PERMUTATIONS GENERATED BY A DEPTH 2 AND INFINITE
STACK IN SERIES ARE ALGEBRAIC
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ABSTRACT. We prove that the class of permutations generated by passing an ordered
sequence 12...n through a stack of depth 2 and an infinite stack in series is in bijec-
tion with an unambiguous context-free language, where a permutation of length n is
encoded by a string of length 3n. It follows that the sequence counting the number of
permutations of each length has an algebraic generating function. We use the explicit
context-free language to compute the generating function:

1+ (1450-¢—¢* —(1—q) /T — @)1 —4g— )

Z cpt™ = 82

n>0

where ¢, is the number of permutations of length n that can be generated, and ¢ =
q(t) = 1—2&7 V174t 5 a simple variant of the Catalan generating function. This in turn

implies that ci/n — 2+ 2/5.

1. INTRODUCTION

Let p = p1p2...pp and ¢ = q1qo ... qx be permutations of length n > k. We say p
avoids q if there are no k indices 7; < - -+ < 1 so that for all s, ¢,

pi. <pi, ifand only if  ¢5 < ¢.

For example, 25413 avoids 123 since it has no increasing subsequence of length 3.

Interest in sets of permutations that avoid a small set of “patterns” arose naturally in
the study of stack-sorting (or equivalently stack-generating) algorithms. Knuth showed
that a permutation p can be generated by passing the ordered sequence 12. .. |p| through
an infinite stack if and only if p avoids 312, and that permutations of length n avoiding
312 are counted by the Catalan numbers [15].

Despite considerable effort, exact enumerative results about permutations passed through
more than a single stack are still rare. The number of permutations sortable by 2 stacks
in parallel was only recently solved by Albert and Bousquet-Mélou [3]. The full problem
of two stacks in series remains unsolved, but a simplified version was studied by West [17]
and solved by Zeilberger [19]. The problem we consider here is an attempt to “sneak up”
on the full 2 stacks in series problem — we focus on the class of permutations gener-
ated by a stack of depth two and an infinite stack in series. We prove that the class is
enumerated by a sequence that has an algebraic generating function.

If g is a list of permutations, let Av,(q) be the set of permutations of length n that
avoid ¢ for each ¢ € q. We call Av(q) = J,—, Av,(q) a pattern-avoidance class. A basis
for a pattern avoidance class Av(q) is a set p of pairwise avoiding permutations so that

Av(p) = Av(q). A class is finitely based if it is equal to Av(p) for p finite. The first author
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proved that the class of permutations generated by a stack of depth two and an infinite
stack in series has a finite basis consisting of 20 permutations [L1].

The list of pattern-avoidance classes for which a generating function for the sequence
counting Av,(q) has been computed, or shown to be rational, algebraic or non-algebraic, is
limited. Classes avoiding a single pattern of length 3 are enumerated by the Catalan num-
bers [15], [16] and so have an algebraic generating function. For length four, Av({1342})
has an algebraic generating function [7], Av({1234}) has a generating function that is
D-finite but not algebraic [13], and a closed form generating function for Av({1324}) has
not be found [2, ©]. It is known that for any pattern p of length four, Av({p}) is in
bijection with one of these three classes. For single patterns of length greater than four,
and classes avoiding two or more patterns, various isolated results are known [4, [I§].

Several authors have considered the language-theoretic complexity of pattern avoidance
classes — see for example [I], Bl 6] 10]. Atkinson, Livesey, and Tulley [6] showed that
the set of permutations generated by passing an ordered sequence through a finite token-
passing network is in bijection with a regular language. Initially we applied this technique
to the finite network consisting of a stack of depth 2 followed by a stack on depth k
in series, constructing a sequence of languages and corresponding rational generating
functions for small values of k. As k increased, the rational generating functions appeared
to converge to the algebraic function given in Theorem below. However, his method
does not constitute a proof. To prove the result we instead follow another path — we
establish a bijection between permutations generated and an unambiguous context-free
language. The generating function is then guarenteed to be algebraic by a well known
theorem of Chomsky and Schiitzenberger.

Of course there are a great many other variants of stack sorting that might be considered
and we refer the reader to [§] for a survey.

2. ESTABLISHING A BIJECTION

Let P be the set of permutations that can be generated by a stack of depth 2 and
infinite stack in series, and fix p, A, u as the stack moves indicated in Figure [I]

H A P 123,

L

B A
F1GURE 1. Token passing moves p, A and p for two stacks in series.

Definition 2.1 (D, (u)). If u is a word over an alphabet that includes the letters a and
b, define D, p(u) to be the number of a letters minus the number of b letters contained in
U.

Definition 2.2 (L ). Let k € N. The language Ly  is the set of words w € {p, A, u}*
satisfying

(1) D, x(u) € [0,k] and Dy ,(u) € [0,00) for all prefizes, u, of w,
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(2) Dpa(w) = Dy p(w) = 0.

Lemma 2.3. A word w € {p, A\, u}* encodes a permutation in P if and only if w € Lo .
Moreover, a word of length 3n in Ly« encodes a permutation of length n.

Proof. The first claim is clear from the definition. If w € Ly has n p letters, then
D, \(w) = 0 implies w has n A letters, and D, ,(w) = 0 then implies w has n u letters,
so the length of w is 3n. U

The language L, o, consists of all possible ways to pass tokens through the system of
stacks as in Figure [I We wish to find a sublanguage that is in bijection with P. From
the set of all words in Ly that generate the same permutation, we will try to choose
the string that outputs tokens as soon as possible, that is, has more p letters closer to
the front. The next definition will help to formalise this.

Definition 2.4 (p-ordering). Define an ordering, <, on words in {p, A, u}* as follows.
Let 0 : {p, \, u}* — {v, u}* be a monoid homomorphism defined by 0(p) = p and 6(p) =
O(N\) = v. Ifu # v as strings then v <, v if |u| = |v| and 6(u) precedes 6(v) in lexographic
ordering on {p,v}* where p < v.

For example, if u = pAupAp and v = pApuip then v <, v. Note that both words
generate the permutation 12, and u is obtained from v by replacing the subword pu by
1p, which has no affect on the permutation being produced. More generally we have the
following.

Lemma 2.5. Let w € Lo .

(1) If w = woppw, then w' = woupw;, generates the same permutation as w, and
w' <, w.

(2) If w = wopAwi Apwy with D, \(wy) = 1 and wy € Ly, then w' = wolpw; piws
generates the same permutation as w, and w' <p W.

(3) If w = worpwi Apwy with D, \(wy) = 1 and wy € L4, then w' = wopAw; piws
generates the same permutation as w, and w' <, w.

Proof. In each case it is clear that w' <, w. We must show that in each case the two
strings generate the same permutation. For case (1) this is clear since p and px do not
interact.

For case (2), since D, »(wo) = 1, there must be one token (say a) left in the first stack
after reading wy, and since the next letter to be read is p, there must be one token (say
b) ready to enter the first stack. See Figure .

After reading pA, b moves to the top of stack B and a stays in stack A. Reading w;
leaves a and b in place and outputs some permutation of input tokens after b. Finally Au
outputs a, leaving b on the top of stack B and stack A empty.

Starting from the initial configuration in Figure |2 the prefix woApwipuA of w' moves a
to the top of stack B and places b in stack A. The permutation generated by w; is then
passed across as before, then a is output, and finally b is moved to stack B, leaving the
stacks in the same configuration and the prefix of w.

A similar argument applies for Case (3) and is left to the reader. 4

Definition 2.6 (£). The language L is the set of words w € Lo o that do not

(1) contain pp,
(2) have a prefix wopAwi Ay with wy € Ly o and D, (wo) = 1,
(3) have a prefix wopwi A with wy € Ly o and D, (wy) =1

Lemma 2.7. Let w € Ly . If either
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FIGURE 2. Stack configurations in the proof of Lemma [2.5]

1) w = wopAwi Awopws with D, \(wg) = 1,wy € L1, and we € Lo generates a
p [’L P ’ ?
permutation that avoids 312, or
2) w = wolpwi Awapwsz with D, \(wy) = 1, w1 € L1 o, and wy € Lo generates a
P K P, ; ;
permutation that avoids 312,

then w & L.

Proof. Suppose for contradiction that w € £, w = wovwy Awopws with v € {pA, Ap}, D\ (wo) =
1,w; € Lq00,ws generates a permutation that avoids 312, and moreover that wy is
the longest prefix of w with this property. That is, if w = wugvuiduspws with v €
{p\, Ap}, Dy (uo) = 1,u1 € L4, and us generates a permutation that avoids 312, then
|uo| < |wol.

Since D, (wovw;) = 1 and A moves a token from stack A to stack B, after reading
wovwi A we have no tokens in stack A, and some token, say a, in stack B. See Figure [3]

Since w € L, wy cannot be empty, and since wy is a subword of w € L we have wy € L.

So wy moves some sequence of tokens completely through the stacks, leaving a in place.
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FIGURE 3. Stack configurations in the proof of Lemma [2.7]

The first letter of ws must be p, which moves some token, say b, onto stack A. Let
Db, A, iy be the letters in wy that correspond to moving b through the stacks. Then ws
has prefix ppsA\ptu, where s,t are subwords.

Since stack A contains b while s is read, if p occurs in s it must be immediately followed
by A, so D, (u) € [0,1] for all prefixes u of s, and D, \(s) = 0. Further, if D, ,(u) < 0 for
any prefix u of s, then a would be output. Either D, ,(s) =0 (and s € £) or D, ,(s) > 0.

If s € L1 then t € Ly and generates a permutation avoiding 312 since it is a
subword of wy. In this case w has prefix w = wovwi Apps iy, with Dy, (wovwy) = 1
and t generating a permutation avoiding 312, which contradicts the choice of wy as the
longest such prefix.

Therefore we must have D, ,(s) > 0. In this case, after reading s at least one token,
say ¢, remains on top of a in stack B when b is moved into it. After reading \,, the stack

configuration is as in the third diagram shown in Figure [3]
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Note that a < b < ¢ since they are input in this order. If ¢ # € then it must contain at
least one p (it cannot leave a token covering b, and cannot just be p or pp) so it moves a
token d > ¢ to the output. This means ws generates the subpermutation dbc which is order
equivalent to 312, contradicting our assumption. Thus ¢ = ¢ and wy has prefix p,s\pup,
with s € {pA, u}*. Either s ends with pA, or s = upAs’ where D, ,(u) = D ,(s) since
D, , starts at zero and increases to this value. Thus s’ € £, and w = wovw; AppupAs'Appip
with D, y(wovwi Appu) = 1, which contradicts w € L. O

Theorem 2.8. There is a bijection between permutations in P of length n and words in
L of length 3n.

Proof. Consider the map that sends a word of length 3n in £ C L, o, to the permutation
of length n it generates. If o € P then there is some word w € L o, that generates it
by Lemma 2.3] If w ¢ £, then w must either contain pu, or have prefix wopAw; A\ or
woApwi Ape with D, \(wg) = 1 and wy € L4 . We rewrite w as follows.

While w contains pp or has prefix wopAwi Ay or woApwy Ape:

1. Replace pu with pp

2. Replace wopAwi A with woApwq A

3. Replace woApwi Ap with wopAwy A
Each iteration replaces the current word by a word which generates the same permutation
and is shorter in the p-ordering by Lemma so the procedure must terminate (there are
finitely many words less than w in the p-ordering). It follows that the map is surjective.
We complete the proof by showing it is injective.

Suppose we have two words u,v € L that generate the same permutation, and that

u # v as strings. Write

U= U3 ... Uy, and v = V103 ...V,

where u;, v; € {p, A, u}.
Since u,v € L we have u; = v; = p. Let k € [2,n] be such that u; = v; for i < k and
ug # vg. Let z=wuy ... up_1 =v1...0_1, SO

U= 22U ... U, a0d UV = 20 . .. Up.

First consider the case that one of wug, vy is p. Without loss of generality assume
U = Z[Ugiq ---U,. Then z must leave some token, say a, at the top of stack B, and
u = p outputs this token.

If v, = A, then a will be covered and v will not be able to generate the same permu-
tation. So we must have vy = p. Then v # p. If vy = A then a is covered. So
Vgr1 = p- Then vgyo # p, if vpo = A then a is covered, and v + k + 2 # p since stack
A contains two tokens. So we have a contradiction, and it follows that neither uy, v, can
be p.

Without loss of generality assume u = p and vy, = A. Then z must leave at least one
token in stack A to be followed by A, and at most one token to be followed by p. Let a
be the token in A, and b the token moved from the input by u, = p. See Figure 4l Note
that we have D, ,(z) = 1.

In u, zp must be followed by A since stack A is full after the p and p cannot be followed
by a p. So u has prefix zpA and we have the configuration shown in the second diagram
in Figure [4

In v, 2z can be followed by either p or p but not A since stack A is empty after vy = .
Suppose vi1 = p. Then after reading zAp we have the configuration shown in the third

diagram in Figure [l Since u and v are assumed to produce the same permutation, the
6
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FIGURE 4. Stack configurations in Theorem [2.8 where u; = p and v, = .

next p letter appearing in u after the prefix zp\ must move a to the output. Let A, po be
the letters in u that move the token a. Then u = zpAuy Ajugp where uy, us € {p, A\}*. The
subword u5 cannot move tokens to cover a in stack B, so cannot contain any A letters, and
cannot contain any p letters since it is followed by u, so it must be empty. The subword
u; must be of the form (p))? for i > 0, since it cannot move a. Then u = 2(pA) PANaitq
with D, (z(pA)") =1, s0 u & L.

It follows that v, 1 = p, so we have

U= 2PN ... Uy, V= ZAP...Up.

The two configurations of the stacks after reading the length k + 1 prefixes of u and v
respectively are shown in Figure
We now consider two possibilities: either a precedes b in the permutation generated by

u and v, or b precedes a.
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FIGURE 5. Stack configurations after zpA and zAp in Theorem [2.8

Case 1: a precedes b

Mark the letters p, A\, 1 in u and v that correspond to moving the token a, by appending
the subscript a. So we have u = zp wi A wall, ... u, and v = zApwWi, . .. v, Wwhere
w,wy,wy € {p, A, u}*.

First consider the word v. Since b must remain in stack A until a is output, w cannot
end with p and w cannot leave any tokens covering a in stack B, we have w € £ o. If w
is empty then v contains pu, which means v ¢ £. Thus w is nonempty, so moves some
tokens, say ti,...,ts, from the input to the output.

Since u generates the same permutation as v, it must also move the tokens ¢y, ...t
through the stacks and output them before a is output. The subword w; cannot leave
any tokens covering a in stack A, so wy € {pA, u}*.

If wy leaves some tokens in stack B, then these tokens must come after ¢, in the input,
and so w; must feed all the tokens tq,...,ts into the input, so ws cannot output any
tokens, so cannot contain p, and cannot contain A since a would be covered in stack B,
and cannot be p or pp since it is followed by p,, so wy is empty. If w; ends with pA,
then write wy = ppA, and zpAwiAapia = 2pAppAA e With D,y (2pAp) = 1, so u & L.
Otherwise w; ends in p. Since w; has more (pA) subwords than p letters (it leaves tokens
in stack B) then w; has some suffix y € £, and prefix p such that z = ppAy. So we
have zpAwiAgpla = 2pAPPAYAatta With D, \(2pAp) =1 and y € L4 so u & L.

Thus wy does not leave any tokens in stack B, so wy € £ «. Let t1,...¢, withr <'s
be the tokens moved to the output by wy. The situtation is shown in Figure [6]

_____ tyyq - tg - -

||

- — > Q2

B A

FIGURE 6. Stack configuration after zpAwi\, in Case 1 in Theorem [2.8|
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If wsy is empty then u has prefix zpAw; A p, with wy € L4 o which is forbidden, so w
must move some tokens. The subword ws cannot leave any tokens in stack B. Either wy
leaves some tokens in stack A, or not.

If wy leaves a token in stack A, this token cannot be one of ¢,,1,...,ts or else v would
generate a different permutation to u. Therefore this token is moved into stack A after
t, by a letter p. This letter cannot be followed by i, and since it remains in stack A it is
not followed by A. So this letter is either the last letter of ws, or is followed by another
p, which must also remain in stack A. Thus ws ends with p, but this is a contradiction
since wy is followed by .

Thus wsy does not leave any tokens in stacks A or B, so moves t,,1,...,t, from the
input to the output, and we € L5 . Note that wyws produces the same permutation of
t1,...,ts as w does, and w € L, o so generates a 312 avoiding permutation of ¢, ..., ;.
The subword w; permutes the first r tokens, and so wy must produce a permutation of
tr41,...,ts that avoids 312. In this case u has prefix zpAw; A wap, where D, 5(2p)) = 1,
wy € L1, and wy generates a 312-avoider, so by Lemma u must also contain a prefix
that is not allowed if u € £. This is a contradiction, so this case does not apply.

Case 2: b precedes a

We return to the situation shown in Figure [5| with u = 2pA...u, and v = 2zAp...v,.
Mark the letters p, A, 4 in u and v that correspond to moving the token b, by appending
a subscript. Then u = zppAywpy . .. u, and v = 2Appwi Apwatty . . . v, Where w, wy, wy €
{os A}

First consider the word u. Since a must remain in stack A until b is output, w cannot
end with p and w cannot leave any tokens covering b in stack B, we have w € £ o. If w

is empty then u contains pu, which is forbidden, so w moves some tokens, say ti,...,ts,
from the input to the output.
Since v generates the same permutation as u, it must also move the tokens ¢q,... %

through the stacks and output them before b is output. The subword w; cannot leave
any tokens covering b in stack A, so wy € {p\, u}*.

If w; leaves some tokens in stack B, then these tokens must appear after ¢, in the
input, and so w; must feed the tokens ¢, ..., s into the input, so ws is empty (it cannot
contain u, A and cannot end in p). If w; ends with pA, then write w; = ppA, and
ZAPYWI Nty = ZAPppPp ANy With D, (2Appp) = 1, so v € L. Otherwise w; ends in pu.
Since w; has more (p\) subwords than u letters (it leaves tokens in stack B) then wy
has some suffix y € £, with z = ppAy. So we have zApywi Ay, = 2AppppAyNpitp With
Dyx(zAppp) =1l and y € L1 sov & L.

Thus w; does not leave any tokens in stack B, so wy € £ . Let ¢1,...t, with r <'s
be the tokens moved to the output by wy. The situtation is shown in Figure [7]

If wy is empty then v has prefix zApw A\ppp with wy € £ oo which is forbidden, so ws
must move some tokens. The subword wy cannot leave any tokens in stack B. Either ws
leaves some tokens in stack A, or not.

If wy leaves a token in stack A, this token cannot be one of ¢,,1,...,ts or else v would
generate a different permutation to u. Therefore this token is moved into stack A after
t, by a letter p. This letter cannot be followed by u, and since it remains in stack A it is
not followed by A. So this letter is either the last letter of wy, or is followed by another
p, which must also remain in stack A. Thus ws ends with p, but this is a contradiction
since wy is followed by .

Thus wy does not leave any tokens in stacks A or B, so moves t,.1,...,ts from the

input to the output, and wy € L5 . Note that wiws produces the same permutation of
9
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FIGURE 7. Stack configuration after zAp,w; A, in Case 2 in Theorem [2.8]

t1,...,ts as w does, and w € L, o so generates a 312 avoiding permutation of ¢, ..., ;.
The subword w; permutes the first r tokens, and so wy must produce a permutation of
tri1,. .., ts that avoids 312. In this case v has prefix zApywi Apwapy, where D, \(zApp) = 1,
wy € L1, and wy generates a 312-avoider, so by Lemma v must also contain a prefix
that is not allowed if v € £. This is a contradiction, so we cannot have two such words
u and v. Il

2.1. A related class of permutations. A natural question to ask is whether switching
the order of the stacks makes any difference to the problem. Let Q be the set of permu-
tations that can be generated by passing an ordered sequence through an infinite stack
followed by a depth 2 stack in series. Each word w € L9 encodes a permutation in Q
as follows: reading w from right to left, for each y move a token from the input to the
infinite stack, for each A move a token from the infinite stack to the depth 2 stack, and
for each p move a token from the depth 2 stack to the output. It follows that P and Q
are in bijection.

3. CONSTRUCTING A PUSHDOWN AUTOMATON

In this section we construct a deterministic pushdown automaton accepting on empty
stack, which accepts the language

LS ={w$ | we L}

A pushdown automaton accepting on empty stack M is the following:

2) ¥ a finite input alphabet,
3) I' a finite stack alphabet,
4) qo € Q the start state,
)
)

which runs as follows. Before reading input, the stack contains a single 0. Input strings are
accepted as soon as the stack becomes empty. A configuration of M is a pair (¢, w) where
q is the current state and w € I'* is a string of stack symbols representing the contents
of the stack (the first letter of w is the top of the stack). The notation d(g;,a,k) =
{(gj,,m),---,(q;,,7s)} means that if M has the configuration (g;, kw) and a € X U {e}
is the next input letter to be read, then M can move to the configuration (g;,, viw) for
some 1 <[ < s, removing the token k from the top of the stack and replacing it by ~;.

See [14] for more details.
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A pushdown automaton is deterministic if for each state ¢ and stack symbol 4
(1) if [0(g,e,7)| = 1 then |0(g,a,i)] =0 for all @ € X,
(2) for each a € ¥ U {e} the set d(g,a,i) has size at most one.

Note that a determistic pushdown automaton accepting on empty stack cannot accept
the empty string (unless this is the only string it accepts) since there would have to be a
transition 0(qo, £,0) as well as a transition 0(qp, a,0) for some letter a.

Let M be the pushdown automaton shown in Figure [§] which accepts on empty stack.

$,0 > ¢
w1l —e
W2 — ¢

start

F1GURE 8. Pushdown automaton M accepting on empty stack, with start
configuration (g, 0). The symbol i € {0, 1,2} represents a stack token that
is kept in place by a transition.

The pushdown automaton uses its stack to keep track of D, , as it reads its input, and
its states to keep track of D, . It uses the stack symbol 2 as a device to flag when the
input has the potential to have a prefix of the form wopA or woAp with D, \(wy) = 1.
Paths pu are forbidden. We will prove that the language of this automaton is precisely

the language L.
11



Here is the formal description of M. Note that states g3, g¢, g7 are reached only when
1 is on top of the stack, and g5, gs are reached when either 1 or 2 are on top of the stack,
so we have omitted transitions from configurations that are not possible.

(1) states @ = {qo,---,qs},

(2) input alphabet X = {p, \, u, $},

(3) stack alphabet I" = {0, 1, 2},

(4) start state qo,

(5) transition function ¢ defined as follows.

(g0, %,0) = (qo,¢) (g0, p,0) = (q1,0) 6(q1,A,0) = (g3, 10)
6(qo, 11, 1) = (qo, €) 6(q0,p, 1) = (1, 1) 6(q1, A\, 1) = (g3, 11)
6(qo, 11,2) = (qo, €) 6(q0,p,2) = (q1,2) 6(q1, A, 2) = (g3,12)
5(q ) (QO78) 5((]17p7 0) = (q270) 5(QQ7/\vO) = (Q57 10)
5(Q4, H; ) (q47 5) 5((]17 P, 1) = (QQ, 1) 5(QQ, /\7 1) = (q57 11)
0(qa, 1, 2) = (@, €) 6(q1,p,2) = (q2,2) d(q2, A, 2) = (gs5,12)
6(gs, 11, 1) = (g4, €) (g3, p, 1) = (gs, 1) (g4, A, 0) = (g3, 10)
(g5, 11,2) = (g5, €) (g4, p,0) = (g2,0) (g1, A, 1) = (g3, 11)
6(qs,p, 1) = (g2, 1) 3(qa A, 2) = (g3, 12)

6(qa, p,2) = (q2,2) 8(g5, A\, 1) = (g7, 11)

(g5, p, 1) = (gs, 1) (g5, A, 2) = (g7,12)

(g5, p,2) = (gs,2) (g6, A, 1) = (g7, 11)

d(qs,p, 1) = (gs, 1) d(gs, A\ 1) = (gs,21)

d(qr,p,1) = (gs, 1) d(qs, A, 2) = (gs,22)

To prove that M accepts precisely the language £, we first show that M is deterministic.
This allows us to identify input words with unique paths in M and simplify our arguments
slightly.

Lemma 3.1. The pushdown automaton M 1s deterministic.
Proof. The claim is easily verified by considering the formal description for M. O
Proposition 3.2. The pushdown automaton M accepts the language L$ = {w$ | w € L}.

Proof. Since M is deterministic, we identify input words with their corresponding unique
path in M.
Let w € {p, A\, u}*. We must show that

(1) if w contains ppu, then w$ is rejected.

(2) if w fails to be in Lo, then w$ is rejected,

(3) if w has a bad prefix (conditions (2) and (3) in Definition [2.6]), then w$ rejected.
(4) if w$ is rejected, then w & L.

The only states that can be reached by a path up for u € {p, A\, u}* from the start
configuration are ¢, ¢o,qs and ¢s and since none are the source of a p transition, any
word containing pu will be rejected.

Next, we show that if w is not in £ ., then w$ is rejected by M. Each state represents
the endpoint of a path labeling a prefix of an input string accepted by the automaton.
One can verify the values of D, ,(u) for each path labeled u ending at state ¢; given by
Table [II

Let h(u) be the height of the stack after reading u € {p, A\, u}* starting from the start
configuration (o, 0). Then h(e) =1, h(up) = h(u), h(u)) = h(u)+1 and h(up) = h(u)—
since A pushes a token to the stack, ;o pops a token and p keeps the stack unchanged. It

follows that h(u) = Dy ,(u) + 1, and since 0 stays on the stack until $ is read, h(u) > 1
12



state | D, »
qo 0

q1 1

q2 2

3 0

G4 1

1

1

0

qs
de
qr
qs 2

TABLE 1. Value of D, , for any prefix ending at each state.

for all prefixes u € {p, A\, u}*, so D, ,(u) > 0. If w$ is accepted then the stack must
contain only 0 after reading w, so Dj ,(w) = 0.

It follows that if D, > 2, D, , D) ,(u) < 0 for some prefix u, or Dy ,(w) # 0, then M
will reject w$.

Next, suppose w € L o, has no pp substring and a prefix of the form wovw; A where
D, (wo) = 1,v € {pA, A\p} and wy € L1 . The string w, labels a path in the automaton
starting at ¢o and ending at state ¢i,q4, g5 or ¢s by Table[I] From each of these states,
reading v = pA ends in state g5, and reading v = A\p ends in state gg.

From g5, the word wy labels a path that visits only states g5 and gs, since D, ,(z) > 0
for all prefixes z of wy, so the 1 on top of the stack before reading w; remains (and is
covered by 2s, which are removed by the p loop at ¢5), and ends at g5 since Dj ,(w;) = 0.
From here reading Au is rejected.

From g, if wy = € then upAp is rejected. Otherwise w; labels a path from ¢ to ¢
and then moves between ¢5 and ¢s, and ends at g5. From here reading Ay is rejected.

We have now established that if w & £ then w$ is rejected by M. To complete the
proof we must show that if w$ is rejected, then w ¢ L£. To show this, assume w € L
with no pu substring, but w$ is rejected by M. We will prove that w must have a bad
prefix.

Let p be the longest prefix of w$ labeling a path that is not rejected by M. Since
w € Ly we have Dy ,(w) =0, so if w = p, after reading w the stack contains just 0 so
w$ will be accepted, a contradiction. Thus p is strictly shorter than w. Let w = paxw’
where x € {pA, u} is the next letter input after reading p.

We now consider the possible states where p can end.

(1) Suppose p ends at go. Then D, (p) = 0 so z # A. If the top of stack is 0 then
Dj . (p) = 0 so x # p. Otherwise M cannot reject on reading p, p.

(2) Suppose p ends at ¢, so its last letter is p, and D, (p) = 1. Then z # p.
Otherwise M cannot reject on reading p, .

(3) Suppose p ends at go, so its last letter is p, and D, (p) = 2. Then = # pu,p.
Otherwise M cannot reject on reading A.

(4) Suppose p ends at g3, so D, (p) = 0 and the top of stack is 1. Then = # A.
Otherwise M cannot reject on reading p, (u, 1 — ¢).

(5) Suppose p ends at g, so D, x(p) = 1. The only way M could reject is if the top

of stack is 0 and o = p, which is not possible since w € L9 .
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(6) Suppose p ends at gs, so D, \(p) =1 and 1 is on top of the stack. Then no letter
will cause M to reject.

(7) Suppose p ends at gg, so D, (p) = 1 and p ends with Ap. Then = cannot be g,
and otherwise px is not rejected.

(8) Suppose p ends at gs, so its last letter is p, and D, (p) = 2. Then = # p, p and
M cannot reject if x = A.

These cases show that if p ends at any state except g7, then M does not reject w on
reading the next input letter. We finish the proof by showing that if p ends at g7, then
px is a bad prefix.

Since p ends at g7, p ends with A, D, (p) = 2, and D, ,(p) > 0. If x = p then px is
not rejected. If x = A then w ¢ L9 . So we must have z = p.

Let p = p1A. If p; ends at gg, then py = poAp, and pr = poApAp where D, \(p2) =1
and so pz is a bad prefix. The machine correctly rejects the string on reading x = pu.

Otherwise p; ends at ¢s. Either p; ends with pA, or p. If p; = pap then D, \(p2) =1
and pr = papAAp is a bad prefix. Otherwise p; ends in p, and must pop a token 2 from
the stack. Let A, be the last A letter in p; that pushed a 1 on top of the stack (which
must exist, since all paths to g5 must cross such an edge). Write p; = pa Ap3pt.

The letter A\, labels one of the following four edges:

(1) from g2 to ¢s,
(2) from ¢ to gs,
(3) from g4 to gs,
(4) from g5 to g7,
(5) from gg to 7.

In the first case, p, ends at ¢ so must have the form py = wup with D, (u) = 1.
Then psu labels a path that moves between states ¢; and gg, reading pA and pushing a
2, or reading p and popping a 2, so psu € L. It follows that w has the bad prefix
upA«(psp) A, and so M correctly rejects it.

In the other four cases we have that D, \(p2) = 1 since p, ends at state g1, ¢4, g5 Or ge,
A« must be immediately followed by a letter p, and psA,p ends at state gg. Let p3 = pp4.
Then pyp labels a path that starts at gg, goes to gg, then moves between states ¢s and
s, reading pA and pushing a 2, or reading p and popping a 2. So pyp € L4 . It follows
that w has the bad prefix poA.p(pap) A\, and so M correctly rejects it. O

4. OBTAINING THE GENERATING FUNCTION

Theorem 4.1. The sequence counting the number of permutations of each length in P
has an algebraic generating function:

(1+4q) (1+5q—q2—q3—(1—q)\/(1—q2)(1—4q—q2)>

Z 2"t = 87

n>0

1—2z—+/1-4z2

where ¢, is the number of permutations in P of length n, and ¢ = q(z) = R

Proof. We convert the pushdown automaton given in the previous section to an unam-
biguous context-free language, following the standard procedure as described in Hopcroft
and Ullman [I4]. Theorem 10.12 of Hopcroft and Ullman guarantees that the grammar
obtained from a deterministic pushdown automaton accepting on empty stack is LR(0)

and hence unambiguous.
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We then apply the Chomsky and Schiitzenberger theorem, as outlined for example in
[12] 1.5.4, to obtain an algebraic generating function. Since each step in this procedure
is constructive, we can find the generating function explicitly.

We start by converting the pushdown automaton to a grammar. See Theorem 5.4 [14]
for full details.

Define a grammar with nonterminals S and [g;, j,qx] = N;,x for each pair of states
i, @& and stack symbol j. The nonterminal [g;, 7, gx] represents a path in the configuration
space of the pushdown automaton starting at ¢; with j on top of the stack and ending
at some state qx. The productions “fill out” these paths with subpaths according to the
transitions that are possible.

The production rules are then defined as follows:

(1) for each state ¢; we have a production S — Nyy;,
(2) for each transition 6(g;, a,j) = {(qx, )} with a € {3, u}, add a production Nj, =

a?
(3) for each transition 6(g;, p,7) = {(qk, 1)}, add productions N;j, = pNy, for 0 <
r <8,
(4) for each transition 6(g;, A, j) = {(qx,!m)}, add productions N;j» = ANk Nyma
0<x,y<8.
This gives the following set of productions, where 0 < z,y < 8:
Nogp — § Nooe —  pNios Niow — AN31,Nyos
Nowo — p Noie — pNiia Nie — AN31,Nyia
Noo — Nogz — pNioe Nise — AN31, Ny,
Nzig — p Niow — pNoos Noow — AN51yNyos
Nys — p Nie — pNai, Notw — ANs1yNyia
Nigy — p Nigy — pNag, Nogy  — AN51yNyos
Nsigs — p N3z — pNeia Nyow — AN31,Nyou
Nsas — Ny —  pNoos Nyw — AN31,Ny1a
Ny — pNai, Nyow — AN31, Ny,
Nyow — pNag, N5z — AN71yNyia
Nsiz — pNsia Nsow — AN71yNyas
Nsow — pNgas Noie — AN71yNyia
Neiz — pNgie Ngiz — ANs2yNyia
N7 — pNeiax Ngow  — ANs2yNya,

We can reduce the size of the grammar description as follows. First, observe that the
only productions that eliminate nonterminals (by generating $ or p) are of the form N,y
for k € {0,4,5}, and j = 0 implies £ = 0. Since all productions with nonterminals
on the right side have the form N,;; — pN,;; or Nyj; — AN, Ny, it follows that any
nonterminal N,,, with k not equal to 0,4 or 5 cannot be eliminated, so we can exclude
them from the grammar.

Also, if we start a derivation with S — Nyo for k # 0, there will always be a nonter-
minal of the form N, that cannot be eliminated. Therefore it suffices to make Ny the
start nonterminal and remove all productions involving S.

Lastly, the resulting grammar contain nonterminals Nzo, N504, V505 that will never
produce a string of only terminals, since the configuration (gs,0) is never realised (to
reach g5 the top of stack symbol is either 1 or 2. We modify the above grammar one step
further by removing any production involving these nonterminals .

Taking these factors into consideration, and collecting productions with the same left

side together we obtain the following grammar:
15



S N A A A N R A N A N N A A N N N

$ | PN100,

pNio4,

pPN1os,

1| pNio,

lel4a

pN11s,

1| pN12o,

pN124,

pN12s,

pNaoo | AN310Nooo | AN314Ny00,

PNaoy | AN310Noos | AN314Nyo4,

pPN2os | AN310Noos | AN314Nyo5,

pNaio | AN310No1o | AN314 N0 ! AN315N510,
PNy | AN310No14 | AN314Ng14 ’ AN315N514,
pNais | AN310No1s | AN314N415 ’ AN315N515,
pNazo | AN310No2o | AN314N42o ’ AN315N520,
pNaoy | AN310No24 | AN314Nyoy | AN315N524,
pNags | AN310Noas | AN314Nso5 | AN315N525,
AN510Nooo | AN514N400,

AN510Noos ! AN514N4o4,

AN510Noos | ANs14Naos,

ANs510No1o | AN514Ny10 | ANs515N5s10,
AN510No14 | AN514N414 | AN515N514,
AN510No15 | AN514Ny15 | ANs515Ns15,
AN510No20 | AN514N420 | AN515N520,
AN510No24 | AN514Nsoa | AN515N504,
AN510No25 | AN514Ny95 | AN515 N5,

1| pNs1o,

pNe14,

pNe1s,

pN2oo | AN310Nooo | AN314Ny00,

pNoos | AN310Nooa | AN314N404,

pPNaos | AN310Noos | AN314N405,

pN21o | AN310No10 | AN314Ny10 ’ AN315N510,

% | pNa14 ‘ AN310No14 ‘ AN314N414 | AN315N514,
pNais | AN310No1s | AN314N4y15 ’ AN315N515,
pNazo | AN310No2o | AN314 N2 ’ AN315N520,

% | pNazy | AN310No24 ‘ AN314Nyoy | AN315N524,
pNags | AN310Noas | AN314Nso5 | AN315N525,
pNg1o | AN710No10 | AN714Ny10 | AN715Ns10,

1% | pNg14 | AN710No14 \ AN714Ny14 | AN715N514,
pNg1s | AN710No1s | AN714N4a15 ! AN715N515,
pNs20 | AN710No2o | AN714N42g ! AN715Ns20,

P N4 | AN710No24 | AN714Nao4 ’ AN715Ns24,

H | pNga2s | AN710No2s \ AN714N42s5 | AN715Ns25,
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Neio — pNsio | AN710No1o | AN714Na10 | AN715N510,
Neia — pNgia | AN710No1a | AN714Na1a | AN715N514,
Neis —  pNgis | AN710No1s | AN714Nais | AN715N515,
N7zio = pNeo,

N7y — pNe,

Nzis — pNes,

Ngio = ANs20Noio | AN524Na1o | ANsa5Ns 1o,

Nsia — ANs520Nowa | AN524Na1a | AN525N514,

Nsi5 = ANs520Nois | ANs2aNais | ANsas Nsis,

Nsao = AN520No20 | AN524Naoo | ANs25Nsoo,

Ngos = AN520No2a | AN524Naoa | AN525 Nsou,

Ngas  — ANs520Nozs | ANs24Nazs | AN525 Nss.

The next step is to convert nonterminals to generating functions, terminals to z and
productions to equations, as described in [12] 1.5.4.

fooo = 2+ 2fio0,

foos = zfi04,

Joos = zfi0s,

Jforo = z+ zfio,

fouu = zfi,

fois = zfus,

foo = z+ zfi20,

fora = zfro,

Jozs = zfizs,

Jioo = zfa00 + 2 [f310f000 + 2 f314. 100,

fio4 2 fooa + 2 f310.foos + 2 f314f104,

Jios = zfa0s + 2 [f310f005 + 2 f314. 105,

f110 2 fa10 + 2 f310.for0 + 2 f314.fa10 + 2 f315 [510,
fi14 2 fa1a + 2 f310 for4 + 2 f31afa1a + 2 f315 [514,
fuis = zfas + 2fsi0fo1s + 2f314fa15 + 2 f315 f515,
f120 2 f220 + 2 f310. fo20 + 2 f314.fa20 + 2 f315 f520,
fiza = zfaoa + 2fs10 024 + 2 f314fa24 + 2 f315 f504,
fi2s 2 f2o5 + 2 f310 fo2s + 2 f314fa25 + 2 f315 f50s,
Jaoo = zfs10f000 + 2 [514. 400,

f204 2 fs10.foos + 2 f514.f404,

fa0s 2 fs10.fo0s + 2 f514.f405,

faio = zfs10fo10 + 2 fs1afar0 + 2 f515 f510,

fo14 2 fs10fora + 2 fs1afara + 2 f515 f514,

Jais = zfsi0fo1s + 2 fs1afa1s + 2 f515 f515,

Ja2o = 2fs10f020 + 2 f514fa20 + 2 [515 f520,

Jooa = zfs10 o024 + 2 fs1a 124 + 2 f515 f504,
Jazs = 2z [s10f025 + 2 f514fa25 + 2 f515 [505,
fsi0 = 2+ 2f610,

fsa = zfe14,

fs15 = zfes,
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Jaoo = zfa00 + 2310 000 + 2 f314. 100,

Jaoa = zfo0a + 2 [f310f004 + 2 f314 104,

Jao0s 2 faos + 2 f310fo05 + 2 f314.f405,

fa10 2 fa10 + 2 f310.for0 + 2 f314 fa10 + 2 f315 [510,
Jua = z+ zfoua + 2 f310fo14 + 2 f1afa1a + 2 f315 f514,
fais 2 fa1s + 2 f310fors + 2 farafars + 2 f315 f515,
fi20 = 2fa20 + 2 [f310f020 + 2 f314fa20 + 2 f315 f520,
Jioa = 2+ 2foou + 2f310 024 + 2 f314f104 + 2 [315 f504,

faos = 2faos + 2fs10f025 + 2 f314fa25 + 2 f315 f525,
fsi10 = zfsio + 2froforo + 2friafuo + 2 fr1s fs10,
fsia = 2+ 2fsia + 2frofora + 2 friafaa + 2 fr15 f514,

fs15 = zfsis + 2frofois + 2frnafas + 2 frs fs1s,
f520 2 fe20 + 2 fr10fo20 + 2 friafazo + 2 f715 f520,
fsoa = zfsoa + 2fri0fo2a + 2 fr1afaoa + 2 fr15 f504,
f525 2+ 2 fsos + 2 fr10fo25 + 2 friafazs + 2 fr15 f50s,
Jero = zfsio+ 2fro0foro + 2frafaro + 2 f715 f510,

fera = 2fsia+ 2frofora + 2friafaa + 2 fr15 f514,
Jeis = zfsis + 2frofors + 2frafas + 2 fris f515,
frio = zfe10,
fria = zfe14,
fris = zfe1s,

Jsio = 2fs20fo10 + 2 fs24fa10 + 2 [525 f510,
fs14 2 fs20 fora + 2 fsoa fara + 2 f525 f514,
feis = zfs20fo15 + 2 fs24fa15 + 2 f525 [515,
J820 2 f520 fo20 + 2 fs24.fa20 + 2 [525 f520,
J824 2 f520 foa + 2 fs2a fa2a + 2 [525 f504,
Jeos = z[s520f025 + 2 f524.fa25 + 2 f525 [505.

Using Maple (version 14) we can solve to obtain an expression for the algebraic gen-
erating function fyoo(z), which counts the number of words in £$ of each length. Since
words in £$ of length 3n + 1 are in bijection with permutations in P of length n, the
generating function ) ., ¢,t" where ¢, is the number of permutations of length n in P
is obtained by dividing fogo by z and substituting z3 = ¢. U

From the expression for the generating function we can easily obtain the first few terms
of the sequence:

1+ 24222 4+ 623 +242% + 1142° + 59220 4 321627 + 1790428 + 1011982° + 578208210 +
33321362 + 19343408212 + . . ..

We can also use standard analytic combinatorial methods|[12] to deduce the asymptotic
growth of the number of such permutations:

V25 — 115
2v/mn3
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