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Abstract. Let pn denote the number of self-avoiding polygons of length n on a
regular three-dimensional lattice, and let pn(K) be the number which have knot
type K. The probability that a random polygon of length n has knot type K is
pn(K)/pn and is known to decay exponentially with length [1, 2]. Little is known
rigorously about the asymptotics of pn(K), but there is substantial numerical
evidence [3, 4, 5, 6] that pn(K) grows as

pn(K) ' CK µn∅ n
α−3+NK , as n→∞,

where NK is the number of prime components of the knot type K. It is believed
that the entropic exponent, α, is universal, while the exponential growth rate, µ∅,
is independent of the knot type but varies with the lattice. The amplitude, CK ,
depends on both the lattice and the knot type.

The above asymptotic form implies that the relative probability of a random
polygon of length n having prime knot type K over prime knot type L is

pn(K)/pn

pn(L)/pn
=
pn(K)

pn(L)
'

[
CK

CL

]
.

In the thermodynamic limit this probability ratio becomes an amplitude ratio; it
should be universal and depend only on the knot types K and L. In this letter
we examine the universality of these probability ratios for polygons in the simple
cubic, face-centered cubic, and body-centered cubic lattices. Our results support
the hypothesis that these are universal quantities. For example, we estimate that
a long random polygon is approximately 28 times more likely to be a trefoil than
be a figure-eight, independent of the underlying lattice, giving an estimate of the
intrinsic entropy associated with knot types in closed curves.
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1. Introduction

A self-avoiding polygon (SAP) on a regular lattice L is the piecewise linear embedding
of a simple closed curve as a sequence of distinct edges joining vertices in L. The
number of distinct unrooted polygons modulo translations is denoted pn. It is known

that limn→∞ p
1/n
n = µ exists, where µ is the self-avoiding walk growth constant [7, 8].

Figure 1. Minimal trefoils on the SC (left — 24 edges), FCC (middle — 15
edges) and BCC (right — 18 edges).

The knot type of polygons in three-dimensional lattices are well defined. Denote
by pn(K) the number of unrooted polygons of length n and knot type K, modulo
translations. Computing pn or pn(K) is a very difficult combinatorial problem, though
determining the minimal length n such that pn(K) > 0 and the numbers of shortest
embeddings is viable for knot types of low complexity. For example, there are 3
shortest unknots of length 4 in the simple cubic lattice (SC), 8 of length 3 in the
face-centred cubic lattice (FCC), and 12 of length 4 in the body-centered cubic lattice
(BCC). The simplest non-trivial knot type is the trefoil (denoted by 31, see Figure 1)
and it is known that pn(31) = 0 if n < 24 and p24(31) = 3328 in the SC [9]. Data on
polygons collected by the GAS algorithm [10] shows that p15(31) = 128 in the FCC
and p18(31) = 3168 in the BCC (see Table 1); no shorter trefoils were observed.

Numerical studies [3, 4, 6, 5, 10] have shown that pn(K) behaves as

pn(K) ' CK µ
n
∅ n

α−3+NK , as n→∞, (1)

where NK is the number of prime components of the knot type K. The exponent
is thought to be universal, while the growth rate, µ∅, depends on the lattice but not
the knot type. The amplitude, CK , depends on both the lattice and the knot type.
Unfortunately very little of this form can be proven rigorously — the exponential
growth rate is only known to exist when K is the unknot. A pattern-theorem [1, 2]
shows that the growth rate of unknots, µ∅, is strictly smaller than µ. The same
argument also shows that the probability that a polygon of length n has knot type K,
given by pn(K)/pn, decays exponentially with length.

In this paper we consider the asymptotic behaviour of ratios of knotting
probabilities. In particular, for two prime knot types K and L one has NK = NL = 1
and the ratio of probabilities is given by

pn(K)/pn
pn(L)/pn

=
pn(K)

pn(L)
'
[
CK
CL

]
, as n→∞. (2)

Hence, the limiting ratio of probabilities approaches a constant. Since this limit is an
amplitude ratio we expect it to be universal — depending only on the knot types and
the universality class of the underlying model.
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Such ratios were studied previously on the SC [10] (by the methods used in this
paper) and in [11] (by very different methods). Here, we use the GAS algorithm to
estimate pn(K) for various prime knots on the SC, FCC and BCC lattices. Our results
indicate that the above ratio is dependent on the knot types, but independent of the
underlying lattices, and so, universal.

2. Atmospheric moves on cubic lattices

The GAS algorithm [12] samples along sequences of conformations that evolve through
local elementary transitions called atmospheric moves (see eg. [13]). The algorithm is a
generalisation of the Rosenbluth algorithm [14, 15], and is an approximate enumeration
algorithm.

The GAS algorithm was used to estimate the number of knotted polygons on the
SC [10] using BFACF moves [16, 17, 18] as atmospheric moves. This implementation
relies on a result in [19] that the irreducibility classes of the BFACF elementary moves
applied to SC polygons are the classes of polygons of fixed knot types [19].

Figure 2. Elementary moves of the BFACF algorithm on the SC lattice.

BFACF elementary moves (see Figure 2) are either neutral (or Type I) operating
on two adjacent orthogonal edges of a SC polygon, or the are of Type 2 which are
positive or negative length changing moves. A neutral moves exchanges two adjacent
edges over a unit lattice square which defines a neutral atmospheric plaquette. A
negative move replaces three edges in a u conformation by a single edge and so defines
a negative atmospheric plaquette. Similarly a positive move replaces a single edge of the
polygon by three edges in a u arrangement; these edges define a positive atmospheric
plaquette. Let a+(ϕ), a0(ϕ), a−(ϕ) be the total numbers positive, neutral and negative
atmospheric moves of a SC lattice polygon ϕ.

Figure 3. (Left) There are 4 elementary triangular plaquettes incident to each
edge in the FCC lattice. (Middle and right) Each edge in the BCC lattice
is incident to 12 plaquettes; 6 planar and 6 non-planar (the remaining 3 are
reflections of the 3 displayed).

The plaquettes in the FCC and BCC lattice (see Figure 3) define elementary
moves in the FCC and BCC analogous to the BFACF moves. Since the FCC plaquettes
are triangles they define positive and negative moves, while the BCC plaquettes are
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quadrilaterals and so also give neutral moves. These generalisations are discussed at
length in [20] and it is shown that on each lattice the irreducibility classes of the moves
coincide with classes of polygons of fixed knot types.

3. GAS sampling of knotted polygons

We have implemented the GAS algorithm using the atmospheric moves described
above. Let ϕ0 be a lattice polygon, then the GAS algorithm samples along a sequence
of polygons (ϕ0, ϕ1, . . .), where ϕj+1 is obtained from ϕj by an atmospheric move.

Each atmospheric move is chosen uniformly from the possible moves, so that if
ϕj has length `j then

Pr(+) ∝ β`ja+(ϕj), Pr(0) ∝ a0(ϕj), Pr(−) ∝ a−(ϕj). (3)

where β` is a parameter that is chosen to be approximately 〈a+〉`
〈a−〉` . This parameter

can be chosen so that on average the probability of making a positive move is roughly
the same as that of making a negative move. This produces a sequence 〈ϕj〉 of states
and we assign a weight to each state:

W (ϕn) =
a−(ϕ0) + a0(ϕ0) + β`0a+(ϕ0)

a−(ϕn) + a0(ϕn) + β`na+(ϕn)
×

n∏
j=0

β
(`j−`j+1)
`j

. (4)

The probabilities and weights are functions of the number of possible atmospheric
moves and so the algorithm must recalculate these efficiently. Since the elementary
moves only involve local changes, executing a move and updating the polygon takes
O(1) time.

The resulting data were analysed by computing the mean weight 〈W 〉n of polygon
of length n edges and then using the result (from [12])

〈W 〉n
〈W 〉m

=
pn(K)

pm(K)
. (5)

This gives approximations to the number of polygons of any given length n, provided
the number of polygons is known exactly at another length m.

4. Results

We collected data on the prime knots 31, 41, 51 and 52 on the three lattices. In order
to use equation (5) we computed the total number minimal length polygons of fixed
given knot type — see Table 1. We did this by collecting them while performing the
simulation (or in independent runs); this idea was used in [9] and [10] and our SC
results agree. Typically, the algorithm quickly found all realisations of minimal knots
(within hours) and then failed to find new conformations after another few days of
CPU time. We note that the result for trefoils in the SC has been proved [21, 9].

Using the data in Table 1 and equation (5) we were able to estimate pn(K) for
each knot type in each of the three lattices. Each simulation ran for 1 week on a single
node of WestGrid’s Glacier cluster‡. The implementation was particularly simple and
efficient in the FCC lattice and the SC simulations were faster than the BCC lattice
simulations. Each simulation was composed of approximately 400 chains of length 227

polygons on the FCC lattice, 1400 chains of 223 polygons on the simple cubic lattice

‡ See http://www.westgrid.ca
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Knot SC FCC BCC
length number length number length number

01 4 3 3 8 4 12

31 24 3328 15 64 18 1584
41 30 3648 20 2796 20 12
51 34 6672 22 96 26 14832
52 36 114912 23 768 26 4872

Table 1. The number of minimal length polygons of fixed knot types in the SC,
FCC and BCC lattices.

and 500 chains of 223 polygons on the BCC lattice. In each simulation we limited the
maximum length of the polygons to 512 edges.

The estimates of pn(K) in each lattice were used to extrapolate the ratios
pn(K)/pn(L) for fixed prime knots K,L. In earlier work on SC polygons [10] we
observed that the logarithm of these ratios were approximately linear in n−1. In
Figures 4, 5 and 6 we plot the logarithm of the ratio against n−1 for various pairs of
prime knots.

In Figure 4 we show that there is strong agreement between the FCC and BCC
data. In addition, the three extrapolated curves appear to have approximately the
same limit. This is strong numerical support for the hypothesis that the limiting ratio
is universal.

Linear fits of the data gives y-intercepts of 3.34(3), 3.35(3), 3.29(3) for the SC, the
FCC and the BCC lattices (respectively). These results includes each other within 95%
confidence intervals. Exponentiating these results estimates the limiting amplitude
ratio to be 27 ± 2. If we exclude the BCC data, since it is not as well converged at
large n, we obtain a limiting ratio of 28± 1.

Figure 4. Plots of the logarithm of the ratio of the number of 31 to 41 knots. The
dotted lines indicate the extrapolations. Note that the FCC and BCC data are
nearly the same. The intercept indicates that the limiting ratio is approximately
e3.32 ≈ 28.
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Turning to the ratio of 41 to 52 plotted in Figure 5 we find similar results, though
the data are not as well converged and our estimates are not as good. Linear fits lead
to an estimate of 9±1 for the limiting ratio. The estimates on all three lattices agree,
supporting the hypothesis of universality. In the final plot we show the ratio of 51 to
52 knots. Again we find similar results and estimate the limiting ratio to be 0.67(3).

Figure 5. Plots of the logarithm of the ratio of the number of 41 to 52 knots.
The linear extrapolations are indicated by dotted lines. The intercept indicates
that the limiting ratio is approximately e2.2 ≈ 9.

Figure 6. Plots of the logarithm of the ratio of the number of 51 to 52 knots.
The linear extrapolations are indicated by dotted lines. The intercept indicates
that the limiting ratio is approximately e−0.4 ≈ 0.67.

We have also studied the other ratios and find similar support for their
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universality. In summary:

C31/C41
= 28(1) C31/C51

= 400(20) C31/C52
= 280(20)

C41/C51
= 15(1) C41/C52

= 9(1)

C51/C52 = 0.67(3).

(6)

These numbers are self-consistent within the stated error bars. Curiously, in each case
we found that the curves for the FCC and BCC lie close together while that of the
SC stands apart; we would like to understand this better, but have no explanation at
this time.

Some caution is needed when comparing these results to previous studies of knot
probability amplitudes such as [22, 23, 11]. Any estimate of the amplitude will have
sensitive dependence on the estimate of the exponent. Indeed, unless the estimated
exponents are equal, the ratio of the estimated probabilities will tend to zero or infinity.

Mindful of this, we may compare the ratio of estimated amplitudes for SC
polygons from [11] we find C31/C41 ≈ 22 which is close to our estimate, but not within
mutual error bars. The ratio of estimated amplitudes for off-lattice polygons from [22]
and [23] give quite different results. However, it is not clear that our models are in the
same universality class as these off-lattice models. In addition, the comparison may
also be affected by differences in estimated entropic exponents in these studies.

5. Conclusions

We have studied the ratio of probabilities of different knot types. The scaling
assumption in equation (1) indicates that the limit of this ratio should be an amplitude
ratio and thus universal. Using the GAS algorithm we have formed direct estimates
of the number of polygons of various prime knot types on three different lattices.
Extrapolating from these estimates provides numerical evidence that the probability
ratios are universal — depending only on the knot types and the universality class
of the underlying model. In particular we find that a long polygon is about 28 times
more likely to be a trefoil than a figure-eight.

There are a number of extensions of this work that we would like to pursue —
extending these results to composite knots and links, and also to perform similar
analyses of data from off-lattice models.
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