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allows many generalisations including to models with other types of punctures and to

a model with any fixed number of nested rotated staircase punctures.
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1. Introduction

Exactly solved models are special, important and relatively rare in physics. In many

cases real life phenomena are modelled by simplified solvable models, which despite the

simplifications can give us great insight into the behaviour of the more complicated

fully-fledged problem. A well-known long standing problem in statistical mechanics is

to find the perimeter generating function for self-avoiding polygons on a regular two-

dimensional lattice. Several simplifications of this problem are solvable [1], but all the

simpler models impose an effective directedness or other constraint that reduces the

problem, in essence, to a one-dimensional problem. A very important and interesting

insight gained from these simple models (staircase polygons in particular) is the

conjecture for the limit distribution of area moments and scaling function for self-

avoiding polygons [2, 3, 4].

Here we report on the discovery of the exact perimeter generating function for a

model of punctured staircase polygons. This solution was first conjectured on the basis

of series analysis (see Sections 3 and 4) and subsequently proved using combinatorial

arguments (Section 5). The combinatorial construction admits many generalisations

including to models with other types of punctures and to a model with any fixed number

of nested rotated staircase punctures (Section 6).

A staircase polygon can be viewed as the intersection of two directed walks starting

at the origin, moving only to the right or up and terminating once the walks join at a

vertex. The perimeter length of a staircase polygon is even. Let us denote by cn the

number of staircase polygons of perimeter 2n. It is well known that cn+1 = Cn = 1
n+1

(

2n
n

)

are given by the Catalan numbers Cn and that the associated half-perimeter generating

function is

P (x) =
∑

n

cnx
n =

1

2

(

1 − 2x −
√

1 − 4x
)

∝ (1 − µx)2−α, (1)

where the connective constant µ = 4 and the critical exponent α = 3/2. From this

it readily follows that cn grows asymptotically as cn ∼ ASµ
nnα−3, where the critical

amplitude AS = −1/ (2Γ(α − 2)) = 1/(4
√

π) ≈ 0.141.

Punctured staircase polygons [5] are staircase polygons with internal holes which are

also staircase polygons (the polygons and holes are mutually- as well as self-avoiding).

In a recent paper [6] we studied the problem of staircase polygons with a single hole

and found that the perimeter generating function can be expressed as the solution of

an 8th order linear ODE. Here we will study the case with a single hole but where the

internal polygon is rotated by 90° with respect to the main axis. So the internal staircase

polygon is the intersection of two walks starting at a vertex (the top left-most vertex

of the internal polygon) and taking steps only to the right and down. We will refer

to these objects as rotated punctured staircase polygons. In Figure 1 we have shown

an example of each of the two types of punctured polygons. The perimeter length of

a punctured polygon is the sum of the outer perimeter and the perimeter of the hole.

We denote by pn the number of punctured staircase polygons of perimeter 2n and by
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Figure 1. The left panel shows a typical punctured staircase polygon and the right

panel a rotated punctured staircase polygon.

rn the number of rotated punctured staircase polygons of perimeter 2n. The associated

generating functions are P(x) =
∑

pnx
n and PRot(x) =

∑

rnx
n, respectively.

It is intuitively clear that since staircase polygons are elongated along the diagonal

of growth there are many more restrictions on the placement of the rotated polygon

and hence we expect rn ≤ pn. The difference between the two cases can be made

more explicit by noting that any polygon has a minimal bounding rectangle which is

the smallest rectangle completely containing the polygon. In the rotated case the outer

polygon is excluded from the minimal bounding rectangle of the hole while in the aligned

case the outer polygon may enter the minimal bounding rectangle of the hole (as is the

case in the left panel of Figure 1).

In [5] it was proved that the connective constant µ of k-punctured polygons

(polygons with k holes) is the same as the connective constant of unpunctured polygons.

Numerical evidence clearly indicated that the critical exponent α increased by 3/2 per

puncture (this was proved for a single puncture and conjectured in the general case). In

recent work Richard, Jensen and Guttmann [7, Theorem 2] proved the exponent formula

for a finite number of punctures and proved an exact formula for the leading amplitude

of punctured staircase polygons. It it worth noting that the proofs in these papers never

considered restrictions on the placement of the internal polygon, that is, the hole could

be placed in any way one pleases. The results, therefore, carry over unaltered to the

problem of rotated punctured staircase polygons. Interestingly, this means that the

leading asymptotic forms of rn and pn are exactly the same; any differences arise only

from sub-dominant correction terms. In particular the dominant singular behaviour of

P(x) and PRot(x) is a simple pole at x = xc = 1/4 and thus pn ∼ AP4n and rn ∼ AR4n,

where we expect that AP = AR.

The rest of the paper is organised as follows. In Section 2 we briefly describe the

algorithm used to count the number of punctured polygons. Section 3 describes how we

found the underlying ODE and gives a brief review of its critical properties. Then, in

Section 4, we give the closed form solution for the generating function. Section 5 contains
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Table 1. The number rn of rotated punctured staircase polygons.

n rn n rn n rn

8 1 19 201099320 30 1761048979430768

9 12 20 889594210 31 7344148372848448

10 94 21 3896177956 32 30553399525543917

11 604 22 16920602244 33 126830292729207600

12 3461 23 72954802376 34 525432597401411262

13 18412 24 312595497011 35 2172784129140676636

14 93016 25 1332153819572 36 8969907982862433143

15 452500 26 5650155211024 37 36973458557889104804

16 2139230 27 23864065957572 38 152186202561672129880

17 9890404 28 100418115489408 39 625590993787945461804

18 44921002 29 421151065542880 40 2568489385305061560252

an outline of the rigorous combinatorial derivation of the generating function while

Section 6 contains a brief outline of results obtained by generalising the combinatorial

formula. Finally, in Section 7 we briefly discuss our findings.

2. Computer enumeration

Rotated punctured staircase polygons were counted using a generic algorithm designed

to count punctured convex polygons, which in turn was based on an algorithm for

counting general self-avoiding polygons [8], but with restrictions so as to limit the count

to various types of convex polygons. A polygon is convex if the perimeter is equal to

that of its minimal bounding rectangle (the smallest rectangle into which one can fit

the polygon). A staircase polygon is a restricted convex polygon and is produced by

demanding that two diagonally opposite corners of the minimal bounding rectangle are

part of the convex polygon. A standard punctured staircase polygon is then produced by

demanding that the outer and inner polygons must include, say, the lower left and upper

right corners of their respective minimal bounding rectangles. For rotated punctured

staircase polygons the inner polygon must include the upper left and lower right corners

as illustrated in Figure 1. The algorithm used to count punctured staircase polygons

(the aligned case) is described in [6, 9].

Using this algorithm we calculated rn up to half-perimeter n = 125. Since the

smallest punctured polygon has half-perimeter 8 this gives us a 118 non-zero terms. In

Table 1 we have listed the first few values of rn. For comparison we mention that the

first discrepancy with pn is at n = 12 and p12 − r12 = 2. Also note, for comparison, that

p40/r40 ≈ 1.041.
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3. The Fuchsian differential equation

Recently Zenine et al [10, 11, 12] used series analysis to obtain linear ODEs satisfied

by the 3- and 4-particle contributions χ(3) and χ(4) to the Ising model susceptibility. In

[6, 9] we used their method to find linear ODEs for the perimeter generating functions

of punctured staircase polygons and three-choice polygons. We have used this technique

to find a linear ODE satisfied by the generating function PRot(x) for rotated punctured

staircase polygons. We briefly outline the method here. Starting from a (long) series

expansion for a function G(x) we look for a linear differential equation of order m of

the form
m

∑

k=0

Pk(x)
dk

dxk
G(x) = 0, (2)

such that G(x) is a solution to this homogeneous linear differential equation, where

the Pk(x) are polynomials. In order to make it as simple as possible we start by

searching for a Fuchsian [13] equation. Such equations have only regular singular points.

Computationally the Fuchsian assumption simplifies the search for a solution. From the

general theory of Fuchsian [13] equations it follows that the degree of Pk(x) is at most

n−m+k where n is the degree of Pm(x). To simplify matters further (reduce the order

of the unknown polynomials) it is advantageous to explicitly assume that the origin

and x = xc = 1/4 are regular singular points and to set Pk(x) = Qk(x)S(x)k, where

S(x) = x(1 − 4x). Thus when searching for a solution of Fuchsian type there are only

two parameters, namely the order m of the differential equation and the degree qm of the

polynomial Qm(x). Since the degree of the imposed factor S(x) is 2 the restriction on

the degree of Pk(x) means that the degree of Qk(x) is at most qm+m−k. The number of

unknown coefficients is thus L =
∑m

j=0(qm+j+1)−1 = (m+1)qm+(m+2)(m+1)/2−1,

where we get one less unknown by demanding that the leading coefficient in Qm(x) is 1.

We then search systematically for solutions by varying m and qm. In this way we

found a solution with m = 4 and qm = 4, which required the determination of only

L = 34 unknown coefficients. We have 118 non-zero terms in the half-perimeter series

and thus have 84 additional terms with which to check the correctness of our solution.

This should be contrasted with punctured staircase polygons [6] where we first found

a solution with m = 10 and qm = 11, which required the determination of L = 186

unknown coefficients. The lowest order ODE we found had order m = 8 with qm = 27,

which requires the determination of 287 unknown coefficients. So clearly the restrictions

imposed by the rotation of the internal polygon results in a much simpler problem (a

priori there was obviously no reason to believe this would be the case).

The (half)-perimeter generating function PRot(x) for rotated punctured staircase

polygons is a solution to the linear differential equation of order 4

4
∑

k=0

Pn(x)
dk

dxk
PRot(x) = 0 (3)
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Table 2. Critical exponents for the regular singular points of the Fuchsian differential

equation satisfied by PRot(x).

Singularity Exponents

x = 0 −8 −7 −4 0

x = 1/4 −1 −3/4 −1/2 −1/4

x = −3/4 0 1/2 1 2

1/x = 0 6 3/2 7 15/2

Q4(x) = 0 0 1 2 3

with

P4(x) = x2 (1−4 x)4 (3+4x)
(

−252+300x+2365x2+1800x3
)

,

P3(x) = x(1−4x)3
(

5292+1872x−56127x2−115700x3−97280x4−28800x5
)

,

P2(x) = 24(1−4x)2
(

−378−189 x+5565x2+4085x3+1480x4+4090x5+3600x6
)

, (4)

P1(x) = 24(1−4x)
(

−126−1113x+1250x2+24540x3−2805x4−44960x5−28800x6
)

,

P0(x) = 24
(

504+672x−12200x2−38475x3+112600x4+228800x5+115200x6
)

.

The singular points of the differential equation are given by the roots of P4(x). One

can easily check that all the singularities (including x = ∞) are regular singular points

so equation (3) is indeed of the Fuchsian type. It is thus possible using the method

of Frobenius to obtain from the indicial equation the critical exponents at the singular

points. These are listed in Table 2.

We shall now consider the local solutions to the differential equation around each

singularity. Recall that in general it is known [14, 13] that if the indicial equation

yields k critical exponents which differ by an integer, then the local solutions may

contain logarithmic terms up to logk−1. However, we have found in the analysis of

previous problems that for the Fuchsian equations of the type described by equation (3)

only multiple roots of the indicial equation give rise to logarithmic terms in the local

solution around a given singularity, so that a root of multiplicity k gives rise to

logarithmic terms up to logk−1. In particular this means that near any of the 3 roots of

Q4(x) = −252+300x+2365x2+1800x3, the local solutions have no logarithmic terms

and the solutions are thus analytic since all the exponents are positive integers. The

roots of Q4(x) are thus apparent singularities [13, 14] of the Fuchsian equation (3). This

will become completely self-evident in the next section where we present a closed form

solution of PRot(x). So the points of interest are the physical critical point x = xc = 1/4,

where the dominant singularity is a simple pole, modified by 3 correction terms with

exponents that increase in steps of 1/4. At the non-physical critical point x = −3/4 the

function has a simple square root singularity.
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4. The solution to the ODE

Given an ODE it is often useful to look for simple solutions. In this case we first looked

for solutions of the form P (x)/(1−4x)γ , where P (x) is a polynomial and γ = 1, 3/4, 1/2

or 1/4. In this fashion we discovered the solutions F1(x) and F2(x) listed below. This

gave us great hope that we could find a solution to the full problem since the two simple

solutions can be used to write the ODE as a product of three differential operators of

order 2, 1 and 1, respectively. As it turned out the dsolve package in Maple was up

to the task and readily found four solutions, including F1(x) and F2(x). The remaining

two solutions as supplied by dsolve were quite complicated expressions, but with a bit

of work we managed to simplify (largely by hand) to the expressions F3(x) and F4(x)

given below.

The four linearly independent solutions to the ODE are:

F1(x) =
1 − 8 x + 16 x2 − 4 x3

1 − 4 x
, (5a)

F2(x) =
1 − 6 x + 6 x2

√
1 − 4 x

, (5b)

F3(x) =
1√
2

√

2 +
√

3 + 4 x
(

3 − 8 x + 2 x2 −
√

3 + 4 x (1 − 2 x)
)

(1 − 4 x)3/4
, (5c)

F4(x) =
1√
2

(

3 − 8 x + 2 x2 +
√

3 + 4 x (1 − 2 x)
)

(1 − 4 x)1/4
√

2 +
√

3 + 4 x
, (5d)

and the generating function is simply

PRot(x) = −1

4
[F1(x) − F2(x) + F3(x) − F4(x)] ; (6)

we prove this formula in the next section. Obviously, PRot(x) is dominated asymptoti-

cally by −1
4
F1(x), so the leading amplitude AR = −1

4
[(1 − 4x)F1(x)]x=1/4 /Γ(1) = 1/64,

which is exactly the same as the leading amplitude of punctured staircase polygons and

equal to the proved formula [7].

5. Combinatorial construction of a staircase polygon with a rotated

staircase hole

Before we consider the construction, it is important to note is that because the inner

polygon (the hole) is rotated 90◦ from the outer polygon, it follows that the outer polygon

must avoid not only the inner polygon, but also its minimal bounding rectangle. This

considerably simplifies the problem.

We build the punctured polygon in four steps (see Figure 2).

a: Construct the inner polygon, enumerating it by total perimeter, width and height.

A wasp-waist decomposition or a column-by-column construction gives the following
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a b c d

Figure 2. The four stages in the combinatorial construction of a rotated staircase

polygon. We start (a) from a staircase polygon sitting in it’s minimal bounding

rectangle. Next (b) we attach directed walks above and below the rectangle and (c)

connect the walks to form an outer polygon. Finally (d) we complete the construction

by attaching staircase factors on the left and right sides of the outer polygon.

generating function [1]:

P (w, h; x, y) = x2y2wh + (x2w + y2h)P (w, h; x, y) + P (w, h; x, y)2

=
1

2

(

1−x2w−y2h −
√

1−2x2w−2y2h+x4w2−x2y2wh+y4h2
)

(7)

where x, y are conjugate to the number of horizontal and vertical bonds and w, h are

conjugate to the width and height of the associated minimum bounding rectangle.

b: We then attach two directed paths to the bounding rectangle of the polygon; one

above and one below. If the polygon has width w, then each of these paths must

start and end with a horizontal bond, contain a total of w + 2 horizontal bonds.

The generating function of a directed path is

D(x, y) =
1

1 − x − y
=

∑

n

xn

(1 − y)n+1
. (8)

Hence the generating function of directed walks with exactly w horizontal bonds is

xw/(1 − y)w+1. So if we wish to attach a directed path of width w + 2 above

a staircase polygon of width w, then the corresponding generating function is

P (wx/(1 − y), h; x, y) · x2/(1 − y). If we attach two directed paths (one above

and one below) we obtain P (wx2/(1 − y)2, h; x, y) · x4/(1 − y)2.

Next we have to insert a (positive) number of rows between the directed paths and

the bounding rectangle. We also need to keep track of some extra variables. In

particular we need to know the height of the leftmost and rightmost columns (the

distances between the end-points of the directed walks). Let these be counted by

the variables s and t, respectively.

Inserting a positive number of rows between the directed paths and the bounding

rectangle is equivalent to multiplying by
(

st
1−st

)2
. Since each directed path adds to

either the height of the leftmost or rightmost column we need to modify what we
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did above. In particular the generating function of the upper directed path becomes

(1−x−yt)−1 and that of the lower path becomes (1−x−ys)−1. Thus we arrive at

Q(s, t; x, y) =

(

st

1 − st

)2
x4

(1 − sy)(1 − ty)
P

(

x2

(1 − sy)(1 − ty)
, st, x, y

)

(9)

where Q is the generating function of open configurations as drawn in Figure 2(b).

c: I the next step we simply add vertical bonds to each of the open ends thus

connecting the directed paths so as to form a closed object. This corresponds

to mapping s 7→ sy and t 7→ ty. Hence our generating function is

R(s, t; x, y) = Q(sy, ty; x, y)

=

(

sty2

1−sty2

)2
x4

(1−sy2)(1−ty2)
P

(

x2

(1−sy2)(1−ty2)
, sty2, x, y

)

(10)

which counts the closed configurations as drawn in Figure 2(c).

d: The punctured staircase polygons are completed by adding left and right staircase

polygon factors to each side. Roughly speaking, this is done by substituting

s 7→ σ(x, y) and t 7→ σ(x, y) where σ is very nearly the staircase polygon generating

function.

More specifically we do a Temperley/Bousquet-Mélou-like column-by-column

construction to obtain the appropriate generating function. In [1] the functional

equation used to enumerate staircase polygons by perimeter and area is given by

F (s) = A(s) +
x2s

(1 − s)(1 − sy2)
(F (1) − F (s)) (11)

where A(s) is the “seed” configuration to which we append columns and F (s) is

the generating function of the resulting staircase polygons.

This functional equation can be solved using the kernel method. First take all the

F (s) terms to the left-hand side of the equation:

F (s)

(

1 +
x2s

(1 − s)(1 − sy2)

)

= A(s) +
x2s

(1 − s)(1 − sy2)
F (1) (12)

Now set s to a value that takes the coefficient of F (s) (the kernel) to be zero. This

value is

σ(x, y) =
1

2y2

(

1−x2+y2 −
√

1−2x2−2y2−2x2y2+x4+y4
)

, (13)

which is very nearly the staircase polygon generating function. Setting s to this

value leaves

0 = A(σ) +
x2σ

(1 − σ)(1 − σy2)
F (1) = A(σ) − F (1) (14)

where we have made use of the fact that x2σ = −(1 − σ)(1 − σy2). We do not

care about F (s) and only want F (1) (i.e. we do not need to know the leftmost and

rightmost column heights of our punctured polygons) and we are done.
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The generating function of staircase polygons with a rotated staircase hole is given

by

S(x, y) = R(σ, σ; x, y) =

(

σ2y2

1 − σ2y2

)2
x4

(1 − σy2)2
P

(

x2

(1 − σy2)2
, σ2y2, x, y

)

(15)

Of course, the punctured polygons always have an even number of horizontal and vertical

bonds, so we can replace x 7→ √
x and y 7→ √

y to obtain the half-perimeter generating

function:

S(x, y) =

(

σ2y

1 − σ2y

)2
x2

(1 − σy)2
P

(

x

(1 − σy)2
, σ2y, x, y

)

(16)

where P is the solution of P = xywh + (xw + yh)P + P 2 and σ is the solution of

(1 − σ)(1 − yσ) + xσ = 0. One may verify that setting y = x does indeed recover the

generating function given in equation (6)

6. Generalisations of the combinatorial results

Here we shall consider three generalisations of the combinatorial result. In the first

generalisation we look at the case where we do not count the perimeter of the hole

(in other words the perimeter of the punctured polygon is equal to the perimeter of

the external polygon only). In the second generalisation we look at what happens if

we replace the internal polygon by a convex polygon of a different type. In the third

generalisation we show that the formula (16) can be used to derive the generating

function for nested staircase polygons.

The first generalisation is simply obtained by noting that in formula (16) the

variables x and y ‘counting’ the perimeter can be separated in order to count the

external and internal perimeter. In fact going back through the derivation we note

that in equation (16) only the last (right-most) occurrence of x and y come from the

internal polygon (all the other occurrences arise from the outer polygon). We thus find

that the generating function for rotated punctured staircase polygons counted only by

external perimeter is

S(x, y) =

(

σ2y

1 − σ2y

)2
x2

(1 − σy)2
P

(

x

(1 − σy)2
, σ2y, 1, 1

)

(17)

Analysis of this solution shows that again it is the solution to a 4th order ODE and

there is a major change in the critical behaviour. The function now has a square root

singularity at x = 4/25, that is a behaviour ∝
√

4 − 25x, so the connective constant

changes from 4 to 25/4. There is still a singularity at x = 1/4, and interestingly the

behaviour around it is quite complicated with exponents −1, −1/2, 0 and 1/2.

The second generalisation is obtained by noting that in the derivation of

formula (16) we never really used the fact that the internal polygon was a staircase

polygon we only relied on the fact that the external polygon is excluded from the minimal

bounding rectangle of the hole. This means that we can replace P (w, h, x, y) with the

generating function of another type of polygon provided we know how to enumerate



Punctured staircase polygons 11

Table 3. The critical point and exponents of staircase polygons with a puncture which

is a convex polygon. The left-most columns give the behaviour of the convex polygon

used for the puncture while the right-most columns is the behaviour once ‘wrapped’

in an outer staircase polygon.

Puncture type xc Exponent xc Exponent

Rectangle 1 −2 1/4 −1,−1/2

Ferrers 1/2 −1 1/4 −1,−1/2

Stack (3−
√

5)/2 −1 1/4 −1,−1/2

Staircase 1/4 1/2 1/4 −1,−3/4,−1/2,−1/4

Directed 1/4 −1/2 1/4 −5/4,−3/4

Convex 1/4 −2,−3/2 1/4 −2,−7/4,−3/2,−5/4

them by width, height and perimeter. In Table 3 we summarise the results for the

critical behaviour at the leading singularity when the puncture is a convex polygon.

Firstly we note that the dominant singularity remains at x = 1/4. However, the critical

exponent changes depending on the asymptotic growth of the generating function of

the puncture. When the asymptotic growth of the puncture is slower than or equal

to that of staircase polygons we have a simple pole at x = 1/4. However, in the case

of directed convex and the case of convex polygons (both of which are asymptotically

more numerous than staircase polygons) the critical exponent changes to reflect a faster

growth in the number of the associated punctured polygons.

The third generalisation is obtained by noting that formula (16) can be iterated.

This gives us (at least in principle) solutions for any fixed number of staircase polygons

nested within one another. Where at each level the outer polygon avoids the minimal

bounding rectangle of the inner polygon(s). In order to prove the iteration procedure

we note the following facts:

(i) As already noted above the x and y variables can easily be distinguished so as to

count the outer and inner perimeters separately.

(ii) We don’t really need to keep track of the internal perimeter in detail.

(iii) Because of the convexity constraint the (x, y)-variables from the outer polygon

automatically counts the width and height so the w and h variables in the original

P are not really needed.

(iv) We have no restriction on what we put inside the hole. In particular we could put

a staircase polygon with a rotated staircase polygon into the hole.

With this in mind we can see formula (16) as an operator on generating functions

along the lines of “wrap me in a staircase polygons but don’t enter my minimal bounding

rectangle”,

T [P (x, y)] 7→ B(x, y)P (xz/(1−σy)2, σ2yz), (18)
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where B(x, y) is the prefactor (σ2y/(1−σ2y))2x2/(1−σy)2. By iteration we then find

that the generating function for k-nested rotated staircase polygons is

Pk(x, y) = T [Pk−1(x, y)], with P0(x, y) = P (x, y). (19)

The solution for the twice nested case P2(z) = P2(z, z) has been confirmed by

enumeration results. The formula (19) gives us (at least in principle) solutions for any

fixed number of staircase polygons nested within one another. In reality the solutions are

pretty nasty and so far we have determined mainly the leading asymptotic behaviour.

In summary we find that the generating functions Pk(z) = Pk(z, z) have a singularity at

z = 1/4 with leading exponent −2 + 1/2k−1. We have confirmed the exponent value for

k up to 10 by doing formal expansions around z = 1/4. It appears that the singularity

is of order 2k+1 and that the full set of exponents is given by −2 + 1/2k−1 + j/2k+1,

j = 0, . . . , 2k+1 − 1. We have already seen that this behaviour is true for P1(z) from

the closed formed solution. For k = 2 we took the formula for P2(z) and expanded in a

series to order 1000. Using the method described in Section 3 we managed to find the

exact ODE which is of order 8 as expected with degree of the leading polynomial equal

to 66. Solving the indicial equation confirms that the exponents at z = 1/4 are −12/8,

−11/8, −10/8, −9/8, −8/8, −7/8, −6/8, and −5/8 in complete agreement with our

conjecture.

7. Summary and Discussion

Using series expansions for rotated punctured staircase polygons we found that the

half-perimeter generating function PRot(x) satisfies a fourth order Fuchsian ODE. We

then solved this ODE and found a closed form solution for PRot(x). The solution is

dominated by a function −F1(x)/4 with a simple root at x = xc = 1/4. There are three

sub-dominant correction terms −F3(x)/4 which has critical exponent −3/4, F2(x)/4

with exponent −1/2 and F4(x)/4 with exponent −1/4. In addition there is a square

root singularity at x = −3/4.

This should be compared to our analysis [6] of the ODE satisfied by the generating

function P(x) for punctured staircase polygons, which showed that near the physical

critical point x = xc = 1/4

P(x) ∼ A(x)

(1 − 4x)
+

B(x) + C(x) log(1 − 4x)√
1 − 4x

, (20)

where A(x), B(x) and C(x) are analytic in a neighbourhood of xc. In addition P(x)

has a singularity on the negative x-axis, at x = x− = −1/4 with the singular behaviour

P(x) ∼ D(x)(1 + 4x)13/2, (21)

where again D(x) is analytic near x−. Finally, the ODE also had a pair of singularities

at x = ±i/2 and at the roots of 1 + x + 7x2 (see [6] for further details), but since

these singularities lie in the complex plane outside the physical disc |x| ≤ xc their

contributions are exponentially suppressed asymptotically.
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We argued in the introduction and demonstrated in Section 4 that pn and rn have

exactly the same asymptotic form to leading order. Any differences between the two

problems only appear in the sub-dominant correction terms. The dominant correction

term for P(x) is ∝ log(1− 4x)/
√

1 − 4x, which is weaker than the first correction term

−F3(x)/4 ∝ (1−4x)−3/4 for PRot(x). The amplitudes of both these correction terms are

negative, namely, −3
√

3/(32π3/2) ≈ −0.029 and −1
4

[

(1 − 4x)3/4F3(x)
]

x=xc

/Γ(3/4) =

−1/
(

16
√

2Γ(3/4)
)

≈ −0.036, respectively. So this bears out our intuition that rn ≤ pn,

since the placement of a rotated inner staircase polygon faces more restrictions than the

placement of aligned inner and outer staircase polygons. These differences indicate that

combinatorial arguments for a proof of sub-dominant behaviour must be quite subtle!

The combinatorial derivation of the expression for PRot(x) turned out to be very

interesting. In particular it allowed us to prove exact results for several generalisations

of the original model. In the case where we only count the external perimeter we

find a change in the value of dominant singularity to xc = 4/25. There is still a

singularity at x = 1/4 and interestingly the behaviour at this (now sub-dominant)

critical point is much more complicated than at the leading singularity. We also studied

the case where the puncture was replaced by a different type of convex polygon (with the

external staircase polygon avoiding its minimal bounding rectangle). The major finding

of interest was that the dominant singularity remained at x = xc = 1/4. However,

the critical exponent changed depending on the asymptotic growth of the generating

function of the puncture. When the asymptotic growth of the puncture is slower than

or equal to that of staircase polygons we have a simple pole at x = xc = 1/4. However,

in the case of directed convex and the case of convex polygons (both of which are

asymptotically more numerous than staircase polygons) the critical exponent changes

to reflect a faster growth in the number of the associated punctured polygons. Finally, we

looked at the case of nested staircase polygons in which case we can derive formulas for

a fixed number k of nested staircase polygons. We found that the singularity remains

at x = 1/4 with a leading exponent −2 + 1/2k−1; while we have observed this for

1 ≤ k ≤ 10, we have not proved it.

Another interesting open question is the behaviour of staircase polygons with an

arbitrary number of nested polygons (that is the function formed by summing Pk(x)).

This work can also be extended to different types of outer polygons. The method

of Section 5 should generalise to other types of convex polygons. Also it might be

interesting to look at counts by area as well.

E-mail or WWW retrieval of series

The series for the generating function studied in this paper can be obtained via e-mail

by sending a request to I.Jensen@ms.unimelb.edu.au or via the world wide web on the

URL http://www.ms.unimelb.edu.au/˜iwan/ by following the instructions.
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