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Abstract
We define a statistic an(w), the size of the atmosphere of a self-avoiding
walk, w, of length n, with the property that 〈an(w)〉 → µ as n → ∞,
where µ is the growth constant of lattice self-avoiding walks. Both µ and the
entropic exponent γ may be estimated to high precision from 〈a(w)〉 using
canonical Monte Carlo simulations of self-avoiding walks. Previous Monte
Carlo measurements of µ and γ have used grand canonical Monte Carlo
simulations. Our simulations indicate that µ = 2.638 16 ± 0.000 06 and
γ = 1.345 ± 0.002. These results, based on a modest computer run, are
comparable to the best estimates for µ and γ from (grand canonical) Monte
Carlo simulations, and are at most two digits of the best series estimates of µ

for self-avoiding walks available in the literature.

PACS number: 05.50.+q

The lattice self-avoiding walk is a hard combinatorial model of polymers with self-excluded
volume [3, 4, 19]. The most important quantity in this model is cn, which is the number
of distinct self-avoiding walks of length n steps, starting from the origin in (say) the square
lattice. There is overwhelming analytic and numerical evidence that

cn = Aµnnγ−1(1 + o(1)) (1)

where A is an amplitude, µ = eκ is the growth constant of self-avoiding walks while κ

is called the connective constant [2], and γ is the entropic exponent3. The exponential
growth of cn with n was established decades ago in [2, 7, 8] but the power law correction
to the exponential growth is a conjecture in low dimensions (see, for example, [19] and

3 This terminology is frequently abused in the literature; µ is often called the connective constant of self-
avoiding walks. However, the connective constant is κ = log µ, as it was originally defined by Broadbent and
Hammersley [2].
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references therein). This asymptotic expression for cn has been proven for dimensions d � 5
[11] , but remains a conjecture if d < 4. In d = 4 dimensions the conjecture is modified by a
logarithmic correction (see [17]). In this letter we focus on d = 2 dimensions, and we show
that µ and γ can be estimated using a canonical Monte Carlo algorithm. The motivation for
this is to verify the digits of µ determined by exact enumeration studies independently, using
a completely different method, which will also provide statistical confidence intervals on our
estimates.

It is known that the connective constant can be defined via the limit [10]

κ = lim
n→∞(log cn)/n (2)

and one would ideally like to strengthen this result to

µ = lim
n→∞

cn+1

cn

(3)

but this remains an open question [8] and no one has proven the existence or non-existence
of this limit in the square lattice (however, the limit exists in non-bipartite lattices such as the
triangular lattice (see [19]). It is known that

µ2 = lim
n→∞

cn+2

cn

(4)

a result due to Kesten [15, 16] (and also see [18]). Showing that cn+2 � cn is not difficult, but
the monotonicity of cn (i.e. cn+1 � cn for all n) is far more challenging—this result has been
proven by O’Brien [23].

The numerical value of µ has been estimated for the square lattice using a variety of
techniques, including series analysis and grand canonical Monte Carlo simulations. However,
the best estimates for µ have been obtained from series analysis of lattice polygons (rather
than self-avoiding walks), which are known to have the same connective constant [9]. Using
series analysis, µ for polygons (together with their entropic exponent, α) has been determined
[13, 14] to an amazing number of digits:

µ = 2.638 158 529 27 ± 0.000 000 000 01 (lattice polygons) (5)

α = 0.500 000 5 ± 0.000 001 0. (6)

Determining µ from self-avoiding walk data is not nearly this successful. The best
estimate for µ and the entropic exponent γ obtained from self-avoiding walk data are

µ = 2.638 158 7 ± 0.000 000 7 (self-avoiding walks) (7)

γ = 1.343 72 ± 0.000 10 (8)

as determined, for example, in [6].
In two dimensions, Monte Carlo determination of the connective constant of self-avoiding

walks does not even approach the precision obtained in the series enumeration above. In
higher dimensions, where the finite lattice method [14] is less efficient, the precision of
Monte Carlo estimates is more competitive [24]. Nevertheless, Monte Carlo simulations
have the added benefit that statistical error bars can be obtained, and provide an independent
means of confirming the digits found by series analysis. It is therefore of interest that
the numerical determination of connective constants and critical exponents be pursued by
Monte Carlo techniques, and that more efficient algorithms be developed for estimating these
quantities.
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Figure 1. A plot of the mean atmosphere against length (left) and against inverse length (right).

Traditionally, estimates for µ and γ have been made using grand canonical Monte Carlo
algorithms which sample self-avoiding walks from a distribution over their lengths. The most
well known among such algorithms is the Beretti–Sokal algorithm [1]. This algorithm has
produced estimates of the connective constant as follows [21]:

µ = 2.638 164 ± 0.000 014 (9)

with error bars a combined 95% statistical confidence interval and an estimated systematic
error due to uncertainties in the model. More recently, the PERM algorithm has been used to
find precise estimates of µ and γ in three dimensions and higher [5, 24].

In this letter we show that estimates for µ and γ can also be obtained from canonical
algorithms (such as the pivot algorithm for self-avoiding walks) which sample walks of fixed
length from the uniform distribution [20]. The basic idea is to measure the number of ways
that an edge may be added to a walk of length n to create a walk of length n + 1. We call this
statistic the atmosphere of the walk. Below we show how this can give estimates of µ and γ

and we analyse numerical data to determine µ and γ .
The atmosphere of an (oriented) self-avoiding walk is the collection of edges which may be

appended onto its last vertex to extend the walk by one step while maintaining self-avoidance.
We shall denote the size of the atmosphere of a walk w by a(w). It is not difficult to show that
the mean atmosphere of walks of length n is given by

〈a(w)〉n = cn+1/cn. (10)

Examining equation (3) suggests that 〈a(w)〉n can be interpreted as a local estimate of µ. If
we assume that equation (3) is true, and that cn has an asymptotic form given by equation (1),
then

〈a〉n = µ

(
1 +

γ − 1

n
+ o(1/n)

)
. (11)

Consequently, by obtaining precise estimates of the mean atmosphere at various fixed lengths,
we are able to estimate both µ and γ . In figure 1 the mean size of the atmosphere is plotted
against n and against 1/n; the near-linearity of the second plot strongly supports the scaling
form in equation (11) and furthermore suggests that the o(1/n) corrections are not large.

The exponent γ in equation (1) is thought to have exact value γ = 43/32 [22] and series
analysis strongly supports the scaling form

cn = Aµnn11/32(1 + o(1)) + B(−µ)nn−3/2(1 + o(1)). (12)
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The second term has odd–even parity, and if this form is used instead of equation (1) to find
an asymptotic form for the mean size of the atmosphere, then

〈a〉n = µ

(
1 +

11

32n
+

2B(−1)n+1

An59/32
− 231

2048n2
+ o(1/n2)

)
. (13)

This suggests that there should be odd–even corrections to the mean size of the atmosphere
of walks (which we did observe); we compensate for this by only considering walks of even
length in our analysis. Since 59/32 ≈ 2, it is very difficult to numerically distinguish between
the n−59/32 and n−2 terms. In other words, it would be acceptable to assume that 〈a〉n ≈
µ(1+(γ −1)/n+const/n2) in the statistical analyses of numerical data, to determine µ and γ .

Self-avoiding walks of fixed length n can be efficiently and uniformly sampled along a
Markov Chain by the pivot algorithm [20]. This algorithm is a linear time algorithm, with
autocorrelations which grows as a small power of n. Doubling n essentially requires only
slightly more than doubling in CPU time to maintain datasets of the same size. In order to
reduce the effects of corrections to scaling identified above, one should attempt to sample
longer walks; but this should also be balanced against the increase in statistical error bars
with increasing n. In order to measure γ from the atmosphere data we need to measure the
1/n corrections, and consequently we require that the error bars in our data are considerably
smaller than this. In light of this we decided that it would be a more efficient use of computer
time to obtain a large number of high-quality estimates at low and intermediate values of n,
rather than a small number of low-quality estimates at large n.

We sampled walks of length 2m for 2 � m � 50 and length 4m for 26 � m � 50.
At each value of m, we sampled 8 × 107 walks and computed autocorrelation times along
the resulting time series. This allowed us to compute statistical confidence intervals in the
estimated means of the atmosphere. We note that since each walk may be rooted at either end
point, an atmosphere may be measured at both ends of the walk, and that the average of these
two statistics was taken to further reduce error bars. The estimates at each walk of length
between 4 and 50 were also checked against exact values using Guttmann and Conway’s 51
term series for cn [6]. The simulations took approximately 10 days of CPU time on a desktop
Intel Pentium III. We obtained estimates of µ and γ by making weighted least-squares linear
fits of the atmosphere data against four different scaling forms

model 1: 〈a〉n = µ +
µ(γ − 1)

n
+

const

n2
(14)

model 2: 〈a〉−1
n = 1/µ − (γ − 1)

µn
+

const

n2
(15)

model 3: log〈a〉n = log µ +
γ − 1

n
+

const

n2
(16)

model 4: log〈a〉n = log µ + (γ − 1) log

(
n + 1

n

)
+

const

n2
. (17)

Attempts to fit the data to scaling forms without the 1/n2 correction gave poor quality
results, as measured by tracking the statistical acceptability of the weighted least-squares error.
The quality of the fits can be improved by discarding data points at low values of n where
corrections to scaling are stronger. Hence we performed the regressions on a subset of the data
points {n|n � nmin} for nmin = 6, 8, 10, 16, 20, 26, 50. The quality-of-fit statistic is the χ2

statistic for the given number of degrees of freedom. We chose the best fits for each model on
the basis of this statistic and whether subsequent fits lie within their 95% confidence intervals.
We then used the difference between the best fit and the previous fit (in nmin) to estimate a
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Table 1. The best fits for each model. Entries are of the form: Best estimate (statistical error)
(systematic error). Note that series analysis gives µ = 2.638 158 . . . , 1/µ = 0.379 052 . . . and
log µ = 0.970 081 1 . . . .

Model Nmin Nmin (γ − 1) 32
11

1 10 µ = 2.638 156(29)(21) 10 1.0056(24)(23)
2 10 1/µ = 0.379 051 6(41)(36) 8 1.0017(18)(28)

3 10 log µ = 0.970 081(11)(9) 16 1.0054(41)(39)

4 8 log µ = 0.970 078(11)(6) 8 1.0067(23)(19)

Table 2. Fitting the mean atmosphere data. The values of parameters are given as best estimate
(95% statistical confidence interval). The best estimates are given in boldface.

Nmin µ (γ − 1) 32
11 const Quality of fit

Model 1: 〈a〉 ∼ µ + µ(γ−1)
n

+ const
n2

6 2.638 088(23) 1.0124(14) −0.228(4) Unacceptable
8 2.638 177(26) 1.0033(19) −0.137(5) 73%

10 2.638 156(29) 1.0056(24) −0.166(24) 46%
16 2.638 155(39) 1.0056(41) −0.162(65) 39%
20 2.638 181(46) 1.0016(57) −0.07(11) 26%
26 2.638 173(56) 1.0030(79) −0.11(18) 28%
50 2.638 21(12) 0.996(24) 0.2(9) 55%

Nmin 1/µ (γ − 1) 32
11 const Quality of fit

Model 2: 〈a〉−1 ∼ 1/µ − (γ−1)
µn

+ const
n2

6 0.379 0587(32) 1.0009(13) 0.0705(11) Unacceptable
8 0.379 0480(37) 1.0017(18) 0.0599(21) 86%

10 0.379 0516(41) 1.0045(23) 0.0648(33) 49%
16 0.379 0525(55) 1.0051(41) 0.0658(90) 39%
20 0.379 0489(65) 1.0014(56) 0.053(15) 26%
26 0.379 0500(80) 1.0028(78) 0.059(26) 28%
50 0.379 046(17) 0.996(24) 0.02(13) 56%

Nmin log µ (γ − 1) 32
11 const Quality of fit

Model 3: log〈a〉 ∼ log µ + (γ−1)
n

+ const
n2

6 0.970 0585(86) 1.0110(13) −0.1374(30) Unacceptable
8 0.970 090(10) 1.0026(18) −0.1059(56) 78%

10 0.970 081(11) 1.0051(23) −0.1178(88) 46%
16 0.970 080(14) 1.0054(41) −0.118(24) 39%
20 0.970 090(17) 1.0015(56) −0.084(40) 25%
26 0.970 087(21) 1.0029(78) −0.100(68) 28%
50 0.970 099(44) 0.996(24) −0.01(35) 56%

Model 4: log〈a〉 ∼ log µ + (γ − 1) log
(

n+1
n

)
+ const

n2

6 0.970 0471(86) 1.0146(13) 0.0131(28) Unacceptable
8 0.970 084(10) 1.0048(18) 0.0485(54) 62%

10 0.970 078(11) 1.0067(23) 0.0402(85) 45%
16 0.970 079(15) 1.0061(41) 0.045(23) 39%
20 0.970 089(17) 1.0020(56) 0.080(39) 26%
26 0.970 086(21) 1.0032(78) 0.066(67) 28%
60 0.970 099(44) 0.996(24) 0.18(35) 55%

systematic error in this procedure. The summary of results is given in table 1. We list the
results of the regressions in determining µ and γ in table 2.
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In this way we obtain the following estimates of µ:

µ =




2.638 156 ± 0.000 050 model 1
2.638 163 ± 0.000 054 model 2
2.638 158 ± 0.000 053 model 3
2.638 150 ± 0.000 045 model 4.

(18)

These results are all consistent, and the error bars are the sums of the statistical and systematic
errors. Rounding up the error and taking the average of these four estimates give our best
estimate

µ = 2.638 16 ± 0.000 06. (19)

Taking the logarithm of µ shows that

κ = 0.970 082 ± 0.000 023 (20)

is our best estimate for the connective constant of self-avoiding walks in the square lattice.
In table 1 we also listed best estimates for 32(γ − 1)/11. The exact value of this is

expected to be 1, and the estimates are close to that value. Of the best estimates, the value of
nmin is the highest for model 3 at nmin = 16, and this fit is by our criteria the least reliable.
The remaining three regressions all have nmin � 10, and we cannot really distinguish them
from one another. Thus, the best estimates are

(γ − 1)
32

11
=




1.0056 ± 0.0047 model 1
1.0017 ± 0.0046 model 2
1.0067 ± 0.0042 model 4.

(21)

Taking the average of these estimates and rounding up the errors then give our best estimate

γ = 1 + 11
32 (1.005 ± 0.005) (22)

a result that includes the exact value 43/32 within its error bars:

γ = 1.345 ± 0.002. (23)

The best series results for µ and γ are in equation (8) [6]. The error bar in the estimate of γ

above is roughly a factor of 20 larger as compared to the series result; that is a factor of 400 in
computer time. Our result was obtained in about a week’s CPU time on a desk-top computer;
and this indicates that a comparable estimate to the series result can be obtained if the Monte
Carlo determination is performed, say, on a large cluster of computers. The error bar in µ is a
factor of ±100 in favour of the best series results, and much more when compared to the best
series results obtained by enumerating lattice polygons, as in equation (6). We confirm the
digits 2.6381 as the first five digits for µ independently, but more sophisticated simulations
on more powerful processors will be needed to confirm the digits in µ following these, and
obtained by series analysis. Moreover, our estimate is only a factor of 3 larger than that of
Nidras in equation (9) and we can easily outperform that result on a more powerful computer
and with somewhat longer simulations.

In this letter we have estimated µ from canonical Monte Carlo simulations to four decimal
places. Our confidence intervals on µ are somewhat conservative; to see this, take the average
of the four estimates from the even numbered models in equation (18), which gives

µ ≈ 2.638 157. (24)
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This gives agreement with series results to five decimal places, with some uncertainty in the
sixth decimal place. This deviation is 60 times smaller than the error bar stated on µ in the
abstract. The best estimate of γ can similarly be compared to its exact value. Taking averages
of the estimates in equation (21) gives

γ ≈ 1.3454 (25)

while the exact value has digits 1.343 75. In other words, it deviates from the expected exact
value by 2 × 10−3. This is comparable to the error bar stated in the abstract.

The atmosphere statistic for walks can be generalized to other models, such as lattice trees
[12] and related models. In that case its definition is more complicated, but simulations suggest
that it will be effective in computing growth constants in any number of dimensions. Further
generalizations would include the calculation of extended atmospheres, where instead of just
a single edge, two or even more edges are appended to the walk, producing an enumeration
process on the MC process that counts walks extended by adding more than one edge. Such
statistics should improve the estimates in this letter, and further investigations along these lines
are in progress.

Acknowledgments

We would like to thank Aleks Owczarek and Stu Whittington for their many helpful
discussions. EJJvR is the recipient of an NSERC (Canada) Operating Research Grant, from
which this research was supported.

References

[1] Berretti A and Sokal A D 1985 New Monte Carlo method for the self-avoiding walk J. Stat. Phys. 40 483–531
[2] Broadbent S R and Hammersley J M 1957 Percolation processes: I. Crystals and mazes Math. Proc. Camb.

Phil. Soc. 53 629–41
[3] Flory P J 1955 Statistical mechanics of semi-flexible chain molecules Proc. R. Soc. A 234 60–73
[4] Flory P J 1969 Statistical Mechanics of Chain Molecules (New York: Wiley Interscience)
[5] Grassberger P 1997 Pruned-enriched Rosenbluth method: simulation of θ -polymers of chain length up to

1 000 000 Phys. Rev. E 56 3682–93
[6] Guttmann A J and Conway A R 2001 Square lattice self-avoiding walks and polygons Ann. Comb. 5 319–45
[7] Hammersley J M 1957 Percolation processes: II. The connective constant Math. Proc. Camb. Phil. Soc. 53

642–5
[8] Hammersley J M 1960 Limiting properties of numbers of self-avoiding walks Phys. Rev. 118 656
[9] Hammersley J M 1961 The number of polygons on a lattice Math. Proc. Camb. Phil. Soc. 57 516–23

[10] Hammersley J M and Morton K W 1954 Poor man’s Monte Carlo J. R. Soc. B 16 23–38
[11] Hara T and Slade G 1992 Self-avoiding walk in five or more dimensions: I. The critical behaviour Commun.

Math. Phys. 147 101–36
[12] Janse van, Rensburg E J and Rechnitzer A 2002 High precision canonical Monte Carlo determination of the

growth constant of square lattice trees Preprint
[13] Jensen I and Guttmann A J 1998 Self-avoiding walks, neighbour-avoiding walks and trials on semi-regular

lattices J. Phys. A: Math. Gen. 31 8137–45
[14] Jensen I and Guttmann A J 1999 Self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 32 4867–76
[15] Kesten H 1963 On the number of self-avoiding walks J. Math. Phys. 4 960–9
[16] Kesten H 1964 On the number of self-avoiding walks II J. Math. Phys. 5 1128–37
[17] Larkin A I and Khmel’Nitskiı̆ D E 1969 Phase transitions in uniaxial ferroelectrics Sov. Phys–JETP 29 1123–8
[18] Madras N 1988 End patterns of self-avoiding walks J. Stat. Phys. 53 689–701
[19] Madras N and Slade G 1993 The self-avoiding walk Probability and its Applications (Boston: Birkhauser)
[20] Madras N and Sokal A D 1988 The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding

walk J. Stat. Phys. 47 573–95



L612 Letter to the Editor

[21] Nidras P 1996 Grand canonical simulations of the interacting self-avoiding walk model J. Phys. A: Math. Gen.
29 7929–42

[22] Nienhuis B 1982 Exact critical points and critical exponents of O(n) models in two dimensions Phys. Rev. Lett.
49 1062–5

[23] O’Brien G L 1990 Monotonicity of the number of self-avoiding walks J. Stat. Phys. 59 969–79
[24] Prellberg T and Owczarek A L 2000 Four-dimensional polymer collapse: pseudo-first-order transition in

interacting self-avoiding walks Phys. Rev. E 62 3780–9


