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Abstract. In this paper we define two statistics a4 (w) and a—(w), the positive
and negative atmospheres of a lattice polygon w of fixed length n. These statistics
have the property that (a4 (w))/{(a—(w)) = pnt2/pn, where py is the number of
polygons of length n, counted modulo translations. We use the pivot algorithm to
sample polygons and to compute the corresponding average atmospheres. Using
this data, we directly estimate the growth constants of polygons in two and three
dimensions. We find that

{ 2.63806 = 0.00012, in 2 dimensions;

/J/ =

4.683980 + 0.000042, in 3 dimensions. )
We also compute atmospheres of polygons of fixed knot type K sampled by the
BFACF algorithm. We discuss the implications of our results and show that
different knot types have atmospheres which behave dramatically differently at
small values of n.
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1. Introduction

Lattice polygons are models of ring polymers with excluded volume and remains a
mathematically rich and unsolved model in statistical mechanics [9, 10, 6]. This model
poses a basic combinatorial question, namely, how many distinct polygons of length n
are there in the hypercubic lattice [15]? This question is related to the combinatorics
of self-avoiding walks. If ¢, is the number of self-avoiding walks from the origin, of
length n, then it is known that the limit

p= lim c/m (2)

n
n—oo

exists in d dimensions and g > 1 in dimensions d > 1 [16]. The constant p is the
growth constant of the self-avoiding walk, while x = log p is the connective constant
[4]. Several basic properties of ¢, are known: for example, it is known that the limit

p? = lim cuqa/cn (3)

exists [25, 26], but the stronger result p = lim,_,o ¢y41/¢, remains unproven in
the square or cubic lattice [14] (but is known for non-bipartite lattices such as the
triangular lattice [30]). It has been also established that ¢,4+1 > ¢, [36] in general.
There are overwhelming numerical and other evidence that

eo = Ap"n " (1+0(1)) (4)

§ To whom correspondence should be addressed (rensburg@yorku.ca)
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where ~ is refered to as the entropic exponent of the self-avoiding walk.

Similarly lattice polygons have been the subject of much attention over the last
fifty years. If p, is the number of polygons of length n in the hypercubic lattice
(counted up to translational invariance), then the limit

p= lim p;/" (5)

n—oo

is known to exist [15], and the growth constant of polygons is equal in numerical value
to the growth constant of self-avoiding walks defined in equation (2). It is widely
accepted that the asymptotic growth of p,, is of the form

Pn = An®=2n(1 4 o(1)) (6)
where « is the polygon entropic exponent or the specific heat exponent. The function
pr satisfies

lim Pn+2 2 (7)

3

n—o0 pn

a result due to Kesten [25, 26]; see reference [30] for a simpler proof.

The numerical value of i has been estimated for the square lattice using a variety
of different methods, including computer enumeration and series analysis of lattice
polygons, or grand canonical Monte Carlo simulations (in such simulations polygons
are sampled from a Boltzman distribution over the lenghts of the polygons). The best
estimates for p have been obtained from computer enumeration and series analysis of
polygons (rather than self-avoiding walks).

Series analysis for polygons [23, 24] gives u and « to very high precision:||

© = 2.63815852927 £+ 0.00000000001, (8)
o = 0.5000005 % 0.0000010. (9)

The exponent o has also been estimated from conformal field theory and Coulomb
gas methods, which gives the exact value & = 1/2 in two dimensions [33, 34].

Determining p from self-avoiding walk data is not so successful. The best estimate
for 1 and the entropic exponent 7 in equation (4) obtained from self-avoiding walk
data are

1= 2.6381587 + 0.0000007, (10)
~ = 1.34372 & 0.00010. (11)
as determined in reference [13].
Less precise estimates for ;4 and « are available in three dimensions. Clisby, Liang
and Slade [5] estimated that
= 4.684044 £+ 0.000011, (12)
a~0.24 (13)
by collecting series data on the self-avoiding walk using the lace expansion. The
exponent « has also been determined by field theoretic means [12, 27|, giving
a = 0.237+ 0.002.
In reference [40] a new statistic called the atmosphere of a self-avoiding walk was

introduced. This statistic was shown (numerically) to converge to the growth constant
w as the length of the walk increases, and it is possible to determine estimates of u

|| Error bars and confidence intervals are those claimed in the original references. In this paper, we
state our own error bars as 67% statistical confidence intervals.
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and v using canonical Monte Carlo simulation (of fixed length self-avoiding walks)
[29]. The basic idea underlying the atmosphere of a self-avoiding walk is to measure
the number of ways that an edge may be added to a walk of length n to create a walk
of length n + 1.

The atmosphere of an (oriented) self-avoiding walk is defined as the set of edges
which may be appended onto its last vertex to extend the walk by one step while
maintaining self-avoidance. Denote the size of the atmosphere of a walk w by a(w).
Then the mean atmosphere of walks of length n is given by

(a(w))n = cn+1/cn. (14)
We shall often abuse our notation by using the term “atmosphere” to refer to both
the atmosphere of the walk, and to the cardinality of the set of atmospheric edges.
Equation (4) suggests that (a(w)), can be interpreted as a “local estimate” of p.
Assuming that ¢, has an asymptotic form given by equation (4), then

(@)n = pt (1 + VT_I + 0(1/n)> . (15)

Consequently, by obtaining precise estimates of the mean atmosphere of self-avoiding
walks at various fized lengths, estimates of both p and v were obtained:

1 = 2.63816 = 0.00006,
~v = 1.345 + 0.002. (16)

These results verify digits obtained by computer and series enumeration [13] above in
equation (10).

Previously, Monte Carlo estimates for p and ~« have been made using
grand canonical Monte Carlo algorithms which samples self-avoiding walks from a
distribution over their lengths. The most well-known such algorithm is the Beretti-
Sokal algorithm [3]. This algorithm has produced estimates of the connective constant
as follows [35]:

1= 2.638164 = 0.000014, (17)

with error bars a combined 95% statistical confidence interval and an estimated
systematic error due to uncertainties in the model. More recently the [11, 39] PERM
algorithm has been used to find precise estimates of ;1 and 7 in three dimensions and
higher.

In Section 2 of this paper we define a new statistic for polygons which plays the
same role as the atmosphere statistic in walks. We show that the mean atmospheres
of a polygon can be used to estimate p and « in equation (6). Data were collected
for polygons on the square and cubic lattices in two and in three dimensions, and by
analysing the data (see Section 3), we estimate that

© = 2.63806 £ 0.00012, (18)
a = 0.532+ 0.027

in two dimensions, and
@ = 4.683980 £ 0.000042, (19)
a=0.248+0.016

in three dimensions. The estimate in three dimensions compare well to estimates
in the literature. For example, reference [17] reported an (unpublished) estimate
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n=+2
-
n=-—2

Figure 1. The atmosphere of a polygon: by adding two edges to the polygon
around the square on the left, a polygon is found which has length increased
by two. The collection of such squares incident with a polygon is its positive
atmosphere. On the other hand, by instead deleting two edges to remove the
square, we obtain a polygon which has length reduced by two. The collection of
such squares incident with a polygon is its negative atmosphere.

© = 4.683907 £+ 0.000022 due to A.J. Guttmann, while the best published estimate
is due to self-avoiding walk enumeration using the lace expansion [5]. This gives
= 4.684043 &+ 0.000012. The estimates in equation (19) above were obtained using
relatively modest computer resources, and are consistent with those in reference [5].

In Section 4 we shift our attention to knotted polygons. The atmospheric statistic
can be used to make numerical estimates of the ratios py,y2(K)/pn(K) of the number of
polygons of length n+2 and length n, and of knot type K. If the entropy of a polygon
of length n is defined by logp, (K), then the logarithm of the ratio py12(K)/pn(K)
is the relative entropy of the polygon, and is a measure of the change in entropy
with increasing n. For example, in Figure 8 we plot numerical estimates of the ratio
Pn+2(0)/prn(0) for unknotted polygons. The data increase at small n and quickly
settles down to a constant. The increase at small n implies that the rate of increase in
logp, (@) increases at small n. This is in constrast with polygons of fixed non-trivial
knot type, as illustrated in for example in Figure 9 for trefoils. The rate of increase in
logp,(31) decreases with increasing n at small values of n before settling down to a
constant within numerical variation. These data also indicate that the growth constant
of a knotted polygon of fixed knot type is independent of knot type, but that the
approach of [p,(K)]'/™ to ux is from below for unknots, and from above for knotted
polygons of fixed non-trivial knot type. We make some final comments in Section
5, and in Appendix I we show how the atmosphere statistic can be generalised to
interacting models of polygons. This technique gives a method for directly estimating
the limiting free energy of an interacting polygon.

2. Atmospheres of polygons

Let w be a polygon, and let e be an edge in the polygon. Incident with e are 2(d—1) unit
squares in the d-dimensional hypercubic lattice. These unit squares are all incident
with w. In particular, any one such unit square S has at least one edge (e) in w. We
say that S is part of the positive atmosphere of w if it has exactly one edge (e) in w and
is otherwise disjoint with w. In this event, one may change w so that it traverses the
other three edges in the boundary of S (see Figure 1). Since these edges are disjoint
with w, a new self-avoiding polygon is obtained, which has length increased by two.
It is also possible that a unit square S incident with w has exactly three
boundary edges in w. These three boundary edges form a three step walk in a LI-
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Figure 2. The atmosphere of a two dimensional polygon. The positive
atmosphere is composed of the darker shaded unit squares. The negative
atmosphere is composed of the lighter shaded unit squares. By adding two edges
in the polygon so that it includes three edges of a positive atmosphere square,
a new polygon is obtained which includes the atmospheric square as part of its
negative atmosphere. By removing two edges from the polygon so that a negative
atmopheric square is removed, a new polygon is obtained which includes the
atmospheric square as part of its positive atmosphere.

conformation. If e is the middle of the edges in this three step walk, then we say .S is
a negative atmospheric square of w incident with e. The collection of all such negative
atmospheric squares incident with w forms the negative atmosphere of w. The positive
and negative atmospheres of a polygon are illustrated in Figure 2.

The action of adding edges to a polygon at a positive atmospheric square, or
deleting edges at a negative atmospheric square, sets up a correspondence between
polygons of length n and of length n + 2. Observe that the addition of two edges at a
positive atmospheric square as in Figure 1 changes that positive atmospheric square
into a negative atmospheric square. Similarly, if edges are deleted to cut a negative
atmospheric square from a polygon as in Figure 1, then that negative atmospheric
square is changed into a positive atmospheric square.

To examine this correspondence between negative and positive atmospheres,
define p,,(a4,a—) to be the number of lattice polygons of length n with ay positive
atmospheric squares, and a_ negative atmospheric squares. Observe that each polygon
has at least two positive atmospheric squares located on the edges with lexicographic
most and least midpoints. There are some polygons with zero negative atmospheric
squares, for example, any polygon that is a geometric rectangle with sides lengths
longer than two has no negative atmospheric squares.

The total number of ways that we can extend the length of a polygon by 2 edges
in this way is ZG%L a+pn(as,a_), and the result is in each case a polygon of length
n + 2. Each polygon of length n 4 2 obtained in this way has at least one negative
atmospheric square, and is the image of exactly a_ polygons if it has a_ negative
atmospheric squares. In other words, each polygon of length n 4 2 with a_ negative
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Pn+2

Pn

Figure 3. Polygons of length n can be mapped to polygons of length p,42 by
adding edges around an atmospheric square. In this schematic diagram, polygons
of length n are mapped to polygons of length n+2 along the arrows. Observe that
each arrow corresponds to a positive atmospheric square on a polygon counted
by pn, or to a negative atmospheric square on a polygon counted by p,4+2. Each
polygon of length n may be mapped to a number of different polygons of length
n+2 by adding the edges round a positive atmospheric square. The total number
of arrows is equal to the number of ways edges can be added around positive
atmospheric squares on polygons of length n. Conversely, by removing edges from
a negative atmospheric square in a polygon of length n+2, a polygon of length n+2
is mapped to a polygon of length n. In the diagram above, moving against each
arrow corresponds to the removal of edges from a negative atmospheric square.
There may be some polygons of length n 4+ 2 without negative atmospheres.
It follows that the number of arrows can be counted by either considering the
addition of edges around positive atmospheric squares on polygons of length n, or
by considering the removal of edges around negative atmospheric squares. This
observation gives equation (23).

atmospheric squares are counted a_ times by the sum Za+ o Gypp(ag,a_). Hence
Z atpn(aq,a-) = Z a—pnt2(ay,a-) (20)
at,a_ ay,a_

where both sums are over all values of a; > 0 and a_ > 0 since Za+ o Dnlag,a_) =

Pn-
To proceed, define the average positive atmosphere of a polygon of length n by

Dasa O+Pnlay,a-)

(ay)n = (21)
Pn
Comparison of this with equation (20) shows that
Pn+2
(a4)n = (a—)n42 p+ . (22)
This may be rearranged to
Pn+-2 _ <CL+>" (23)

Pn <a*>n+2 '
As n — oo this converges to u? (see equation (7)). Hence, estimating the ratio of
atmospheres on the right hand side for a range of values of n, and then extrapolating
in n, will give an estimate of u?.
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n (ay/a_)n (a4 )n (a_Yn Ratio
10 5.3737+0.0079 | 15.3728 £0.0098 | 3.3932+ 0.0048 | 4.5305 =+ 0.0093
16 7.286 +0.018 23.038+0.031 | 4.1385+0.0077 | 5.5668 = 0.0179
20 8.065 £+ 0.027 28.821 £0.049 | 4.8638+0.0110 | 5.926 +0.024
30 8.654 £+ 0.029 43.513+0.050 | 6.9189+0.0142 | 6.289+0.021
40 8.449 4+ 0.026 58.459 £+ 0.051 9.0830 £ 0.0156 | 6.4361+0.0167
50 8.173 £ 0.023 73.544 £ 0.055 11.2410 £ 0.0177 | 6.5425 £ 0.0152
60 7.9324+0.021 88.713+0.064 | 13.4015+0.0198 | 6.6196 £ 0.0146
80 7.6280 £ 0.0153 119.014 £ 0.071 17.725+£0.022 | 6.7145+£0.0124
100 | 7.4566 +0.0132 149.376 £ 0.078 | 22.094+£0.025 | 6.7609+0.0112
120 | 7.3372+0.0116 179.590+£0.091 | 26.494+£0.028 | 6.7785+0.0106
150 | 7.2690+0.0099 | 225.207+0.099 | 32.940+£0.031 | 6.8369 £ 0.0095
200 | 7.1776 £0.0091 300.817+£0.121 | 43.887+0.037 | 6.8544 4 0.0086
250 | 7.1152+£0.0080 | 376.339+£0.140 | 54.834+0.042 | 6.8632+0.0079
300 | 7.1047+£0.0068 | 452.416=+£0.147 | 65.627+0.044 | 6.8937 £ 0.0069
350 | 7.0935+0.0067 | 528.410£0.167 | 76.401+0.051 | 6.9163 & 0.0069
400 | 7.0598 £ 0.0061 603.730£0.177 | 87.424+0.053 | 6.9058 & 0.0063
500 | 7.0458 £ 0.0056 755.49 £ 0.21 109.128 £ 0.063 | 6.9230 £ 0.0060
600 | 7.0334=£0.0052 907.12+0.23 130.852+0.068 | 6.9324 £ 0.0054
700 | 7.0082 =+ 0.0049 1057.95+ 0.25 152.839+0.077 | 6.9220 £ 0.0052
800 | 7.0103 £ 0.0046 1209.63+0.27 | 174.445+0.083 | 6.9342 4 0.0049
900 | 7.0039 =+ 0.0045 1361.13+0.30 196.200+0.093 | 6.9375 £ 0.0049
1000 | 6.9970 £ 0.0034 1512.48+0.25 | 218.150+£0.076 | 6.9332+0.0036
1200 | 6.9877+0.0032 1815.37+£0.29 | 261.681+0.086 | 6.9373+0.0034
1500 | 6.9822+0.0030 2269.94+£0.33 | 326.991+0.099 | 6.9419 £ 0.0032
2000 | 6.9794 £ 0.0026 3027.62+£0.38 | 435.611+0.118 | 6.9503 £ 0.0028
2500 | 6.9761 £ 0.0021 3784.80+£0.39 | 544.403+0.117 | 6.9522 + 0.0022
3000 | 6.97005+0.00194 | 4541.54+0.43 | 653.443+0.132 | 6.9502 £ 0.0021
3500 | 6.97188+0.00181 | 5299.21+0.47 | 761.955+0.146 | 6.9548 £ 0.0020
4000 | 6.96912+0.00168 | 6056.95+ 0.51 870.833£0.153 | 6.9554 +0.0019
5000 | 6.96873+0.00157 | 7571.18£0.59 | 1088.313+0.179 | 6.9568 £0.0017

Table 1. Polygon atmospheres in two dimensions.

Define the average positve atmosphere per edge by (a4 /n), (and similarly for
(a_/n)y). Kesten’s pattern theorem [25, 26] shows that both (a4 /n), and (a_/n),
are bounded as n — oo. If one assumes that these averages approach constants as
n — 0o, then equation (23) may be approximated by

DPn+2 ~

{at/n)n

Pn - (a—/n),’
where the right hand side converges to a constant as m — oo in which case the
approximation becomes exact.

The averages (a+/n)

(24)

(ay)/n can be collected using the pivot algorithm for
polygons at fixed values of n [28]. Since each atmosphere is computed by examining
each edge of a polygon, it follows that atmospheres are typically O(nd) in a d-
dimensional polygon of length n. In constrast, the atmospheres defined for the self-
avoiding walk in reference [40, 20] are O(d).
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Figure 4. The ratio [(a1)n/{(a_)n]"/? plotted against 1/n in the square lattice.
Extrapolation of the data to infinite n is done by a regression with the model 2d-1
to estimate p.

3. Connective constants of polygons on the square and cubic lattice

The pivot algorithm for polygons [28, 22] was used to collect the atmospheric data
in two dimensions (see Table 1) and in three dimensions (see Table 4). The lengths
of polygons was set at values between 10 and 5000, and for each value of n (except
n = 700 and n = 5000), the number of iterations was set at N x 105n with data
collected every [n/10] iterations. The value of N was increased from N = 2 for
n =10 to N =4 for n = 5000.

3.1. Results in 2 dimensions

Data collected in two dimensions are tabulated in Table 1. The ratios of the
atmospheres were also collected, and these are plotted in figure 4 against 1/n. It
appears that the ratio of the atmospheres quickly approaches p? with increasing n.

The data in Table 1 were analysed using weighted least squares. Assuming that
pn = An®721™(1 4 o(1)) suggests fitting the data to the model

ey (o 42) /) (25)
(a-)n
where as is a constant. One would expect that as = a — 2. This model requires a
non-linear least squares analysis and did not behave well numerically.
Instead, we took logarithms on both sides of the last equation to get the model

10g<22+i">_1og,u2+a210g((n+2)/n))+a3/n2, (model 2d-1)  (26)
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Nomin log 12 as x2(df) | Level
10 1.939904 4+ 0.000078 | —1.323 4+ 0.019 | 49.0(26) | 99.6%
16 1.940015 4 0.000081 | —1.406 4 0.025 | 35.2(25) | 91.4%
20 1.940081 4 0.000083 | —1.460 4 0.029 | 28.1(24) | 74.4%
30 1.940092 £ 0.000087 | —1.470 4+ 0.036 | 28.1(23) | 78.5%
40 1.940065 4 0.000090 | —1.444 4+ 0.043 | 27.4(22) | 80.2%
50 1.940078 4 0.000093 | —1.458 +0.049 | 27.2(21) | 83.6%

Table 2. Least squares analysis results: model 2d-1.

where one extra parameter az was inserted to control for deviations in the data for
small values of n. Observe that log((n+2)/n) = 1/n+0(1/n?) so that this is a linear
model in 1/n.

Linear least squares analysis of the data in Table 1 using model 2d-1 (equation
(26)) gave acceptable fits: we tracked the weighted least square error x2(nm,) as a
function of the smallest value of n (n,:,) included in the analysis. This statistic is
distributed as a y2-statistic on df degrees of freedom, where df is the number of data-
points minus the number of parameters in the model. A fit is statistically acceptable
if the least square error is acceptable at the 95% level.

The results of the analysis are given in Table 2. For n,,;, = 16 the fit is acceptable
at the 91.4% level. In this case log u? = 1.9400154-0.000081 (67% statistical confidence
interval). Increasing n,;, first to 20 and then in steps to n,:, = 50 gave better
fits. For ny, > 10 all the regressions gave a value of log u? within the statistical
confidence interval of the regression at n,,;, = 16, but the value of log u? for larger
values of n,,;, settled down to a stable value within the confidence interval of its value
at nyin = 20. We took the result at n,,;, as our best estimate for u: Dividing by 2
and exponentiating gives

1t = 2.63805 = 0.00011 (27)

with a 67% statistical confidence interval.

The value of the parameter ay in model (26) is consistently in the vicinity of —1.5;
this agrees with the expectation that as = o — 2 = —3/2. With increasing n,,;, the
estimate settles on a value that includes —3/2 well inside its confidence interval.

Estimates of the ratio a4 /a_ were also collected in our simulations. Since this
ratio is undefined if a_ = 0, we modified a_ by putting a_ = 1 whenever the negative

Nomiin, log 12 as 2 (df) Level
10 1.938586 4 0.000072 | 4.24540.018 | 1600(26) | 100%
16 1.938108 4 0.000076 | 4.614 4+0.025 | 1379(25) | 100%
20 1.938544 4+ 0.000077 | 4.2424+0.029 | 1012(24) | 100%
30 1.939493 4+ 0.000081 | 3.37540.037 | 236(23) | 100%

40 1.939925 4+ 0.000084 | 2.951 £0.043 | 56.4(22) | 100%
50 1.940094 £+ 0.000087 | 2.775+£0.049 | 27.3(21) | 83.9%
60 1.940138 4+ 0.000090 | 2.726 £ 0.055 | 25.5(20) | 81.8%
80 1.940137 4+ 0.000095 | 2.727 £0.065 | 25.5(19) | 85.6%

Table 3. Least squares analysis results: model 2d-2.
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Figure 5. Scatterplot of P, = n (log ( ZZB ) — log “2) against 1/n. Error bars

have been left away for clarity. p? was set equal to its least squares value in
equation (30). The data points accummulate around —1.5; this is consistent with
a=1/2.

atmosphere of a polygon is zero. Since the probability that a polygon will have
no negative atmospheric squares goes to zero quickly with increasing n, this slight
modification is only relevent at small values of n, and consequently did not disturb
the average at higher values of n. Our estimates are also listed in Table 1. These data
were similarly analysed using the three parameter model

1og<3—+> = logi® +azlog ((n +2)/n)) + as/n®, (model 24-2).  (28)

The results of the regression is given in Table 3. Again, the least square error was
tracked as a function of n,,:,. The regressions only became statistically acceptable at
the 95% level for n.,., = 40, and good fits were obtained for n,,;, = 50 and higher.
By taking the results at n,,;, = 50 as our best estimates, we get

1 = 2.63807 = 0.00012 (29)

with a 67% statistical confidence interval. This demonstrates that the statistic
(ay/a_) can also be tracked and analysed to obtain estimates for .

There are no a priori reasons to accept any one of the above results as our best
estimate, so we averaged them and took the largest confidence interval as an error
bar:

= 2.63806 £+ 0.00012. (30)
This result is consistent with the estimates in equations (8), (10), (16) and (17).
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The exponent « in equation (6) can also be estimated from our data. By equation
(26) we observe that

(1og (%) —10gu2> > log((n+2)/m) +O(1/n),  (31)

and hence by plotting (10g (é‘”)") —log ,u2) /log((n + 2)/n) against 1/n, the Y-

a_VYn

intercept should be as = a — 2 as 1/n — 07. These data are plotted in Figure 5 as a
scatter plot for clarity. The data points accummulate close to —1.5; this is consistent
with the expectation that o = 1/2 in this model. A weighted least squares fit to the
data in Figure 5 using the model

n(log (%) —10g,u2> = (a—2)+%1+z—§ (32)

gives a statistically acceptable regression at the 78% level. The estimate for the specific
heat exponent is 2 — o = —1.468 + 0.027 with a 67% confidence interval. Thus, we
estimate o = 0.532+0.027. Hyperscaling in models of self-avoiding walks is exhibited
in the scaling relation 2 — o« = 1/¢ = dv in d dimensions, where v is the metric
exponent and ¢ is the crossover exponent. Conformal field theory and Coulomb gas
techniques shows that the exact value for the metric exponent is v = 3/4, and thus
¢ =2/3 and a = 1/2 by hyperscaling [33, 34]. These values are consistent with the
numerical estimate of & above, which includes 1/2 within its 95% confidence interval.

3.2. Results in 8 dimensions

We performed similar simulations and calculations in three dimensions. The data
collected in three dimensions are displayed in Table 4.
The model

1og(22+i">_1og,u2—|—a210g((n—|—2)/n))+CL3/7”L2, (model 3d-1) ~ (33)

was examined for the ratios of the atmospheric data in Table 4. Regression data for
this model are listed in Table 5. Even for n,,;, = 10 the regression is acceptable at
the 95% level on 26 degrees of freedom. In this case, the best estimate obtained for u
is

1t = 4.683644 - 0.000037. (34)

Increasing the value of n,,;, to 20 gave 4.683867 +-0.000038, which is outside the error
bar at n,,;, = 10. Further increases in n,,;, did not cause further significant changes
in the estimate, and we take the value at n,,;, = 20 to be our best estimate:

w=4.683867 £ 0.000038. (35)
The model

log <“—+> =log p? + azlog (n + 2)/n)) + as/n?, (model 3d-2).  (36)
a— n

was also examined. Regression data is given in Table 6. The fits were not acceptable

for small values of n,.n, but the quality of the regressions increased with increasing

Nmin and regressions acceptable at the 95% level were obtained for n,,;, > 50. In this

case the best estimate obtained for p is

[ = 4.683972 = 0.000041. (37)
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n

)

(at)

{a-)

Ratio

10
16
20
30
40
50
60
80
100
120
150
200
250
300
350
400
500
600
700
800
900
1000
1200
1500
2000
2500
3000
3500
4000
5000

15.7918 £ 0.0171
21.476 £0.028
23.512 £ 0.038
25.370 £ 0.044
25.339 £ 0.042
24.723 £0.039
24.224 £ 0.035
23.458 £0.028
23.077 £ 0.024
22.862 £ 0.021

22.6420£0.0184

22.4215£0.0163
22.3361£0.0144

22.2695 £ 0.0138

22.2022 £ 0.0125
22.1758 £0.0118
22.1269 £ 0.0105
22.0821 £ 0.0099
22.0839 £+ 0.0093
22.0469 £ 0.0090
22.0442 £ 0.0088
22.0312 £ 0.0066
22.0170 £ 0.0062
21.9997 £ 0.0056
21.9897 £ 0.0050
21.9753 £+ 0.0040
21.9696 £+ 0.0037
21.9627 £ 0.0036
21.9652 £ 0.0033
21.9545 £+ 0.0031

45.4003 £ 0.0146
70.117 £ 0.023
87.117 £ 0.031
130.611 £ 0.040
174.729 + 0.048
219.059 £ 0.055
263.598 £ 0.059
352.742 £ 0.069
442.079+0.079
531.484 £+ 0.089
665.734 £+ 0.096
889.395 £ 0.116
1113.621£0.134
1337.490 £ 0.153
1561.350 £ 0.167
1785.610 £ 0.181
2233.66 £ 0.21
2682.08 £ 0.23
3130.35+£0.25
3578.04 £ 0.28
4026.85 £ 0.31
4474.69 £0.26
5371.08 £ 0.30
6715.97+0.33
8957.19+0.39
11198.70 £ 0.39
13439.49 £ 0.44
15680.75 £ 0.48
17923.15 £ 0.52
22404.56 £ 0.59

3.2247 £ 0.0046
4.0795 £ 0.0055
4.7959 £ 0.0069
6.7335 £ 0.0085
8.7046 £ 0.0096
10.7366 £ 0.0110
12.7390 £ 0.0120
16.8055 £ 0.0142
20.8720 £ 0.0163
24.9350 £ 0.0184
31.049 £0.021
41.285 +0.026
51.457 £0.028
61.650 £ 0.032
71.914 £ 0.035
82.100 £ 0.037
102.529 + 0.042
123.025 £ 0.048
143.325+ 0.053
163.868 + 0.058
184.236 £ 0.064
204.668 = 0.053
245.510 £ 0.060
306.839 & 0.068
408.922 + 0.081
511.163 £ 0.080
613.286 = 0.091
715.523 £ 0.101
817.535 £ 0.111
1022.050 £ 0.125

14.079 £ 0.025
17.188 £ 0.029
18.165 £ 0.033
19.397 £ 0.031
20.073 £0.028
20.403 £ 0.027
20.692 £ 0.025
20.990 £ 0.022
21.180 £ 0.021
21.315 £ 0.020
21.44144+0.0176
21.5428 +£0.0164
21.6418 £0.0143
21.6949 £ 0.0138
21.7113 +£0.0129
21.7492 +£0.0121
21.7856 £+ 0.0110
21.8011 +£0.0104
21.8409 £+ 0.0099
21.8349 + 0.0095
21.8570 £ 0.0093
21.8632 £ 0.0070
21.8772 £ 0.0066
21.8876 £+ 0.0060
21.9044 + 0.0053
21.9083 £+ 0.0042
21.9139 4+ 0.0040
21.9151 £ 0.0038
21.9234 £ 0.0037
21.92124+0.0033

Table 4. Atmospheres in Three Dimensions.

Further increases in n,,;, to 60 gave 4.684092 4+ 0.000042, which is outside the error
bar at n,,;, = 50. Further increases in n,,;, did not cause further significant changes
in this estimate, and we took the value at n,,;, = 60 to be our best estimate:

© = 4.684092 £ 0.000042.

There are no a priori reasons to accept any one of the above results as our best
estimate, so we averaged them and took the largest confidence interval as an error

bar:

(12).

= 4.683980 £ 0.000042.
This result compares well with the estimate by Clisby, Liang and Slade [5] in equation

(38)

(39)

As was the case in two dimensions, our data are consistent with the exponent «

in equation (6). By plotting (10g (

(a4 )n

<a7>n

) - 10gu2) /log((n + 2)/n) against 1/n, and
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Figure 6. The ratio [(at)n/{a—)n]'/? plotted against 1/n in the cubic lattice.

Extrapolation of the data to infinite n is done by a regression with the model 3d-1
to estimate p.

by considering equation (33), it follows that the Y-intercept should be at as = o — 2
as 1/n — 0F. The data are plotted in Figure 7 as a scatter plot.

The data points accummulate close to —1.75; this is consistent with the
expectation that o =~ 0.25 in this model. A weighted least squares fit to the data
in Figure 5 using the model

n(log (%) —10gu2> —a-9+ L+

gives a statistically acceptable regression. The estimate for the specific heat exponent
is 2—a = —1.75254+0.0151 with a 67% confidence interval. Increasing n,;, in the fit
did not change this estimate outside its confidence intervals, and so our best estimate
is @ = 0.248 £ 0.016. These results are consistent with the estimates in reference [5]
where it is estimated that « is in the range 0.23 to 0.24.

(40)

Nomin log 112 as x2(df) | Level
10 3.088153 + 0.000048 | —1.654 £0.0192 | 33.4(26) | 85%
16 3.088237 + 0.000049 | —1.714 £0.0136 | 11.3(25) | 0.8%
20 3.088248 + 0.000050 | —1.723 £0.0158 | 10.7(24) | 0.9%
30 3.088244 + 0.000053 | —1.7204+0.021 | 10.7(23) | 1.4%
40 3.088263 £ 0.000055 | —1.73740.025 9.9(22) 1.2%

Table 5. Least squares analysis results: model 3d-1.
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Figure 7. Scatterplot of P, = n (ZZ—B — log ,uQ) against 1/n. Error bars have

been removed for clarity. p? was set equal to its least squares value in equation
(39). The data points accummulate around —1.77; this is consistent with a ~ 0.23.

4. Relative Free Energy of Knotted Polygons

In this section we turn our attention to polygons in the cubic lattice with fixed knot
type. Knotted polygons have received attention in the literature [31, 32, 41, 38| as
models of knotted polymers.

We define p,, (K) to be the number of lattice polygons of length n and with knot
type K, (counted up to translations in the lattice). The atmospheres of a polygon of
fixed knot type are defined as in section 2, and following the arguments leading up to

Nomin log p1? as x2(df) Level
10 3.087069 + 0.000044 | 3.2151 £0.0099 | 3459(26) | 100%
16 3.086527 + 0.000046 | 3.6196 = 0.0142 | 2678(25) | 100%
20 3.086816 + 0.000047 | 3.3815+0.0163 | 2239(24) | 100%
30 3.087665 £ 0.000050 2.631 +0.022 640(23) 100%

40 | 3.088140+ 0.000052 | 2.176 £0.026 | 80.5(22) | 100%
50 | 3.088293 £0.000054 | 2.019 £ 0.029 18.3(21) | 36.7%
60 | 3.088344 £ 0.000055 | 1.964 £ 0.033 11.8(20) | 7.6%
80 | 3.088317£0.000059 | 1.994 £ 0.039 10.8(20) | 6.8%

Table 6. Least squares analysis results: model 3d-2.
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equation (23), it follows that

puia(K) _ {as(K))
pu(K) (e (K))nt2
Observe that the knot type of the polygon is knot changed by adding edges around
positive atmospheric squares, or by removing edges around negative atmospheric
squares.
There is little known about p,(K). In particular, it is normally assumed that

Pu(K) & Crenl® ™) (g )" (42)

where pg is a growth constant, ax is an entropic exponent of polygons of knot type
K, and Ck is a constant. Similations indicate that ax = ap + Ng where N is the
number of prime components in the knot K and that ap = «, where ¢ is the entropic
exponent of unknotted polygons, and a = 0.25 is the entropic exponent of polygons
in the cubic lattice [37].

We define the entropy of polygons of length n and knot type K by

(41)

E,(K) =logp,(K) (43)
and the relative entropy is then given from equation (41) by
Eny2(K) — En(K) = log{ay (K))n — log{a— (K))n 2. (44)

Kesten’s pattern theorem for polygons (see reference [41]) suggests that (a4 (K)),/n —
ay and (a_(K)),/ — a_ as n — oo, where a; and a_ are constants. Taking n to
infinity in the last equation shows that

lim (Epa(K) — Eo(K)) = log(ar /a_). (45)

In other words, a plot of [pny2(K)/pn(K)]'/? against n will approach the ratio
(oy Ja_)*/2. Such a plot is given in Figure 8 for K = (), the unknot.
The entropy of knotted polygons of knot type K is given by
n—2

Ei(K)= Y (Bms2(K) = En(K)) + En,,., (K) (46)
where Ny is the minimum number of edges necessary to realise a polygon of knot
type K in the cubic lattice [7, 19] (this is the minimal edge number of the knot type).
This shows that

n—2

(a4 (K))n )]
E.(K)= log (7 + B, (K). 47
=5 o (e (K) (47)
The absolute entropy of knotted polygons for n = n,,, is an issue which have

been addressed for polygons of knot type 31 (trefoils) by Diao [8]. In this case,
p24(31) = 3496 since nyy,;, = 24 for trefoils, and thus the entropy is Fa4(31) = log 3496.
By computing the area under the curve log ({(a4 (K))n/{a—(K))n+2) and adding the
entropy at nmin, the entropy of knotted polygons at larger values of n can be
determined. We did not follow this approach, but instead focussed on determining
the relative entropies of knotted polygons.

Unknotted polygons were sampled in the grand canonical ensemble by using the
BFACF algorithm [1, 2] which is known to be ergodic for polygons of fixed knot types
in the cubic lattice [18, 21]. Polygons of fixed knot type K were sampled along a
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Figure 8. The ratio [py2(0)/pn(0)]'/? against n for unknotted polygons. Note
that the data appears to be monotonically increasing to a limiting value.

Markov Chain for 2 x 10° iterations with data collected every 200 iterations for a
time-series of length 107 of positive and negative atmospheres.

The data along the time series were binned according to length, and then were
analysed at each fixed length to estimate (a4 (K)), and (a_(K)),. Throughout the
simulations, the parameter of the BFACF algorithm was set close to its critical value
to obtain enough data at large values of n (up to n = 500). These calculations did not
produce uncorrelated data at neighbouring values of n, but statistical error bars at
any given value of n were small, and plots of the data show reasonably smooth curves.

In the case of unknotted polygons (see Figure 8) it is known that the limit

po = lim [pa (0)]"/" (48)
exists via a concatenation argument [41]. Thus, one may expect that
. pn+2(®)] 2
lim = Up. 49
oo [ (@) | 10 (49)

This remains an open question, even though Figure 8 provides strong evidence in its
favour. While the data in Figure 8 quickly settles down close to ug for (say) n > 50, it
is an increasing curve indicating that relative entropy (equation (44)) increases steeply
with n for small values of n.
In Figure 9 data for the trefoil knot is plotted. The limit
p13, = limsup [p,, (31)]"/" (50)
n—oo

is not known to exist, but we give strong numerical data in Figure 9 that

pn+2(31)] — 2 (51)

lim su
%m@ %

n—oo
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Figure 9. The ratio [pn42(31)/pn(31)]'/? against n for polygons with knot type
the trefoil. In contrast with the data in Figure 8, the statistic appears to be
monotonically decreasing with n. Observe that n > 24, since the polygons with
knot type 31 have length at least 24 edges.

exists as a limit. In addition, the data suggest that any difference in the values
of py and ps, will be small. This is consistent with previous data suggesting that
1y = w3, [37]. Figure 9 also show that the relative entropy of polygons with knot type
31 decreases with increasing n. This is the opposite to behaviour for the unknot in
Figure 8, and it seems likely that the limit (51) approaches x3, from above, while the
limit (49) approaches pj from below.

In Figure 10, curves are plotted for the unknot and for compounded trefoils
against n. The starting points of the curves increases with the number of knot
components in each knotted polygon, since the number edges required to realize the
knots, nin, increases with the number of components. The data are plotted for the
unknot (), the trefoil (31), the square knot (37 #37), the granny knot (37 #37) and
a compound knot with three trefoil components of the same chirality (37 #3]#37]).
Oberve the marked difference at small n between the granny and square knots. The
granny knot has much more relative entropy than the square knot at low values of n.

In Figures 11 and 12 data are given for a collection of prime knots. The data in
Figure 12 are for prime knots to six crossings, for n € [0, 150], while these data are
also included in Figure 11 for a larger collection of prime knots, for n € [0,75]. The
larger scale on the X-axis improves the resolution of the data in these graphs.

It is noticable that the ratios approach (within numerical precision) the same
limiting curve with increasing n in these graphs. More interesting are the differences
between different knot types for small values of n - there are marked and persistent
differences between knots with the same minimal crossing numbers (for example 5;
and 52), and the ratio pp42(K)/pn(K) can differ by factors of as large as four or
five for different knot types. Most remarkable though are the individual differences
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Figure 10. The ratio [pni2(T)/pn(T)]'/? against n for polygons with knot
types the unknot (0), trefoil (31), the square knot (3?#3;), the granny knot
(3?#3?) and a compound knot with three trefoil components of the same chirality

(3?#3?#3?). Oberve the marked difference at small n between the granny and
square knots - the granny knot has much more relative entropy than the square
knot at low values of n.

between different knot types; each knot type appears to have its own characteristic
profile in these graphs, and some (such as 74) presents anomolously large ratios close
to its minimal edge number.

5. Conclusions

In this paper we presented a numerical method for the calculation of relative entropies
of polygons. The method is implemented by defining two statistics (the positive and
negative atmospheres) of a polygon. By calculating these statistics, one may determine
ratios of the form p,,12/p, in models of polygons, and we have done this in order to
estimate the growth constants. For knotted polygons we are able to determine the
relative differences in the entropy as a function of the knot types.

This technique is quite general, and can be used on other lattice models, for
example lattice walks, trees or animals. In addition, it can also be used to estimate
free energies in interacting models of lattice polygons, for example adsorbing polygons
or collapsing polygons. We show this in Appendix I below.

In Section 3 we estimated the growth constants of polygons in the square and
cubic lattices. We determine p = 2.63805 £ 0.00011 in the square lattice, and
© = 4.684092 + 0.000042 in the cubic lattice. These estimates compare well with
estimates by other means in equation (8) and equation (10) in the square lattice, and
equation (12) in the cubic lattice. While our results are not as accurate in the square
lattice, where series analysis of polygon and self-avoiding walk data gave p to very
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Figure 11. The ratio [pny2(T)/pn(T)]'/? against n for polygons of six crossing
knot types. The most relative entropy is found in 67 and the least in the square
knot and 62, for small values of n. Observe that the square knot and 62 has
virtually the same chagne in relative entropy with increasing n.

high accuracy, our result is an independent confirmation of the first digits in those
estimates.

In three dimensions our cubic lattice estimate is comparable in accuracy to the
recent estimate by Clisby, Liang and Slade [5] in equation (12). We confirm their
estimate to four decimal places. We believe that the methods here can be used to find
1 to even higher accuracy in the cubic lattice by using more computer resources.

In Section 4 we considered the relative entropies of polygons of fixed knot types.
Little is known about such polygons, but our numerical data show that limits such
as in equations (49) and (51) exists. In addition, we plotted those ratios in Figures
9 to 12, and in each case found that the relative entropy of an unknotted polygon
increasing with increasing n, while it decreases for a knotted polygon with increasing
n. In each case it approaches a constant. We also observe that different knots have
very different relative entropies at small values of n as in figure 12. This shows that
for small values of n these knots will have different statistical properties, a fact which
may influence the physical properties of short knotted polymer rings.

Appendix I: Atmospheres of Interacting Polygons

It is possible to generalise atmospheres to models of polygons weighted by a Boltzmann
factor B. Such models are interacting, and typically have a partition function

Zy(B) = pu(m)s™ (52)
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Figure 12. The ratio [pni2(T)/pn(T)]'/? against n for knotted polygons with
crossing number up to ten. crossing knot types. Relative entropy at small values
of n is large for 74, 8; and 73, amongst these knot types.

where p,(m) is the number of polygons of length n counted up to translational
invariance, and with energy m (the number of contacts, visits, span, or the number of
occurances of any other property).

In models such as these the construction in Figure 1 changes both the length and
the energy of a polygon. Consider a polygon w of length n and energy m(w), and with
a4+ (w) positive atmospheric squares. Similarly, let v be a polygon of length n + 2 and
energy m(v) and with a_(v) negative atmospheric squares.

Suppose that v can be obtained from w by choosing one atmospheric square in
w, and by applying the construction in Figure 1. Consider now the implementation
of the elementary constructions in Figure 1 as the elementary moves in a Metropolis
Monte Carlo simulation to sample interacting polygons along a Markov Chain. The
transition probability from w to v in this Markov Chain is

b a1 gme)-m)

Plw—v)= o () min{1, 5 } (53)
since the probability of choosing a positive atmospheric square is 1/« (w) and since
each polygon is weighted by a Boltzmann factor. Reversibility of the Markov Chain
requires similarly that

1
P(v — w) = ——min{1, gm0, (54)
a_(v)
Assume without loss of generality that m(w) > m(v), then the condition of detailed
balance of the algorithm is

Plw—v)= o-(v) P(v — w)gm@)—mw) (55)
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This may be simplified to
ar(w)Pw— )™ =a_(v)P(v — w)p™"), (56)

Sum both sides over w (polygons of length n) and over v (polygons of length n + 2).
Since ) P(w —v)=1and ) P(v— w) =1, the result is

D @) =3 o (). (57)

Dividing this by Z, () and noting that the weighted average of the atmospheres are
given by

P Y g (w)pgm)
Zn(B) ’
oy - Tua ()"
" Zn+2(5)

then finally produces the result

Znt2(P) _ (ai)n  (a4)n
Zn(B) a2 (a)n
where one expects the approximation to become more accurate with increasing n.
Implementing the above involves the sampling of polygons from a Boltzman
distribution

(58)

B 6m(w)
 Za(B)

on polygons of length n along a Markov chain, say {w;}, (where m(w) is the energy
of w). Then one may estimate (a4 ), by forming the average

Dy (w) (59)

N
1
{at)n > & D AL(wi) (60)
i=1
where the positive atmosphere of w; has N, (w;) unit squares and
1R e
Ay (wy) = grwis)=m(e: 61
+( ) N+ (Wz) ; ( )

and where m(w;;) is the energy of the polygon if the j-th atmospheric square is
removed to make a polygon of length n + 2. A similar definition can be used to define
the average negative atmosphere {(a_), 2.
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