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Abstract. We give a combinatorial derivation and interpretation of the algebra associated with the station-
ary distribution of the partially asymmetric exclusion process. Our derivation works by constructing a larger
Markov chain on a larger set of generalised configurations. A bijection on this new set of configurations
allows us to find the stationary distribution of the new chain. We then show that a subset of the generalised
configurations is equivalent to the original chain and that the stationary distribution on this subset is simply
related to that of the original chain. This derivation allows us to find expressions for the normalisation using
both recurrences and path models. These results exhibit classical combinatorial numbers such as n!, 2n and
the Catalan numbers.

RESUME. Nous donnons une interprétation combinatoire de l’algèbre associé à la distribution stationnaire
du processus d’exclusion partiellement symétrique. Pour cela nous construisons une chaine de Markov qui
agit sur les configurations et les configurations marquées. Nous utilisons une bijection sur les configurations
marquées pour trouver la distribution stationnaire de la nouvelle chaine qui nous donne aussi la distribution
stationnaire de la chaine originelle. Grace à cette construction, nous pouvons calculer dans plusieurs cas
particuliers le coefficient de normalisation de la chaine en utilisant des récurrences et/ou des chemins. De
nombreux nombres classiques apparaissent: Catalan, factoriel, 2n. . .

1. Introduction

The PASEP (Partially asymmetric exclusion process) is a generalisation of the TASEP model presented
last year at FPSAC’04 [13]. This model was introduced by physicists [2, 9, 10, 11, 12, 16]. The TASEP
model consists of black particles entering a row of n cells, each of which is occupied by a black particle or
vacant. A particle may enter the system from the left hand side, hop to the right and leave the system
from the right hand side, with the constraint that a cell contains at most one particle. The particles in the
PASEP move in the same way as those in the TASEP, but in addition may enter the system from the right
hand side, hop to the left and leave the system from the left hand side. An example is given in Figure 1.
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Figure 1. The PASEP model. Note that we also use the variables c = 1/α − 1 and d = 1/β − 1.

¿From now on we will say that the empty cells are filled with white particles ◦. A basic configuration is
a row of n cells, each containing either a black or a white particle. Let Bn be the set of basic configurations
of n particles. We write these configurations as though they are words of length n in the language {◦, •}∗,
so that “•k” denotes a string of k black particles and “AB” denotes the configuration made up of the word
“A” followed by the word “B”. We denote the length of the word A by |A|.

The PASEP defines a Markov chain P defined on Bn with the transition probabilities α, β, γ, δ, η and q.
The probability PX,Y , of finding the system in state Y at time t + 1 given that the system is in state X at
time t is defined by:

∗ If X = A • ◦B and Y = A ◦ •B then

(1a) PX,Y = η/(n + 1); PY,X = q/(n + 1)
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∗ If X = ◦B and Y = •B then

(1b) PX,Y = α/(n + 1); PY,X = γ/(n + 1)

∗ If X = B• and Y = B◦ then

(1c) PX,Y = β/(n + 1); PY,X = δ/(n + 1)

∗ Otherwise PX,Y = 0 for Y 6= X and PX,X = 1 −
∑

X 6=Y PX,Y .

See an example for n = 2 in Figure 2.
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Figure 2. The chain P for n = 2.

There are many results for the PASEP model. One central question is the computation of the stationary
distribution of the chain. This has been most successfully analysed using a matrix product Ansatz [9, 11, 16].

In this paper we give a combinatorial derivation and interpretation of the stationary distribution of the
PASEP model. To our knowledge [4, 15] are the only purely combinatorial derivations of the solution to the
TASEP model (which is a special case of PASEP). Our derivation works by

[i] constructing a larger Markov chain on both basic configurations and marked basic configurations
which we call marked configurations.

[ii] using a bijection between marked configurations to find the stationary distribution of the larger
chain.

[iii] showing that a subset of the configurations is equivalent to the original chain and that the stationary
state on this subset is simply related to that of the original chain.

We note that this is similar to the work done in [15] where the authors studied the case δ = γ = q = 0. Here
we study the stationary distribution of the full model.

The main result of this paper is to give a combinatorial derivation of the following theorem:

Theorem 1. Let the stationary distribution be denoted

(2) P∞(X) =
W (X)

Zn

where W (X) is the weight of a basic configuration X and Zn is the normalisation:

(3) Zn =
∑

X∈Bn

W (X).

The weight of a basic configuration X satisfies the following algebra :

W (X) = 1 if X ∈ B0(4a)

αW (◦X) = W (X) + γW (•X)(4b)

βW (X•) = W (X) + δW (X◦)(4c)

ηW (A • ◦B) = W (A ◦ B) + W (A • B) + qW (A ◦ •B)(4d)

where A and B denote configurations of particles.
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We may use this algebra recursively to find expressions for Zn. Unfortunately we have not yet found a
combinatorial derivation of Sasamoto’s full five parameter expression for Zn [16] (one of the six parameters
can be set to one without loss of generality), but we are able to find many different specialisations and for
example the result of [2]. See Table 1 for a summary of these results.

We also find simple expressions for the stationary distribution of certain configurations. For example:

Proposition 1. If γ = δ = 0 and q = α = β = 1 then

(5) P∞(X = •kA) =
(n − k + 1)k(n − k + 1)!

(n + 1)!

where A is any configuration in Bn−k.

Another special case is:

Proposition 2. If γ = δ = q = 0 and α = β = 1/2 then

(6) P∞(X) =
1

2n
,

independent of the configuration X.

In Section 2 we use the weight algebra to find recurrences for the normalisations and also describe a path
model interpretation of the stationary states and normalisations. In Section 3 we define a larger Markov
chain whose stationary distribution is related to that of the PASEP chain. In Sections 4 and 5 we give proofs
of some of the propositions. A longer version of this paper which includes all the proofs is in preparation [5].

2. Algorithms, numbers and paths

In this section we set1 η = 1 and study the normalisation using the weight algebra. By considering the
position of first (leftmost) ◦ particle the algebra may be used to obtain a recursion to compute Zn when
either γ or δ are zero. Here we consider δ = 0, and we note that similar results may be obtained for γ = 0.

2.1. Recursions for Zn. Let Wn,k be the sum of the weights of configurations in Bn that start with exactly
k •s and then at least one ◦ or are all black. Similarly let Wn,k,j the sum of the weights of basic configurations
in Bn that start with exactly k •s then a single ◦ and then at least j •s. Finally let Zn,k the sum of the
weights of basic configurations in Bn that start with at least k •s.

Proposition 3. If δ = 0 then Zn,k, Wn,k and Wn,k,j satisfy the following equations

Wn,k =















(Zn−1,0 + γZn,1)/α if k = 0
Wn−1,k−1 + Zn−1,k + qWn,k−1,1 if k ∈ [1, n − 1]
Wn−1,n−1/β if k = n
0 if k > n

(7a)

Wn,k,j =















Wn,k if j = 0
(Zn−1,j + γZn,j)/α if k = 0
0 if k + j > n
Zn−1,k+j + Wn−1,k−1,j + qWn,k+1,j−1 otherwise

(7b)

Zn,k =







Wn,k + Zn,k+1 if k ∈ [0, n − 1]
Wn,n if k = n
0 if k > n

(7c)

These follow from application of the relations of the weights equations to basic configurations where the
first •◦ pair occurs at position k for k ∈ [1, n − 1]. The case k = n corresponds to an all black particle
configuration.

Using these recurrences we can compute Zn = Zn,0 for any n. We used this data to guess some of the
results for specific α, β, γ, q, and then proved the conjectured forms. In Table 1 we give a list of some results
like those in Proposition 1. Note we have used α = 1/(1 + c) and β = 1/(1 + d). The result q = c = d = 0
appeared in [4, 13, 11]. The proofs will appear in [5].

1One can show that setting η = 1 is equivalent to rescaling the other parameters in the stationary state distribution.
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∏
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(c + d + k + 1) (n − k + d + 1)kZn−k

γ, q

n
∏

i=1

((c + 2)(i + d + 1) − 1) (n − k + d + 1)kZn−k

Table 1. Some results for Zn when δ = 0. Note that c, d = 0 implies that α, β = 1
(respectively) and c, d = 1 implies that α, β = 1/2 (respectively).

2.2. Path models for γ = δ = 0. Another way to compute Zn is to give a bijection between basic
configurations counted by their weights and a family of weighted lattice paths. A similar result was given
in [4] for γ = δ = q = 0. In [14] the complete configurations can also be interpreted as paths when
γ = δ = q = 0. Here we generalise one of the approaches of [4] to get the result for general q.

Definition 1. A Motzkin path [1] of length n is a sequence of vertices p = (v0, v1, . . . , vn), with vi ∈ N
2

(where N = {0, 1, . . .}), with steps vi+1 − vi ∈ {(1, 1), (1,−1), (1, 0)} and v0 = (0, 0) and vn = (n, 0). A
bicoloured Motzkin path is a Motzkin path in which each step (1, 0) is labelled by one of two colours.

These paths can be mapped to words in the language {N, S,
◦

E,
•

E} by mapping the steps (1, 1), (1,−1) to

N and S, respectively and mapping the two different coloured horizontal steps to
◦

E and
•

E. The height of a
step vi+1 − vi is the y-coordinate of the vertex vi. These heights imply the weights of the paths.

Definition 2. Let P(n) be the set of bicoloured Motzkin paths of length n. The weight of the path in P(0)
is 1 and the weight of any other path is the product of the weights of its steps. The weight of a step, pk,
starting at height h is given by:

if pk = N then w(pk) = Nh = [h + 1]q(8a)

if pk =
◦

E then w(pk) =
◦

Eh = [h + 1]q + qhc(8b)

if pk =
•

E then w(pk) =
•

Eh = [h + 1]q + qhd(8c)

if pk = S then w(pk) = Sh = [h]q + qh(1 + c)(1 + d) − qh−1cd(8d)

where [h]q = 1 + q + . . . + qh−1 for h > 0 and [h]q = 0 for h ≤ 0.

An example of a path in P(11) is given in Figure 3.

fi

si

Figure 3. A path in P(11) which corresponds to the word NN
◦

ESSN
•

ES
•

ENS.

Let us define a mapping θ : P(n) 7→ Bn where each bicoloured Motzkin path is mapped to a basic

configuration such that each step S or
◦

E is mapped to a white particle and each step N or
•

E is mapped to
a black particle. This mapping is many-to-one and we denote θ−1(X) as the set of all paths that map to X .
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Theorem 2. When γ = δ = 0 the weight of a basic configuration, X, is given by

(9) W (X) =
∑

p∈θ−1(X)

w(p)

and

(10) Zn =
∑

p∈P(n)

w(p)

This Theorem gives a combinatorial derivation of the stationary distribution that does not make use of
the matrix product Ansatz which was used to obtain the results in [11, 16]. The proof is given in Section 5
and works by showing that the the weight of the paths obeys the same equations as the weight of the basic
configurations.

We may specialise the above result to get the corollary:

Corollary 3. If c = d = 0 (α = β = 1) the paths P correspond to bicoloured Motzkin Paths of length n
where the weight of a step starting at height i is [i + 1]q.

∗ If q = 0 then Zn = Cn+1, where Cn is the nth Catalan number.
∗ If q = 1 then Zn = (n + 1)! (see [3, 17]).

This can be linked to well-known results on the q-enumeration of permutations [7, 8]. Also if c = d = 1
(i.e. α = β = 1/2) and q = 0, only the paths that are made of east steps have non zero weight. Each such
path has weight 2n. Therefore W (X) = 2n for any X ∈ Bn and Zn = 4n in that case — this is Proposition 2.

3. Stationarity and Marked configurations

In this section we define a larger Markov chain, the M-PASEP chain, we which use to study the stationary
distribution of the original PASEP chain. In particular we show that the stationary distributions of the M-
PASEP and the PASEP chains are simply related.

3.1. Marked configurations. We enlarge the state space of the original chain by adding “embellished”
configurations which we call “marked configurations” (hence the “M” in M-PASEP).

Definition 3. A marked configuration (X, i, D) of size n consists of a basic configuration X ∈ Bn, an integer
i ∈ [0, n] and a “direction” D ∈ {L, R, S, N}. The directions are L for “left”, R for “right”, S for “stable”
and N for “nothing”. The possible values of D depend on the values of X and i. All triples satisfying the
following conditions occur (depending on the structure of X):

∗ for all X and all i ∈ [0, n] D = N .
∗ if X = ◦A then i = 0 and D ∈ {R, S}.
∗ if X = •A then i = 0 and D ∈ {S}.
∗ if X = A◦ then i = n and D ∈ {S}.
∗ if X = A• then i = n and D ∈ {L, S}.
∗ if X = A • ◦B and |A| ∈ [0, n − 2] then i = |A| + 1 and D ∈ {L, R, S}.
∗ if X = A ◦ •B and |A| ∈ [0, n − 2] then i = |A| + 1 and D ∈ {S}.

We define a projection U(M) = X from a marked configuration M = (X, i, D) to the corresponding unmarked
configuration, X. We denote the set of all marked configurations of size n by Mn.

Here are all the marked configurations for n = 2:














(◦◦, 0, R), (◦◦, 0, S), (◦◦, 0, N), (◦◦, 1, N), (◦◦, 2, S), (◦◦, 2, N),
(◦•, 0, R), (◦•, 0, S), (◦•, 0, N), (◦•, 1, S), (◦•, 1, N), (◦•, 2, L), (◦•, 2, S), (◦•, 2, N),
(•◦, 0, S), (•◦, 0, N), (•◦, 1, L), (•◦, 1, R), (•◦, 1, S), (•◦, 1, N), (•◦, 2, S), (•◦, 2, N),
(••, 0, S), (••, 0, N), (••, 1, N), (••, 2, L), (••, 2, S), (••, 2, N)
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3.2. The M-PASEP chain. We define the M-PASEP chain, C, whose states are both basic and marked
configurations. For any X ∈ Bn and M ∈ Mn the transition probabilities between states in the chain are
given by

if U(M) = X then CX,M =
W (M)

(n + 1)W (X)
(11a)

if U(T (M)) = X then CM,X = 1(11b)

otherwise CM,X = CX,X = CM,M = 0,(11c)

where W (M) is the weight of a marked configuration which we define below and T : Mn 7→ Mn is a weight
preserving bijection given in Definition 5 below.

Definition 4. The weight of a marked configuration M is defined in terms of the weights of unmarked
configurations as follows:

W (◦A, 0, R) = W (A)(12a)

W (◦A, 0, S) = W (•A, 0, S) = γW (•A)(12b)

W (◦A, 0, N) = (1 − α)W (◦A)(12c)

W (A•, n, L) = W (A)(12d)

W (A•, n, S) = W (A◦, n, S) = δW (A◦)(12e)

W (A•, n, N) = (1 − β)W (A•)(12f)

W (A • ◦B, i, R) = W (A ◦ B) if A ∈ Bi−1(12g)

W (A • ◦B, i, L) = W (A • B) if A ∈ Bi−1(12h)

W (A • ◦B, i, S) = W (A ◦ •B, i, S) = qW (A ◦ •B) if A ∈ Bi−1(12i)

W (A • ◦B, i, N) = (1 − η)W (A • ◦B) if A ∈ Bi−1(12j)

Otherwise W (X, i, N) = W (X).(12k)

Note that the chain alternates between marked and basic configurations. The state graph of the chain C
for n = 2 is shown in Figure 4. The weights of marked and unmarked configurations are simply related and
from Definition 4 and Theorem 1, we get:

Lemma 4. For all X ∈ Bn and i ∈ [0, n]:

(13)
∑

D

W (X, i, D) = W (X)

and

(14)
∑

M : U(M)=X

W (M) = (n + 1)W (X).

The stationary distribution of the PASEP chain is simply related to that of the new chain C:

Proposition 4. The conditional stationary probability of finding the M-PASEP chain, C, in a state Y given
that it is in an unmarked state is related to the stationary distribution of PASEP chain by

(15) P∞
C(Y given that Y ∈ Bn) = P∞(Y ).

This proposition relates the stationary distribution of the two chains, but does not tell us what the
distributions are. We prove the above proposition in the next section and also expand it to give the proof of
Theorem 1.
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Figure 4. The M-PASEP chain C for n = 2. Each marked state (X, i, D) is written as the
configuration X with its direction D in position i. The short thin arcs have probabilities
given by equations (11). The dashed lines show the action of the bijection T .

4. Proof of stationarity

To prove stationarity we need two major ingredients. The first is a bijection between states on the M-
PASEP chain and the second is lemma which gives conditions under which a Markov chain may be altered
while leaving its stationary distribution essentially unchanged.

4.1. The bijection.

Definition 5. We define the mapping T : Mn → Mn. Let M = (X, i, D) ∈ Mn. We first note that if
D = N then T (M) = M . Otherwise we define the bijection by the following algorithm:

∗ if i = 0 then the colour of the first particle is changed and
� if D = S then i and D are unchanged, or
� if D = R then “ shuffle M right”.
� Note that M = (X, 0, L) cannot occur.

∗ if i ∈ [1, n − 1] then swap the ith and i + 1th particles and
� if D = S then i and D are unchanged, or
� if D = L then “ shuffle M left”.
� if D = R then “ shuffle M right”.

∗ if i = n then the colour of the last particle is changed and
� if D = S then i and D are unchanged, or
� if D = L then “ shuffle M left”.
� Note that M = (X, n, R) cannot occur.

where “ shuffle M right” means

∗ choose the minimal j ∈ (i, n) such that the jth particle is black and the (j + 1)th particle is white.
∗ if such a j exists then set i = j and D = R
∗ otherwise set i = n and D = L.

and “ shuffle M left” means

∗ choose the maximal j ∈ [0, i) such that the jth particle is black and the (j + 1)th particle is white.
∗ if such a j exists then set i = j and D = L
∗ otherwise set i = 0 and D = R.
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Some examples of this mapping are given below

T (• ◦ • • ◦•, 0, S) = (◦ ◦ • • ◦•, 0, S)

T (• ◦ • • ◦•, 4, R) = (• ◦ • ◦ ••, 6, L)

T (• ◦ • • ◦•, 4, L) = (• ◦ • ◦ ••, 1, L).

The bijection is weight preserving:

Proposition 5. The mapping T defined in Definition 5 is a bijection from Mn to itself and ∀M ∈ Mn

(16) either T (M) = M or T 2(M) = M or T n+1(M) = M.

The bijection is also weight-preserving: W (T (M)) = W (M).

Sketch of Proof. It follows directly from the definition of the bijection that if D = N then T (M) = M
and that if D = S then T 2(M) = M . The weight is invariant in both cases. To show that if D = L, R then
T n+1(M) = M , we use a one-to-n+1 weight preserving correspondence between the basic configurations in
Bn−1 and marked configurations in Mn with D = L, R.

Start with a configuration X in Bn−1. Suppose that the white particles are located at positions j1 <
j2 < . . . < ji and that the black particles are located at positions ji+2 > ji+3 > . . . > jn. Now create n + 1
marked configuration M0, M1, . . . , Mn as follows :

∗ M0 = (◦X, 0, R).
∗ Ml = (Xl, jl, R) where Xl is obtained from X by replacing the ◦ located at jl by •◦ with 1 ≤ l ≤ i.
∗ Mi+1 = (X•, n, L)
∗ Ml = (Xl, jl, L) where Xl is obtained from X by replacing the • located at jl is replaced by •◦ with

i + 2 ≤ l ≤ n.

One can check that T (Mi) = Mi+1, 0 ≤ i ≤ n − 1 and T (Mn) = M0. Moreover, the definition of the weight
of marked configurations implies that W (Mi) = W (X) for i = 0 . . . n and so the weight is invariant under T .

To illustrate this consider X = ◦•. We obtain the configurations {(◦ ◦ •, 0, R), (• ◦ •, 1, R), (◦ • •, L, 3), (◦ •
◦, L, 2)}. One may verify that these form a 4-cycle under T and that all the configurations have weight equal
to that of the configuration ◦•. �

4.2. Enriching a Markov chain. In order to show that the stationary state of M-PASEP chain C is simply
related to that of the PASEP we use the following lemma:

Lemma 5. Consider a Markov chain C1 with a transition from a state a to a state b with probability r. We

replace the arc
−→
ab by the subgraph H as shown in Figure 5 to create a new chain C2. Let H be the set of

vertices in H \ {a, b}. If:

∗ the weighted sum over all directed spanning trees in H rooted at b is equal to r, and
∗ the weighted sum over all directed spanning forests of H that contain 2 components (one rooted at a

and one rooted at b) is equal to 1,

then PrC2

∞ (x given that x 6∈ H) = PrC1

∞ (x), where PrCi

∞ (x) is the stationary state probability of finding chain
Ci in state x.

This follows from the Markov-Tree Theorem [6] and can be proved by applying the Matrix-tree theorem
to a transition matrix, though it can also be proved combinatorially (see [5]).

ba a bv2

v1

vk

β r1

r2

rk

1

1

1

Figure 5. Replace the arc from a to b by a subgraph H.
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4.3. The stationary distribution. Using Lemma 5 and the definitions of the chains C and P , it is then
easy to check that Proposition 4 holds. This shows that the two stationary distributions are simply related
but does not tell us what they are. The following proposition does this and together with Proposition 4
implies Theorem 1.

Proposition 6. Let Y be a state in the M-PASEP chain C, then:

P∞
C(Y given that Y ∈ Bn) =

W (Y )

Zn

, and(17a)

P∞
C(Y given that Y ∈ Mn) =

W (Y )

(n + 1)Zn

.(17b)

where W (Y ) is the weight defined by the equations in Theorem 1 and Definition 4.

Proof. To prove stationarity we need to show that the above probabilities are unchanged under the action
of the transitions. Denote the probability of finding the chain C in state Y at time t by Pr(C(t) = Y ).

Now suppose that

Pr(C(t) = Y given that Y ∈ Bn) =
W (Y )

Zn

, and(18a)

Pr(C(t) = Y given that Y ∈ Mn) =
W (Y )

(n + 1)Zn

(18b)

Then because the chain alternates between basic and marked states we have

Pr(C(t + 1) = Y ∈ Bn) =
∑

M : U(T (M))=Y

Pr(C(t) = M)

=
∑

M : U(T (M))=Y

1

n + 1

W (M)

Zn

=
∑

M : U(T (M))=Y

1

n + 1

W (T (M))

Zn

=
∑

M : U(M)=Y

1

n + 1

W (M)

Zn

=
W (Y )

Zn

(19)

Above we have used Lemma 4 and the fact that the bijection T is weight preserving, Proposition 5. Similarly
we get:

Pr(C(t + 1) = Y ∈ Mn) =
W (M)

(n + 1)W (U(Y ))
Pr(C(t) = U(Y ))

=
W (Y )

(n + 1)W (U(Y ))

W (U(Y ))

Zn

=
W (Y )

(n + 1)Zn

.(20)

This completes the proof. �

5. Weight-equations and lattice paths

In this section we prove Theorem 2 by showing that the weight of the paths in P(n) and the weight of
the basic configurations satisfy the same equations. Let

(21) Q(X) =
∑

p∈θ−1(X)

w(p)

We work by showing that Q(X) satisfies the same equations as W (X).
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Recall that given a path p, θ(p) is the basic configuration such that each
◦

E and S step is changed to ◦

and each
•

E and N step is changed to •. Also, recall that Ni (resp. Si,
◦

Ei,
•

Ei) is the weight of a North-East

(resp. South East, East
◦

E, East
•

E) step starting at height i.

∗ If X ∈ B0 then W (X) = 1 and it follows that Q(X) = 1.
∗ If X = ◦A then W (X) = (1 + c)W (A) by Theorem 1. The first step of a path p ∈ θ−1(X), must be

◦

E (it cannot start with a South-East step) and its weight is 1 + c. Removing this step gives:

(22) Q(◦A) =
∑

p∈P(n)
θ(p)=◦A

w(p) = (1 + c)
∑

p′∈P(n−1)
θ(p′)=A

w(p′) = (1 + c)Q(A).

∗ Let X = A• then W (X) = (1 + d)W (A). The last step of a path p ∈ θ−1(X), must be
•

E (it cannot
end with a North-East step) and its weight is 1 + d. Removing this step gives:

(23) Q(A•) =
∑

p∈P(n)
θ(p)=A•

w(p) = (1 + d)
∑

p′∈P(n−1)
θ(p′)=A

w(p′). = (1 + d)Q(A).

∗ Let X = A • ◦B where A ∈ Bk−1, then W (X) = W (A • B) + W (A ◦ B) + qW (A ◦ •B). There
are four possibilities that we must consider — let p be a path such that θ(p) = X such that

(pk, pk+1) = (N, S), (
•

E,
◦

E), (
•

E, S) or (N,
◦

E). Let U = (p1, . . . pk−1) and V = (pk+2, . . . , pn).

[i] Consider p̂ = UNSV and p̄ = U
•

E
◦

EV . Form three new paths p′ = U
◦

EV , p′′ = U
•

EV and

p′′′ = U
◦

E
•

EV . Note that θ(p′) = A ◦ B, θ(p′′) = A • B and θ(p′′′) = A ◦ •B. The heights of
vertices in U and V are the same in all of these paths and hence the weight contribution from
U and V is the same in all of these paths and can be factored out. Hence the equation

(24) w(p̂) + w(p̄) = w(p′) + w(p′′) + qw(p′′′)

is true providing

(25) NiSi+1 +
•

Ei

◦

Ei =
◦

Ei +
•

Ei + q(SiNi−1 +
◦

Ei

•

Ei)

is true. The latter can be verified directly from the definition of the weights.

[ii] Consider p = UN
◦

EV and form p′ = UNV and p′′ = UENV . Note that θ(p′) = A • B and
θ(p′′) = A ◦ •B. Again the heights of vertices in U and V are the same in all of these paths
and so the contribution of U and V to the weights of these paths may be factored out. Hence
the equation

(26) w(p) = w(p′) + qw(p′′)

is true providing

(27) Ni

◦

Ei + 1 = Ni + q
◦

EiNi

is true, which can be verified from the definition of the weights.

[iii] Consider p = U
•

ESV . This case follows similarly to the previous case.

Taking the above and summing over all A and B gives the following

(28)
∑

p∈P(n)
θ(p)=A•◦B

w(p) =
∑

p′∈P(n−1)
θ(p′)=A•B

w(p′) +
∑

p′∈P(n−1)
θ(p′)=A◦B

w(p′) + q
∑

p′∈P(n)
θ(p′)=A◦•B

w(p′).

Which is Q(A • ◦B) = Q(A ◦ B) + Q(A • B) + qQ(A ◦ •B).
�
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