We refer to the words wi as states. The algorithm constructs a new state wn+1

from the current state wn by applying one of two elementary moves with specified
probabilities that depend only on wn. Such a procedure is known as a Markov
chain.

There are two parts to the selection rule in the Markov chain — the elementary
moves which transform wn to wn+1 and the probabilities with which they are im-
plemented. The implementation we use is known as Metropolis sampling [28]. In
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this way our algorithm is a Metropolis algorithm sampling along a Markov chain
in X .

2.1. Elementary moves. In this subsection we describe several elementary moves
that we will perform on words in X to obtain other words in X . Our goal is to
define a set of moves that have a well defined reverse move, and such that any two
words in X are connected by a finite sequence of moves.

The moves we describe are all based on the following two operations: conjugation
by x ∈ S; and insertion of R ∈ R. For technical reasons which will describe below,
we consider only what we call left-insertions rather than arbitrary insertions of
relators. The elementary moves are as follows.

On input w ∈ X :

• (Conjugation by x) Let x ∈ S. Write w′ = xwx−1 and perform free reduc-
tions on w′ to produce w′′. Return w′′.
• (Left-insertion of R at position m) Let R ∈ R and m ∈ {0, 1, . . . , |w|}.

Partition w into two subwords u and v, with |v| = m. Form w′ = uRv, and
freely reduce this word by first freely reducing uR, obtaining u′v, and then
freely reducing to obtain w′′. If m = 0, then R is appended to w, and if
m = |w|, then R is prepended to w.

Return w′′ unless a symbol of v is cancelled during the free-reduction
step (i.e. a cancellation occurs to the right of R). If this occurs then we
set w′′ = w and return w′′ (and so return a copy of the original word w).

Note that conjugations change word length by at most 2, and left-insertions by
at most |R|.

Since |S|, |R| and words w ∈ X are all finite, there are finitely many possible
elementary moves from a state w to a state u. The next two lemmas show that
elementary moves are “uniquely reversible” in the sense that if there are p conju-
gations and q left-insertions from a state w to a state z, then the same number of
each type send z to w.

For example, if R = abc ∈ R, w = abcabcabc and z = abcabcabcabc, there are
exactly 4 left-insertions of R possible in w to obtain z, and exactly 4 left-insertions
in z to get w.

Lemma 2.1. Let w, z ∈ X with w 6= z. If z is obtained from w by a conjugation
move, then either:

• there is exactly one conjugation move from w to z, and exactly one conju-
gation move from z to w; or
• there are exactly two conjugation moves from w to z, and exactly two con-

jugation moves from z to w. In this case w = (xy)n and z = (yx)n for
some x, y ∈ S.

Proof. Suppose x, y are distinct symbols in S, and z is obtained from w by conju-
gation by either x or y.

• If xwx−1 is freely reduced, then ywy−1 must freely reduce to z = xwx−1,
and since both words have the same length, they must be identical and x, y
are the same symbol.
• If w = x−1w1 and w1x

−1 is freely reduced, then yx−1w1y must freely reduce
to z = w1x

−1, so must contain a cancellation. If yx−1 is a free reduction
then x and y are the same symbol, so the cancellation must be in w1y,
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so w1 = w2y
−1. So z = w2yx

−1 = yx−1w2 and the two expressions are
identical strings, so w2 must be a product of (yx−1) pairs, so w = (yx−1)n.
In this case we have exactly two conjugations from (yx−1)n to (x−1y)n,
and exactly two back the other way (namely conjugation by x−1 or y−1).
• If w = w1x and xw1 is freely reduced, then yw1xy

−1 must freely reduce
to z = xw1 so contains a cancellation. Since x, y are assumed distinct the
cancellation must be in yw1, so w1 = y−1w2 and w2xy

−1 = xy−1w2 are
identical strings, so w = (xy−1)n and we have exactly two conjugations
from (xy−1)n to (y−1x)n and back.
• If w = x−1w1x then yx−1w1xy

−1 must freely reduce to z = w1, so since
x−1w1x is freely reduced (it is in X ) we must have x, y are the same symbol.

�

Lemma 2.2. Let w, z ∈ X with w 6= z. If w → z by insertion of R ∈ R at position
m, then z → w by insertion of R−1 ∈ R at position m.

Proof. Let w = uv with |v| = m. If uRv is not freely reduced then we have
u = u1u2, R = u−12 r, and u1r is freely reduced. Then w = u1u2v, z = u1rv. Note
that by definition there is no cancellation of the suffix v.

Then left-inserting R−1 at position m in z gives u1R
−1v = u1rr

−1u2v = u1u2v =
w. �

Note that for arbitrary insertions of relators, the previous lemma does not hold.
For example consider the group Z2 = 〈a, b | bab−1a−1〉 and let w = a3b4a−1b−1aba−4b−4

and z = a4b4a−3b−4. Inserting the relator R = bab−1a−1 into w at m = 9 gives

a3b4a−1b−1 ·R · aba−3b−4 −→ a3b4a−1b−1 · bab−1a−1 · aba−3b−4

−→ a3b3a−1 · aba−3b−4

−→ a3b3ba−3b−4(2.2)

This move is not a left-insertion since there is cancellation to the right of the
inserted relator. Suppose it were allowed. Then there is no way to obtain w via
insertion of R−1 = aba−1b−1 at any position in z, as one can easily verify by trying
each position. By restricting to only left-insertions we avoid such problems, and
guarantee that elementary moves have well defined reverse moves.

Lemma 2.3. Let G,S,R,X be as above. Let w ∈ X then there exists a finite
sequence of conjugations and left-insertions that transform the empty word to w.

Proof. A word u ∈ {a±11 , . . . , a±1k }∗ represents the identity element in G if and only

if it is the product of conjugates of the relators R±1i . So since w ∈ X , it can be
written as the product

n∏
j=1

ρjrjρ
−1
j(2.3)

after free reduction, where ρj ∈ S∗ and rj = R±1ij .

We can obtain w using conjugation and left-insertion as follows:

• set u to be the empty word;
• left-insert r1 after which u = r1;
• conjugate by ρ−12 ρ1 one letter at a time to obtain u = ρ−12 ρ1r1ρ

−1
1 ρ2 after

free reduction;
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• left-insert r2 at the extreme right (m = 0);
• repeat the previous two steps (conjugating by ρ−1j+1ρj then left-inserting rj

at the extreme right) until rn is left-inserted at the extreme right;
• conjugate by ρn.

Since we only ever append rj to the extreme right of the word, there are no right
cancellations. �

Note that since conjugations and left-insertions are reversible it follows that
given any two words in X there is some finite sequence of elementary moves that
transforms one to the other.

The reader may find it useful to consider the set X of states as the vertices of a
graph, with states connected by directed edges if there is an elementary move from
one to another, labeled by (conj, x) if it is conjugation by x ∈ S, and (insert, R,m)
if it is a left-insertion of R ∈ R at position m ∈ N. The above lemmas prove that
each edge between distinct states has a unique corresponding reverse edge with
appropriate label, and that the graph is connected.

2.2. Transition probabilities. In this subsection we define probabilities with
which elementary moves are selected or rejected.

Let pc ∈ (0, 1), α ∈ R and β ∈ (0, 1) be parameters of the algorithm. Fix
a probability distribution, P , over R, so that P (R) is the probability of choosing
R ∈ R. Further, assume that P (R) > 0 for allR ∈ R and also that P (R) = P (R−1).
Since R is finite, the obvious choice of P is the uniform distribution — indeed this
is what we used in our implementation. The algorithm we describe can easily be
modified for presentations with infinitely many relators by choosing an appropriate
distribution on R in this case — see subsection 2.7 below.

Let wn be the current word. We construct the next word, wn+1 as follows:

• With probability pc choose to perform a conjugation, otherwise (with prob-
ability 1− pc) perform a left-insertion.
• If conjugation is selected, choose x ∈ S with uniform probability and per-

form a conjugation by x as described above to obtain w′′. Then wn+1 is
chosen according to the rule

wn+1 =

{
w′′, with probability min

{
1, (|w

′′|+1)1+α

(|w|+1)1+α ·
β|w′′|

β|w|

}
;

wn, otherwise.
(2.4)

• If left-insertion is selected, choose R ∈ R with probability P (R) and a
location m ∈ {0, 1, 2, . . . , |wn|} with uniform probability. Peform a left-
insertion of R at m as described above to obtain w′′. Then wn+1 is chosen
according to the rule

wn+1 =

{
w′′, with probability min

{
1, (|w

′′|+1)α

(|w|+1)α ·
β|w′′|

β|w|

}
;

wn, otherwise.
(2.5)

An implementation of a Markov chain which includes probabilistic rules under
which moves are accepted or rejected is known as a Metropolis style algorithm. By
including these specific rejection probabilities, we are able to establish the detailed
balance condition, which we describe next. Notice that equations (2.4) and (2.5) are
very similar except that the power of 1 + α is changed to α. This small difference
is required in order to satisfy the detailed balance condition.
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We point out to the reader that the Markov chain we have described is not
a random walk on the Cayley graph of the group. Rather it executes a random
walk on the set of trivial words X . We can think of two points x1, x2 ∈ X being
connected by a weighted directed edge if the corresponding words are linked by a
single conjugation or left-insertion where the weight is the appropriate probability.

2.3. The sample distribution. In this subsection we prove properties of the
Markov chain defined by the transitions described above. Much of the results
in this section are standard in the theory of Markov chains, but for completeness
we include all relevant details. First let us define some useful notation. Define

Pr(u→ v) = probability of tranforming u to v by an elementary move.(2.6)

as per equations (2.4) and (2.5). Define

Prn(u→ v) = probability of tranforming u to v by n elementary moves.(2.7)

Definition 2.4. A Markov chain is said to be irreducible if there is a non-zero
probability of moving between any two given states in a finite number of elementary
moves.

A Markov chain is said to be aperiodic when for any two states u, v there exists
an integer N0 so that for all N > N0

PrN (u→ v) > 0.

That is, if the algorithm is in state u ∈ X , there is a positive probability of reaching
v ∈ X in N elementary moves for all N > N0.

A Markov chain that is both irreducible and aperiodic is said to be ergodic.

Lemma 2.5. The Markov chain is irreducible.

Proof. By Lemma 2.3, there exists a sequence of moves that transforms any given
state to any other given state. The probability of executing that sequence is positive,
since the probability of any one move in the sequence is positive. �

Lemma 2.6. The Markov chain is aperiodic.

Proof. By the Lemma 2.3, for any u, v ∈ X there is finite sequence of elementary
moves that starts at u and finishes at v. Let N0 be the length of this sequence. Once
the chain reaches this final state, v, there is a positive probability that any further
moves leaves the algorithm in the same state. Thus the algorithm is aperiodic. �

The previous two lemmas imply that the the Markov is ergodic since it is both
irreducible and aperiodic.

Definition 2.7. Let π be some probability distribution over the state space of a
given Markov chain. The chain is said to satisfy the detailed balance condition with
respect to π when

π(u) · Pr(u→ v) = π(v) · Pr(v → u)

for any two states u, v in the chain.

Note that π is a probability distribution over the states, while Pr(u → v) is
the probability of a particular transition in the Markov chain. Detailed balance
describes how these probabilities interact. The main reason to consider detailed
balance is that it implies that π is the stationary distribution under the Markov
chain, which we now define.
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Definition 2.8. A probability distribution π over the states of a Markov chain is
stationary if

π(u) =
∑
v

Pr(v → u)π(v)

That is, π is unchanged by a single step of the chain.

Lemma 2.9. If a Markov chain satisfies detailed balance with respect to π, then π
is stationary.

Proof. Assume that detailed balance is satisfied, then

π(u) · Pr(u→ v) = π(v) · Pr(v → u).(2.8)

Summing over all states v then gives

π(u)
∑
v

Pr(u→ v) =
∑
v

π(v)Pr(v → u)(2.9)

Since
∑
v Pr(u→ v) = 1 the result follows. �

Lemma 2.10. Let π be a probability distribution on X given by

π(u) =
(|u|+ 1)1+αβ|u|

Z

where Z is a normalising constant. The Markov chain defined above satisfies the
detailed balance condition with respect to π.

We note that the normalising constant exists and is finite when β is sufficiently
small. We discuss this point further in the next section.

Proof. Let u, v ∈ X . There are three possibilities: there is no single elementary
move transforming u to v or vice-versa; u and v are separated by a single conjugation
move; u and v are separated by a single left-insertion.

If there is no single elementary move between u and v, then Pr(u→ v) = Pr(v →
u) = 0 and the detailed balance condition is trivially satisfied.

Now suppose that v was obtained from u by a conjugation as described above.
Define

puv =
(|v|+ 1)1+α

(|u|+ 1)1+α
β|v|

β|u|
pvu = p−1uv .(2.10)

The transition probabilities are

Pr(u→ v) =
1

|S| min{1, puv}, Pr(v → u) =
1

|S| min{1, pvu}.(2.11)

The factor of |S| arises because we have to choose the correct conjugating element
from S. Note that puv ≤ 1 if and only if pvu ≥ 1. So without loss of generality,
assume that puv ≤ 1, pvu ≥ 1. Then

Pr(u→ v) =
puv
|S| , Pr(v → u) =

1

|S| .(2.12)

Hence we have

Pr(u→ v) = puv · Pr(v → u).(2.13)
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Next assume that v is obtained from u by a left-insertion of R ∈ R. Let

quv =
(|v|+ 1)α

(|u|+ 1)α
β|v|

β|u|
qvu = q−1uv(2.14)

The transition probabilities are given by

Pr(u→ v) =
P (R)

|w|+ 1
min{1, quv}, Pr(v → u) =

P (R−1)

|v|+ 1
min{1, qvu}(2.15)

where P (R) is the probability of choosing the relation R and the factor of |u| + 1
arises from choosing the correct position to insert R. Recall that P was chosen
so that P (R) = P (R−1) for any R ∈ R. Without loss of generality assume that
quv ≤ 1 so that qvu ≥ 1 and then

Pr(u→ v) =
P (R)

|u|+ 1
· quv, Pr(v → u) =

P (R−1)

|v|+ 1
=

P (R)

|v|+ 1
(2.16)

and so

Pr(u→ v) =
|v|+ 1

|u|+ 1
· quv · Pr(v → u) = puv · Pr(v → u)(2.17)

Notice equation (2.13) is identical to equation (2.17). This equation can be
rewritten in a more symmetric form as

(|u|+ 1)1+αβ|u|Pr(u→ v) = (|v|+ 1)1+αβ|v|Pr(v → u).(2.18)

Dividing by the normalising constant we obtain the detailed balance criterion

π(u) · Pr(u→ v) = π(v) · Pr(v → u).(2.19)

As noted above, it is possible that two states u, v are connected by more than
one elementary move. In this case Pr(u→ v) is the sum of the probabilities for each
elementary move, as is Pr(v → u) (by Lemmas 2.1 and 2.2), so detailed balance is
preserved. �

The next result shows that detailed balance implies uniqueness of the stationary
distribution. Though it is a standard result in the theory of Markov chains, again
we include it here for completeness.

Lemma 2.11. The distribution π described in the previous lemma is the unique
distribution on X for which the algorithm satisfies detailed balance.

Proof. Suppose there is another distribution ϕ on X for which detailed balance is
satisfied. If ϕ 6= π then there exists a state y ∈ X so that ϕ(y) > π(y).

So for every state y′ that is connected to y by an elementary move (i.e. for which
Pr(y → y′) > 0) we have

ϕ(y′)Pr(y′ → y) = ϕ(y)Pr(y → y′) > π(y)Pr(y → y′) = π(y′)Pr(y′ → y)(2.20)

Hence ϕ(y′) > π(y′). Thus ϕ(x) > π(x) for all x reachable from y. Since the chain
is irreducible, ϕ(x) > π(x) for all x ∈ X . This contradicts the assumption that ϕ
is a probability distribution. �

Now that we have established the above properties of the Markov chain, we can
make use of the Fundamental Theorem of Markov chains:
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Theorem 2.12 (Fundamental Theorem of Markov chains). If a Markov chainM is
irreducible and aperiodic then it has a unique stationary distribution ϕ. Moreover,

Prn(x→ y)→ φ(y) as n→∞
for all x, y in the state space of M.

The above theorem can be found in most standard texts on stochastic processes
— see, for example, [21, 29, 34].

Corollary 2.13. Given any two states u, v ∈ X
Prn(u→ v)→ π(v) as n→∞

where π(u) is the unique stationary distribution of the Markov chain

π(u) =
(|u|+ 1)1+αβ|u|

Z

where Z is a normalising constant which depends on α, β, pc and the group presen-
tation.

Proof. By the previous lemmas, our Markov chain satisfies the conditions of the
theorem. Further, since π is a stationary distribution for our Markov chain, it must,
by the same theorem, be the unique stationary distribution. �

The above corollary implies that we can use our Markov chain to sample trivial
words from a given finitely presented group with a specific distribution, π. When
α = −1, π is the Boltzmann or Gibbs distribution. For other values of α we can
think of π as a “stretched” Boltzmann distribution. Also note that π does not
depend of the details of the word, but only on its length. So if two words have the
same length then they are sampled with the same probability.

In the next section we examine the mean length of sampled words and describe
how this can inform us about the cogrowth of the group.

2.4. Mean length of sampled words. As demonstrated in the previous section,
the Markov chain converges to a stretched Boltzmann distribution, π. We defined
π above in terms of a normalising constant, Z, which we now make more precise.
Since we require

∑
w∈X π(w) = 1, we must have

Z =
∑
w∈X

(|w|+ 1)1+αβ|w|(2.21)

which can be written in terms of the cogrowth function

Z =
∑
n≥0

c(n) · (n+ 1)1+αβn.(2.22)

This sum converges to a finite value for 0 ≤ β < βc, where βc is

βc = lim sup
n→∞

c(n)−1/n.(2.23)

and is independent of the parameters α, pc. Note that, βc is exactly the radius of
convergence of cogrowth series

C(z) =
∑
n≥0

c(n)zn.(2.24)
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This demonstrates the link between the behaviour of the Markov chain and the
cogrowth of the underlying group.

Let us now turn to expected length of words sampled by the Markov chain.
Under the stationary distribution, π, the expected length of words in X is given by

E(|w|) =
∑
w∈X
|w|π(w) =

∑
w

|w| (|w|+ 1)1+αβ|w|

Z
.(2.25)

=

∑
n≥0 n(n+ 1)1+αc(n)βn

Z
.(2.26)

With the Markov chain as described we can select a particular value of β and
compare samples from the chain to exact results for groups where the cogrowth
series is known (such as Z2). In practice we would like to examine how the expected
length changes with β. When β is very small, E(|w|) ≡ 〈n〉 should be small since
shorter words are favoured. As β grows the expectation will increase. When β
exceeds βc the expectation will cease to converge and words sampled by the chain
will become longer and longer.

Rather than running many independent copies of the chain at distinct β-values
we use a technique known as Multiple Markov chains or parallel tempering which
samples at a set of distinct β-values simultaneously. We refer the reader to [17, 35]
for a detailed description of this method.

When α = −1 we can write the mean length explicitly as the log-derivative
of C(z):

E(|w|) =

(
zC ′(z)
C(z)

)∣∣∣∣
z=β

=

(
z

d

dz
logC(z)

)∣∣∣∣
z=β

.(2.27)

One can do similarly for α = 0, 1, 2, . . .

E(|w|) =

 d

dz
z

d

dz
z · · ·︸ ︷︷ ︸

1+α times

(
z

d

dz
logC(z)

)
∣∣∣∣∣∣∣∣
z=β

.(2.28)

We will make use of this expression in Section 3 for groups where the cogrowth
series is known exactly. This will allow us to compare numerical results from an
implementation of the Markov chain against exact results. Note that in the graphs
that follow below we will use 〈n〉 to denote mean length in place of E(|w|).

2.5. Alternate sets of elementary moves. While we have implemented the
above Markov chain using conjugations and left-insertions as elementary moves,
other moves are possible. The proof of Lemma 2.3 relies on conjugations but only
a subset of left-insertions. In particular, it only requires left-insertions in w at
position m = 0, that is, appending a relation to the extreme right of w.

Hence Corollary 2.13 would still hold for a Markov chain using the following
elementary moves

• conjugation by x ∈ S: given w, w′ = x−1wx, and
• append R ∈ R: given w, w′ = w 7→ wR.

Note that appending R is always reversible by appending R−1.
Since every word in the state space of the chain represents the identity element

of the group, we could also introduce a rotation move



12 M. ELDER, A. RECHNITZER, AND E. J. JANSE VAN RENSBURG

• rotate at k: given w = uv with |u| = k, w′ = vu.

In order to ensure this move is reversible by another rotation one needs to ensure
that no cancellations occur upon freely reducing w′. With this restriction a rotation
by k can always be reversed by a rotation at |w| − k.

Of course, if the set of elementary moves is changed then the transition prob-
abilities described by equations (2.13) and (2.17) need to be updated in order to
satisfy detailed balance.

2.6. Avoiding the empty word. The Markov chain can be implemented to sam-
ple from the state space of non-empty trivial words. ie from X ′ = X − {ε}. To do
this we alter equations (2.13) and (2.17) so that if w′′ = ε then wn+1 = wn. That
is, if an elementary move attempts to step to the empty word then it is rejected
and the current word is kept.

The following lemma shows that with this restriction the Markov chain remains
irreducible.

Lemma 2.14. The Markov chain described above with elementary moves altered to
avoid the empty word is irreducible on X ′, except when applied to the presentation
〈a | ak〉, k ∈ N.

Proof. Let w be a word in X ′. By Lemma 2.3 it can be reduced to the empty word
by a sequence of elementary words. The penultimate word in this sequence must
be a relator; denote it rw.

Hence if u, v ∈ X ′ they can be reduced by sequences of elementary moves to
relators ru, rv. There are three possibilities

• If ru = rv then reversing one of the sequences of moves shows that u, v are
connected a sequence of elementary moves.
• If ru 6= rv, r

−1
v then write ru = r1r2 and rv = r−12 r3, where r2 is as large as

possible. Note that r2 could be the empty word. Now
– left-insert rv after ru to obtain rurv = r1r2r

−1
2 r3 7→ r1r3 6= ε (after

free reduction).
– left-insert r−11 r−12 after r1 to obtain r1r

−1
1 r−12 r3 7→ r−12 r3 = rv.

Note that since ru = r1r2 ∈ R so is r−11 r−12 since it is a cyclic rotation
of r−1u = r−12 r−11 . Thus there must be a sequence of elementary moves
connecting u and v.

• If ru = r−1v then find another relator rw ∈ R so that rw 6= ru, r
−1
u (we

discuss the existence of rw at the end of the proof). Now use the previous
case to transform ru 7→ rw and again to transform rw 7→ rv. This creates a
sequence of elementary moves connecting u and v.

In all three cases there is a sequence of moves connecting u and v. Since the prob-
ability of each move in the sequence is positive, so the probability of the sequence
is positive.

Note that the last case breaks down if we are unable to find rw 6= ru, r
−1
u . If

the presentation has two or more relations, then simply pick rw to be a cyclic
permutation of a relation that is not ru. If the group has a single relation , then let
rw be a cyclic permutation of ru different from ru, r

−1
u . If no such rw exists then

all cyclic permutations of ru, r
−1
u must be equal to either ru or r−1u . We now show

that this implies the single relation must be of the form ak.
Let ru = x1x2 . . . xk be a word in S∗ and let w = x2 . . . xkx1 be a cyclic rotation

of ru. If w = ru then we have x2 = x1, x3 = x2, . . . , xk = x1 and thus all the
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symbols in ru must be the same. On the other hand, if w = r−1u = x−1k . . . x−11

then we must have that x1 = x−11 which is a contradiction. So we must have that
ru = xk for some x ∈ S.

Now if the group has two or more generators then we can proceed as follows:

• Without loss of generality, write ru = ak. Conjugate by another generator
b (again without loss of generality) to obtain b−1akb. Left-insert a−k at
the end of the word, giving b−1akba−k. Rotate the word by a sequence of
conjugations to ba−kb−1ak. Left-insert a−k at the end of the word giving
ba−kb−1. Finally conjugate by b to arrive at a−k = r−1u = rv.

Thus one can connect ru and rv, and so u and v, by a sequence of elementary
moves. Again, since each move in the sequence has positive probability, so does the
whole sequence.

Finally if the group has only a single generator then it must be of the form
〈a | ak〉 for some k ∈ N. Write w = ank for some n ∈ N. Conjugating w leaves it
unchanged, while a left-insertion maps w 7→ a(n−1)k, ank, a(n+1)k. Hence it is not
possible to transform ak to a−k by a sequence of elementary moves without passing
through the empty word a0. �

Notice that the proofs of Lemmas 2.6 and 2.10 remain unchanged. Hence Corol-
lary 2.13 holds and the Markov chain on X ′ converges to the same stationary
distribution. The only difference is that the normalising constant, Z, changes; it is
reduced by exactly 1.

When we implemented the Markov chain on X as described in subsections 2.1
and 2.2, we found that it would spend a very large time sampling the empty word.
It must do this since the empty word is highly probable under the limit distribution.
In order to force the chain to sample longer words we implemented the chain on X ′
and used it to generate the results discussed in Section 3. Note that when computing
the exact expected mean length of the chain on X ′ using equation (2.28), we must
ensure that C(z) does not count the empty word and so we replace C(z) by C(z)−1.

2.7. Infinitely related groups. Another possible extension of the algorithm is to
consider groups which have a finite number of generators but an infinite number of
relations, for example

Z o Z =
〈
a, b
∣∣∣ [abi , abj] with i, j ∈ Z

〉
.(2.29)

When performing a left-insertion we choose a particular relation R ∈ R with
probability P (R). The only restrictions on this distribution P , are that P (R) > 0
for all R ∈ R and that P (R) = P (R−1). As long as these conditions are satisfied,
then the detailed balance condition will be satisfied and Corollary 2.13 will hold.
Consequently there is no requirement in the above analysis that R be finite.

We implemented our chain on the above presentation of Z o Z with different
choices of P . The statistics collected from those Markov chains did appear to be
independent of the distribution P , as one would hope, and it was also consistent
with the amenability of the group. We have not included this extension in the
present work; we plan to include it in a future work on precise analysis of statistics
collected from the chain, together with other infinitely presented groups.
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3. Numerical results

In this section we discuss the application of the Markov chain to concrete exam-
ples of finitely presented groups. We chose a range of amenable and non-amenable
groups including those for which the cogrowth series is known exactly. Additionally
we have applied the Markov chain to Thompson’s group F — whose amenability
is currently an open problem.

The chain on X ′ was implemented in c++ with words stored as linked lists. The
linked-list data structure makes the computer code associated with conjugation and
left-insertion relatively straight-forward. To ensure correctness of the implementa-
tion, two separate programs were created independently by the second and third
authors, and results compared. We used the GNU Scientific Library1 to generate
pseudo-random numbers to decide transitions within the chain. At each beta value
we sampled approximately 1010 elementary moves. Each run consisted of 100 β-
values and took approximately 1 week on a single node of a computing cluster at
the Western Canada Research Grid (Westgrid). Each node was roughly equivalent
to a modest desktop computer running Linux.

We remark that for some groups it is easier to compute the generating function
of the number of all words equivalent to the identity, not just those that are freely
reduced. This series for Z2, for example, is

D(z) =
∑
n≥0

(
2n

n

)2

z2n =
2

π
K(4z)(3.1)

where K(z) is the complete elliptic integral of the first kind. We refer the reader
to [15] for a short proof of the above. It is then straight-forward to transform this
series to cogrowth series using the following result of Woess:

Lemma 3.1 (Lemma 1 of [37]). Let d(n) be the number of words of length n equal
to the identity in a given group presentation, and let D(z) =

∑
d(n)zn be the

associated generating function. Let 2q = |S|, then

C(z) =
1− q + q

√
1− 4(2q − 1)z2

1− 4q2z2
D

(
1−

√
1− 4(2q − 1)z2

2(2q − 1)z

)
(3.2)

We remind the reader that we have implemented the chain on X ′ = X − {ε}
and so we must replace C(z) by C(z)−1 when computing exact expectations using
equation (2.28).

3.1. Application to Z2. Our first example is Z2 which is amenable and whose
cogrowth series is known exactly (see above). In Figure 1 we plot the exact expec-
tation of the length of words as a function of β with α = 1 (the solid curve in the
plot); this curve was computed by combining equations (3.2), (3.1) and (2.28).

We overlay the average length of words observed in the implementation of our
chain running with α = 1 and a range of β-values (the crosses in the plot). The
figure demonstrates that there is excellent agreement between the exact results and
the numerical estimates. Similar agreement was found for different values of α.

Notice that the data show that the mean length increases with β and that it
becomes larger and larger as β approaches 1/3. Indeed, since the group is amenable,

1Available at http://www.gnu.org/software/gsl/ at time of writing.
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Figure 1. The mean length of sampled words plotted against
β for the standard presentation of Z2 with α = 1. The crosses
indicate data obtained from an implementation of the algorithm
while the curve indicates the expectation derived from the exact
cogrowth series for the group. The vertical line indicates βc = 1/3.

we know that the cogrowth is exactly 3 (by [18, 7]), and so the radius of convergence
of the cogrowth series is 1/3.

3.2. Application to examples of Kouksov. The cogrowth series is known in
closed form for very few groups. In [23] Kouksov gives explicit formulae for some
free products. We examined the following three:

K1 = 〈a, b | a2, b3〉,
K2 = 〈a, b | a3, b3〉,
K3 = 〈a, b, c | a2, b2, c2〉.(3.3)

whose cogrowth series are given by

C1(t) =
(1 + t)

(
f1(t) + (2− t+ 6t2)

√
f2(t)

)
2(1− 3t)(1 + 3t2)(1 + 3t+ 3t2)(1− t+ 3t2)

(3.4)

C2(t) =
(1 + t)(−t+

√
1− 2t− t2 − 6t3 + 9t4)

(1− 3t)(1 + 2t+ 3t2)
, and(3.5)

C3(t) =
−1− 5t2 + 3

√
1− 22t2 + 25t4

2(1− 25t2)
(3.6)

where f1(t) = −t + t2 − 8t3 + 3t4 − 9t5 and f2(t) = 1 − 2t + t2 − 6t3 − 8t4 −
18t5 + 9t6 − 54t7 + 81t8. The radii of convergence of these cogrowth series are
0.3418821478, 0.3664068598 and 0.2192752634 respectively (to ten significant dig-
its). Hence the cogrowth is strictly smaller than the value required for amenability
being 3, 3 and 5, respectively. Indeed each of these contains a non-abelian free
subgroup and so are non-amenable; in the case of the groups K1 and K2 the free
subgroups are F ((ab), (ab−1)), and for K3 the free subgroup is F ((ab), (ac)).

In Figure 2 we compare data obtained from our algorithm with the exact ex-
pectation, which was computed by combining the exact cogrowth series above with
equation (2.28). Note that because the chain avoids the empty word, we modify
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(a) 〈a, b|a2, b3〉 sampled with α = 0.
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(b) 〈a, b|a3, b3〉 sampled with α = 0.
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(c) 〈a, b, c|a2, b2, c2〉 sampled with α = 1.

Figure 2. Mean length of sampled words plotted against β for
K1,K2 and K3. The crosses indicate data obtained from the al-
gorithm, while the curves indicate the expectation derived from
the exact cogrowth series for each group. The first vertical lines
in each plot indicates β = 1/3, 1/3, 1/5 (respectively) and also the
reciprocal of the cogrowth where the statistic will diverge — being
0.3418821478, 0.3664068598 and 0.2192752634 respectively.
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the above generating functions by subtracting 1 from each (being the contribution
from the empty word). As was the case for Z2, there is excellent agreement between
the numerical and exact results.

3.3. Application to BS(N,N). The cogrowth series for BS(N,N) is not known in
closed form for N ≥ 2. In recent work [15] the authors and Tom Wong demonstrate
that the cogrowth series for BS(N,N) = 〈a, b | aNba−Nb−1〉 is D-finite, that is, the
series C(z) satisfies a linear differential equation with polynomial coefficients. This
work allows the cogrowth to be computed exactly for moderate values of N in
polynomial time.

It follows that the cogrowth series can be computed to (essentially) any desired
number of terms. Using that truncated series and equation (2.28) we the compute
expectation of the length to any desired precision. In Figure 3 we display the
expected mean length against data obtained from the Markov chain. As with
previous examples, we see excellent agreement.

3.4. Application to BS(N,M) with N 6= M . The work [15] is mostly concerned
with BS(N,N), but the central enumerative result (Proposition 3.6 in [15]) also
holds for BS(N,M) = 〈a, b | aNba−Mb−1〉. The authors derive a system of three
q-algebraic equations which can be iterated to compute the first few terms of C(z).
This is more efficient than a brute-force approach but it still requires exponential
time and memory.

Explicitly the authors define a two-variable generating function

G(z; q) =
∑
n

zngn(q) where gn(q) =
∑
k

gn,kq
k(3.7)

where gn,k is the total number of words (not just those that are freely reduced) of
length n equal to ak. Thus gn,0 = d(n) defined in Lemma 3.1. When N = M , gn(q)
has at most 2n+ 1 non-zero terms, however when N 6= M the number of non-zero
terms is exponential in n.

Due to the exponential constraint, we are only able to compute the first few
terms of cogrowth series exactly. For example we were only able to compute the
first 60 terms of D(z) (and hence C(z) by equation (3.2)) for BS(1, 2). Using those
truncated series and equation (2.28) we get a lower bound on the exact expected
mean length — this is the solid curve in Figures 4 and 5.

When we generated series by the above method we noticed that the polynomials
gn(q) are dominated by the central few terms around q0, while the other terms
(being the vast majority) were negligible. This suggests an alternate means to esti-
mate D(z) (and so C(z)) — at each iteration of the system of q-algebraic equations

we discarded all but the central 2n + 1 terms of gn,k. The resulting series G̃(z; q)
is dominated term-by-term by the true G(z; q), but can be computed to far more
terms (indeed it is comparable in effort to the computation for BS(N,N) described
above). We have also estimated the exact expectation using this method; it also
gives underestimates of the true expectation. The curve is plotted as dotted lines
in Figures 4 and 5.

In all four plots we see good agreement between the two estimates and the
data from the Markov chain. As β is increased the two estimates fall below the
Markov chain data, with the estimate from truncated series distinctly lower than
the estimate from approximate series. This is consistent with the Markov chain
giving accurate estimates of the true expected length for β even quite close to βc.
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(a) BS(2, 2) sampled with α = 1.
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(b) BS(3, 3) sampled with α = 1.

Figure 3. Mean length of sampled words plotted against β for
BS(2, 2) and BS(3, 3). The crosses indicate data obtained from
the algorithm, while the curves indicates the expectation derived
from the cogrowth series for each group. The vertical lines indicate
β = 1/3 and also the reciprocal of the cogrowth being 0.3747331572
and 0.417525628 respectively (see [15]). We see excellent agreement
between our numerical data and the exact results.

In the cases of BS(1, 2) and BS(1, 3) we know the reciprocal of the cogrowth is 1/3
since they are amenable, and the Markov chain data confers with this.

3.5. Application to the basilica group. We now turn to the first of two groups
for which we know very little about the cogrowth series — namely the basilica group
first studied by Grigorchuk and Zuk [19]. This group has an infinite presentation

G =
〈
a, b
∣∣ [an, [an, bn]] and

[
bn, [bn, a2n]

]
where n is a power of 2

〉
(3.8)

where we have used the notation [x, y] = x−1y−1xy and xy = y−1xy. This group
embeds in the finitely presented group [19]

(3.9) G̃ =
〈
a, b
∣∣∣ ab2 = a2,

[[
[a, b−1], a

]
, a
]

= 1
〉
.
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(a) BS(1, 2) sampled with α = 1.
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(b) BS(1, 3) sampled with α = 2.

Figure 4. Mean length of freely reduced trivial words in
Baumslag-Solitar groups BS(1, 2) and BS(1, 3) at different values
of β and α as indicated. The sampled points are indicated with
crosses, while the vertical line indicates βc = 1/3. The solid line
indicates estimates of the exact expectation derived from the exact
but truncated cogrowth series. The dotted line indicates estimates
of the expectation derived using the approximation of the cogrowth
(as described in the main text). At low and moderate values of β
there is excellent agreement, but as β increases the Markov chain
lies above both of the approximations of the expectation which is
consistent with the approximations being underestimates.

Bartholdi and Virag proved that both G and G̃ are amenable [3], and separate the
classes of amenable and subexponentially amenable groups.

As noted in subsection 2.7 our algorithm can be extended to infinite presenta-
tions, however for this article we restricted our study to the finitely presented group

G̃. We ran the algorithm on three presentations derived from the above presenta-
tion by simple Tietze transformations (see [25] p. 89). The first is obtained from
the above by putting c = [a, b−1], and the second by putting c = ab. Simplification
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(a) BS(2, 3) sampled with α = 1.
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(b) BS(3, 5) sampled with α = 0.

Figure 5. The mean length of trivial words in BS(2, 3) and
BS(3, 5) at different values of β. The sampled points are indi-
cated with crosses, while the solid vertical line indicates βc = 1/3.
The dotted vertical lines indicate the estimated critical value of β
from analysis of the truncated series. As per the previous figure,
the solid line indicates estimates of the expectation from truncated
series while the dotted line indicates estimates from the approxi-
mate series (see the main text). At low and moderate values of β
there is excellent agreement, but as β increases the Markov chain
lies above both of the approximations of the expectation.

gives the representations

G̃ =
〈
a, b, c

∣∣∣ c = [a, b−1], ab
2

= a2, [[c, a], a] = 1
〉
,(3.10)

G̃ =
〈
a, b, c

∣∣ c = ab, cb = a2, c−1aca−1c−1a−1ca = 1
〉
.(3.11)

We implemented the Markov chain for both of these presentations. We plot the
mean length of words sampled from the chains in Figure 6. An immediate obser-
vation is that the mean length is remarkably insensitive to changes in β. Because
of this we found that our data was far harder to analyse than for the other groups
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discussed above. This is compounded by the absense of cogrowth series data for
comparison.

Because this data appeared so insensitive to β, we also examined a measure of
the statistical error in our estimates. To do this we consider samples from the
Markov chain as a time series of length N . We slice this sequence into M non-
overlapping blocks of length N/M. Let the mean length observed in the ith such
block be denoted 〈n〉i. The variance in these mean lengths and our error estimate
are then given by

var =
1

M2
·
∑
i

〈n〉2i −
(

1

M

∑
i

〈n〉i
)2

(3.12)

err =

√
var

M − 1
(3.13)

Our typical runs consisted of around 103 blocks each of length approximately 107.
We made estimates of autocorrelations at the highest values of β and found them
to be much shorter than the block length. This validates the above estimate of the
error.

We repeated this analysis on the examples studied above (the Baumslag-Solitar
groups and the examples of Kouksov), and found that the error estimates were very
small. Indeed, if we were to place error-bars on our plots of the mean length they
would be smaller than the crosses used to denote the data — except very close to βc.
This is consistent with our observation that our Markov chain data agrees closely
with exact results. It also indicates another method of detecting the location of a
singularity — we expect that the error estimate will diverge as β → βc.

We have plotted the reciprocal of our error estimate against β for these two
presentations in Figure 6. We see a much clearer signal of divergence closer to
βc = 1/5 than we do for the mean length data.

We studied a third presentation, in which the relators are of shorter and com-
parable lengths. We set c = ab, d = [a, b−1], e = [d, a] in equation 3.9 to obtain the
presentation:

G̃ =
〈
a, b, c, d, e

∣∣ c = ab, d = [a, b−1], e = [d, a], cb = a2, [e, a] = 1
〉
.(3.14)

We found that the mean-length data from this presentation was much better be-
haved and gave a clearer signal of a singularity at β = 1/9. See Figure 7. We
also analysed the error data and estimate that the reciprocal of the error goes to
zero as β → 1.115 ± 0.005. The data from this presentation is consistent with the

amenability of G̃. Overall, the data from all three presentations is consistent with
the group being amenable.

3.6. Application to the Thompson’s group F . We now turn to our last appli-
cation, Thompson’s group F . We started by examining its standard finite presen-
tation

F =
〈
a, b
∣∣ [ab−1, a−1ba], [ab−1, a−2ba2]

〉
.(3.15)
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Figure 6. (A) The mean length of words plotted against β for

two presentations of group G̃. Data points indicated by �,× cor-
responds to (3.10) and (3.11) respectively. (B) The reciprocal of
the estimated error against β. Notice that as β → 1/5 the error
begins to diverge.

In addition to this presentation, we implemented the chain on two further pre-
sentations derived using simple Tietze transformations:

F =
〈
a, b, c, d

∣∣ c = a−1ba, d = a−1ca, [ab−1, c], [ab−1, d]
〉
,(3.16)

F =
〈
a, b, c, d, e

∣∣ c = a−1ba, d = a−1ca, e = ab−1, [e, c], [e, d]
〉
.(3.17)

Note that the generators a, b, c, d above are usually denoted x0, x1, x2, x3 respec-
tively in the Thompson’s group literature.

We display the mean length computed from our Markov chain for these three
presentations in Figure 8. In all cases we also saw no indication of a singularity at
the amenable values of β = 1/3, β = 1/7 and β = 1/9 respectively. We also repeated

the error-analysis that was done for G̃ above — see Figure 9. Again we saw no
indication of a singularity present in these statistics at the amenable value of β.
We have made rough estimates of the location of the dominant singularity of the
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Figure 7. (A) The mean length of words plotted against β for

the presentation of group G̃ in equation (3.14). (B) The reciprocal
of the estimated error against β. Notice that as β → 1/9 the error
begins to diverge.

cogrowth series by estimating where the reciprocal of the observed error goes to

zero. The data from these presentations were easier to analyse than that from G̃
and because of this we were able to obtain estimates with tighter error bars. Our
analysis gives

βc = 0.395± 0.005, 0.172± 0.002 and 0.134± 0.004(3.18)

for the three presentations. These imply cogrowths of approximately 2.53±0.03, 5.81±
0.07 and 7.4± 0.2, all of which are well below the amenable values of 3,7 and 9.

Of course, these estimates do not constitute a proof that Thompson’s group is
non-amenable. However, they are stronger numerical evidence than any previous
work (such as [1, 6] and [16]). As is the case with almost any numerical exper-
iment, one cannot rule out the presence of particular pathalogical behaviours in
Thompson’s group that distort the behaviour of the chain and so the numerical
data.
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sampled with α = 2
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(c) Presentation (3.17) for F sampled with α = 1

Figure 8. Mean length of freely reduced trivial words in Thomp-
son’s group F at different values of β. The solid blue lines indicate
the reciprocal of the cogrowth of amenable groups with k genera-
tors βc = 1/(2k−1). The dashed blue lines indicate the approximate
location of the vertical asymptote. In each case, we see that the
mean length of trivial words is finite for β-values slightly above βc.
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sampled with α = 0, 1, 2, 3.
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with α = 0, 1, 2, 3.

0.11 0.12 0.13 0.14

β

0

1000

2000

er
r−

1

(c) Presentation (3.17) for F sampled with
α = 0, 1, 2, 3.

Figure 9. The reciprocal of the estimated standard error of the
mean length as a function of β for the three presentations of
Thompson’s group. In each plot we show 4 curves correspond-
ing to simulations at α = 0, 1, 2, 3 (anti-clockwise from top). Ex-
trapolating these curves leads to estimates of βc of 0.395 ± 0.005,
0.172± 0.002, 0.134± 0.004. These are all well above the values of
amenable groups.



26 M. ELDER, A. RECHNITZER, AND E. J. JANSE VAN RENSBURG

4. Conclusions

We have introduced a novel Markov chain which samples trivial words from
finitely presented groups. Since this chain operates on the state space of trivial
words rather than on the Cayley graph, it is quite different from previous studies
of random walks on groups. We have shown that the Markov chain converges to
the stationary distribution π and so asymptotically samples from it. Further, π is a
stretched Boltzmann distribution related to the cogrowth series of the presentation
and so statistics collected from the chain inform us about the cogrowth of the group.

We have implemented the chain for presentations of both amenable and non-
amenable groups for which the cogrowth series is known exactly. In these cases we
observe excellent agreement between statistics collected from our chain and exact
results. We have also implemented the chain for presentations of groups for which
little is known about the cogrowth series. In the case of the basilica group (or
more precisely a finitely presented group into which the basilica group embeds),
our results are consistent with the amenability of the group. On the other hand,
our results for Thompson’s group F suggest that it is not amenable.

In cases where the cogrowths series is known exactly (or can be computed to arbi-
trary precision) we observed that the mean length statistic generated by our chains
converged quickly to the correct value. This behaviour held for both amenable and
non-amenable groups.

As is the case with any numerical experiment we cannot rule out the presence
of pathologies influencing our results. This raises two obvious questions which lie
beyond this present work: how can we determine the rate at which the Markov chain
convergences to the stationary distribution; and how can we analyse statistics from
the chain to obtain precise estimates of the asymptotic behaviour of the cogrowth
function. Both of these questions have strong implications for numerical tests of
the amenability of a group, and we intend to pursue them in future work.

Acknowledgements

The authors thank Sean Cleary, Tony Guttmann and Stu Whittington for helpful
discussions about this work. Much of the numerical work was run on the Westgrid
computer cluster and the authors thank Westgrid for their support. This research
was supported by the Australian Research Council (ARC), the the Natural Sciences
and Engineering Research Council of Canada (NSERC), and Perimeter Institute for
Theoretical Physics. Research at Perimeter Institute is supported by the Govern-
ment of Canada through Industry Canada and by the Province of Ontario through
the Ministry of Economic Development and Innovation.

References

[1] G. N. Arzhantseva, V. S. Guba, M. Lustig, and J. Préaux. Testing Cayley graph densities.
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