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Abstract. In this paper, we study non-trapped self-avoiding walks, which are self-

avoiding walks which can be extended to an infinite length. We apply the flatPERM

Monte Carlo method for this purpose, generating non-trapped SAWs of length up to

1024 on the square, triangular and hexagonal lattices, and calculating their number and

mean squared end-to-end distance. We find strong evidence that the growth constant

µ and entropic and metric exponents γ and ν are identical for non-trapped and all

SAWs, and in particular that the exponents are also universal for non-trapped SAWs.

We also calculate the limiting ratio of non-trapped to all self-avoiding walks. We see

some evidence of a n−1/2 correction-to-scaling term which is not present for all SAWs.
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1. Introduction

A self-avoiding walk (SAW) is a walk on the vertices of a regular lattice that never

returns to a vertex that it has already visited. In this paper we are primarily concerned

with SAWs on Z
2, but also on the triangular and hexagonal lattices. The question of

how many such walks of length n there are is an open question which has been very

well-studied (see for example [1, 2, 3]). In particular, the number of SAWs of length n

has the asymptotic behaviour

cn ∼ Aµnnγ−1, (1)

where µ is not known, but for the square lattice it is estimated to be µ ≈
2.638 158 530 31 . . . [4], while γ is known (but not proved) to be 43/32. Another quantity

of interest is the mean squared end-to-end distance, which is the average over all SAWs

of length n of the squared distance between the endpoints of the walk. This quantity is

believed to obey a power law

〈R2〉n ∼ αn2ν , (2)

where ν = 3/4; this exponent value is widely accepted, but again not proved.

A way of gaining insight into the asymptotic properties of self-avoiding walks is to

observe the behaviour of certain restricted subsets of these walks. Examples include

directed walks (walks which can only step north and east) and partially directed walks

(walks which cannot step west), which are easily solvable but less interesting than larger

subsets. More recently prudent self-avoiding walks — walks which can never step in the

direction of a previously visited vertex — have been studied closely [5]. However, the

growth constants of all of these models are strictly smaller than those of SAWs and so

they are exponentially rare in the set of all SAWs.

In this paper, we examine a large subset of self-avoiding walks, non-trapped self-

avoiding walks (NTSAWs). We define a NTSAW to be a SAW that can always be

extended to an infinitely long SAW — that is, as the walk is grown from a single vertex,

it is forbidden to enter a cul-de-sac from which it cannot leave. This is illustrated

in figure 1. The main aim of this paper is to examine the scaling of such walks. To

this end, we compute the number of non-trapped SAWs and their mean squared end-

to-end distance; we distinguish these values from the SAW values by using a a sub-

or superscript “NT”. This idea arose from a paper by Bousquet-Mélou [6] (see also

[7]), which studied the Rosenbluth method on walks which cross a square, which are

non-trapped by definition.

One can quickly show that NTSAWs have the same exponential growth rate as

all SAWs. Since NTSAWs are a subset of SAWs, we must have µNT ≤ µ. Then we

introduce a subset of NTSAWs, bridges, to give the needed lower bound. A bridge is

a SAW which starts on the left-hand side of its bounding box and ends on the right,

with no other vertex on the left-hand side (see figure 1(c)). Bridges appear in many

places in the literature of SAWs because their growth rate is the same as that of all

SAWs [8, 9, 3]. Since all bridges are non-trapped, this implies that µNT = µ. It is far
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(a) A trapped

walk

(b) A non-trapped

walk

(c) A bridge

Figure 1. Trapped walks, non-trapped walks and bridges. The hollow vertex is the

final vertex of the walk.

less obvious, however, whether or not γNT = γ. Now consider the end-to-end distance

of NTSAWs; one might expect non-trapped walks to be “less compact” than regular

SAWs and so have greater end-to-end distance. Again, it is natural to ask whether or

not νNT = ν.

The main aim of this paper is to demonstrate that these exponents are equal —

namely that SAWs and NTSAWs have the same entropic and metric exponents. While

µ varies with the underlying lattice, the exponents, γ and ν, are thought to be universal

— depending only on the dimension of the lattice and not the details of its structure.

To see if the corresponding quantities for NTSAWs share this property, we also consider

them on the triangular and honeycomb lattices.

Note that an alternative, but non-equivalent, definition of non-trapped walks is

a walk which cannot be extended by even a single step (i.e. every neighbour of the

endpoint is occupied). If we use this definition, it has indeed been shown [10] that

non-trapped walks have the same entropic exponent γ as all SAWs.

A non-rigorous argument (due to Guttmann), which applies equally to both

definitions of non-trapped walks, implies that if this is the case, then the metric exponent

ν is identical. It is accepted [1] that the squared end-to-end distance of self-avoiding

walks grows as

〈R2〉n = an3/2 + bn1/2 + o(n1/2). (3)

Now

〈R2〉n =
cNT
n

cn
〈R2〉NT

n +
cTn
cn

〈R2〉Tn , (4)

where we use the “T” superscript to denote trapped walks. If γNT = γ, then the ratio

cNT
n /cn converges to a limit between 0 and 1. This must also be true for the ratio

cTn/cn (for either definition of trapping); one can simply add a finite-length trapping

configuration — such as a short spiral of bonds — to the end of any self-avoiding walk

to make it trapped. Therefore one of 〈R2〉NT
n and 〈R2〉Tn must contribute the asymptotic

term of n3/2 to 〈R2〉n. Moreover, the other must either contribute the same asymptotic

term or a term of O(n1/2). As a random walk with no restrictions has a mean squared
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end-to-end distance which grows like n1, it follows that both terms must grow like n3/2,

and therefore νNT = ν = 3/4.

In this paper, we use a Monte Carlo method, flatPERM [11], to analyse the

asymptotic behaviour of non-trapped SAWs. In section 2 we describe this algorithm

and the adaptations we have included to generate non-trapped SAWs. We analyse the

results in section 3 and conclude in section 4.

2. Algorithm

2.1. FlatPERM

To generate SAWs and NTSAWs, we use the flatPERM algorithm [11], and we start by

giving a brief overview of it. This algorithm enhances the Rosenbluth method [12, 13],

which is a kinetic growth algorithm which grows walks from a single point. At every step,

the walk is extended at random to one of the unoccupied neighbours of its endpoint. If

the endpoint has no unoccupied neighbours, the entire walk is discarded. This continues

until the walk reaches a desired length, n say. We start this growing process a specified

number of times (rather than generating a specified number of valid walks).

This does not generate all self-avoiding walks with uniform probability; the

probability of a specific walk, ϕ, of length n being generated is

Pr(ϕ) =
n−1
∏

k=0

ak(ϕ)
−1, (5)

where ak(ϕ) (the atmosphere of the walk at length k) is the number of valid ways that

an edge can be appended to the walk’s endpoint when the walk is of length k. Note

that for SAWs the atmosphere is simply the number of unoccupied neighbours of the

endpoint, while for NTSAWs it is more complicated (see below). To counter this uneven

probability, we weight each walk by the inverse of its probability. The average weight

of walks generated in this way is then simply the number of walks of length n

〈wn〉 =
∑

ϕ

Pr(ϕ) · Pr(ϕ)−1 = cn. (6)

In practice, the Rosenbluth algorithm becomes ineffective at moderate length or

longer, because the variance of probabilities of walks at the same length is very high [6].

Many walks of low weight and high probability are generated, but then occasionally an

unlikely walk with large weight is sampled and swamps the statistics. The pruned and

enriched Rosenbluth method, PERM, counters this by either making copies of partial

walks with high weight, or eliminating copies of walks with low weight [14]. In either

case the weight is then “normalised”, which reduces the variance. We use a variant of

the original PERM algorithm called flatPERM [11].

In this version, at length k we keep an estimate of the number of walks cestk , and as

each walk is grown we evaluate (at step k) the quantity r = wk/c
est
k . Then:

• if r > 1, we make c = min(⌊r⌋, ak) copies of the walk, each with weight wk/c, and

grow each independently (enriching); or
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Figure 2. The three marked vertices must be checked to see if the walk will trap

itself.

• if r < 1, we either eliminate it with probability 1 − r, or continue growing it with

weight cestk (pruning).

The decision to prune or enrich is only calculated after the current walk is used to

update cestk . Neither of these options changes the average of the weights, but they do

reduce the variance.

2.2. Non-trapped walks

To generate non-trapped SAWs, we make a small alteration to this algorithm, suggested

to us by Bousquet-Mélou [6]. Instead of choosing an unoccupied neighbour at random to

extend the walk to, we choose a neighbour at random among all unoccupied neighbours

whose addition would leave the walk untrapped. We adjust the definition of atmosphere

for NTSAWs accordingly. Consider figure 2. To determine if the addition of a particular

vertex would leave the walk untrapped, we check if any of the two diagonally opposite

vertices or the directly opposite vertex from the last step are occupied. If one is, we

observe in which way the walk winds around to the endpoint.

Take for example figure 3: in 3(a), the walk winds anti-clockwise to the endpoint,

so an extension to vertex a will trap the walk. On the other hand, in 3(b), the walk

winds clockwise to the endpoint, so an extension to vertices b or c will trap the walk.

Consequently we keep track of the winding number of the walk at each vertex. This is

a number which starts at 0, increases by 1 if the walk makes a right turn, and decreases

by 1 if the walk makes a left turn. If the winding number of the occupied vertex is

less than the winding number of the current vertex, then the walk winds clockwise;

otherwise, it winds anti-clockwise. (Note that the winding numbers can never be equal

in this context.) These updates and checks can be performed in constant time.

We note that because we are choosing only neighbours which do not trap the

walk, we never have to eliminate a partial walk because it cannot grow further. Such a

situation is common when generating regular self-avoiding walks, so this is one advantage

that simulating non-trapped walks has over simulating all walks with the Rosenbluth

method and its relatives.
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a

b

c

(a) Extension to a traps

the walk

a

b

c

(b) Extension to b or c traps the

walk

Figure 3. Depending on the wind of the walk, different vertices are forbidden.

2.3. Other lattices

The algorithm is readily adapted to generate walks on the triangular and honeycomb

lattices. The only modification we need is to know which vertices to check to see

if potential extensions will trap the walk. This is shown in figure 4. Unfortunately,

checking for trapping in higher-dimensional lattices is considerably more complicated

and computationally expensive and we have not pursued it here.

(a) Triangular lattice (b) Honeycomb lattice

Figure 4. Points to check for trapping in the triangular and honeycomb lattices.
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3. Results

We ran the algorithm to generate walks, both NTSAWs and SAWs, of length up to 1024

on each lattice. In each of these 6 cases, we ran 16 independent simulations for 1 week

on the WestGrid super-computing cluster. Each node of the cluster uses 3.06 GHz Intel

Xeon 32-bit processors and 2GB of RAM. Due to slight differences in the algorithms on

each lattice, we were able to generate between 2.7 × 108 and 4.1 × 108 walks. We then

took averages of the data in each batch of 16 runs; the variance in this data also gave

us an estimate of the statistical error. The resulting data are analysed below.

3.1. Entropic and metric exponents

Firstly, we estimate the value of γNT . We examine the square lattice first. Assuming

the same asymptotic form for NTSAWs as for all SAWs, we anticipate a straight line fit

to a log-log plot of cNT
n /µn against n, with a slope of γNT − 1. Figure 5 clearly shows

this to be the case. However, a simple linear fit to these points is not very accurate

— if we fit a line to the range n ∈ [n0,∞), then the estimate of γNT shows a definite

trend as n0 increases (see figure 6). This is most likely due to sub-dominant terms in

the asymptotic expansion.

1 2 3 4 5 6 7
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c_
n/

m
u^
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Figure 5. Log-log plot of cNT
n /µn against n for the square lattice, with fitted values

using a model containing all terms with n0 = 100.

A more accurate approximation comes from including the first (analytic) correction-

to-scaling term for all self-avoiding walks [1]

cn = Aµnnγ−1

[

1 +
B

n
+O

(

1

n3/2

)]

, (7)
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Figure 6. Fitted γNT against n0 for the square lattice, using simple linear fits over a

fitting window of [n0,∞). The other lattices are similar.

Table 1. Estimates of γ, γNT , ν and νNT for various lattices. The numbers in brackets

are the standard error of our estimates. The true values of the parameters for SAWs

are γ = 43/32 = 1.343 75 and ν = 3/4.

Lattice γ γNT ν νNT

Square 1.3439(4) 1.3423(4) 0.749 90(10) 0.749 04(9)

Triangular 1.3431(5) 1.3427(4) 0.749 84(15) 0.749 07(15)

Hexagonal 1.3439(3) 1.3423(4) 0.749 85(12) 0.748 72(7)

which implies

log
cn
µn

= logA+ (γ − 1) logn+
B

n
+O

(

1

n3/2

)

. (8)

Introducing an additional term of 1/n corrects some of the systematic error in the fit,

though it requires more data to be accurate (see figure 7). To estimate γNT (and γ,

as a check on our methods), we averaged the estimates in a range where they visually

appear stable — n0 ∈ [100, 400] for NTSAWs and n0 ∈ [50, 400] for all SAWs. The

results, along with those for the other lattices where we used a similar procedure, are

shown in table 1.

It can be seen that our estimates for γ are very close to the predicted value of 43/32.

Our estimates of γNT are also quite close to this value, but they appear to be slightly

and consistently lower than it. However, since they are so close, it is highly probable

that they are in fact the same, and there is a slight systematic error in our fits.

Next, we estimate the value of νNT . We calculate this exponent by fitting a straight

line to log〈R2〉NT
n against log n and estimating the slope of the line (see figure 8). As

before, we found that we needed a correction-to-scaling term of n−1 for both SAWs and
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Figure 7. Fitted γNT against n0 for the square lattice, using a n−1 correction term

over a fitting window of [n0,∞). The fits get much worse when fewer points are used.
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Figure 8. Log-log plot of end-to-end distance against n for the square lattice, with

fitted values for n0 = 100.

NTSAWs. Figure 9 shows the corrected ν estimates against n0.

We averaged our fits over the same intervals as the previous section, deriving the

results in table 1. Again, our estimates for ν are very close to the predicted value of

3/4, whereas our estimates of νNT are slightly below this value. Once again, it is most

probable that this is due to a small systematic error in our fits.
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Figure 9. Fitted νNT against n0 for the square lattice, using a n−1 correction term

over a fitting window of [n0,∞). The fits get much worse when fewer points are used.

3.2. Ratios

In order to further examine the relationship between γ and γNT , we now take another

approach and make a direct comparison of cNT
n and cn. The ratio of these numbers

should grow as

cNT
n

cn
=

ANT

A
nγNT−γ(1 + o(1)) (9)

since they have the same growth rate. Hence if this ratio approaches a constant as

n → ∞, we can conclude that γNT = γ. Figure 10 shows a plot of this ratio against n,

showing that this is indeed the case. We note that the ratios become nearly linear when

we plot against n−1/2; this allows us to estimate the limiting ratio using simple linear

regression. This is shown in figure 11.

Fitting linear fits to a moving window of n ∈ [n0,∞) do not indicate a trend

with n0, so we need not use a correction term. Our final estimates are averaged over

n0 ∈ [50, 400] and are

Asqr
NT/A

sqr = 0.9541(3),

Atri
NT/A

tri = 0.9650(4), Ahex
NT/A

hex = 0.9440(2). (10)

Here the numbers in brackets are the standard error of our estimates. Our estimates

indicate that these ratios are not universal and that SAWs are most likely to trap

themselves on the hexagonal lattice, which is not surprising.

We note that there is a significant difference between the proportions of trapped

walks using our definition (4.6%) and the definition of walks with zero atmosphere

(calculated in [10] to be 0.9%). Typically a walk is trapped several steps before it has

zero atmosphere, and our results are consistent with this.
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Figure 10. Ratios of non-trapped SAWs to all SAWs against n, for all lattices.
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Figure 11. Ratios against 1/
√
n with fitted lines, for all lattices.

We also looked at the ratio of squared end-to-end distances for non-trapped to all

SAWs. This ratio should grow as

〈R2〉NT
n

〈R2〉n
=

αNT

α
n2(νNT−ν)(1 + o(1)) (11)

and if it approaches a constant as n → ∞, we can again conclude that νNT = ν. It

appears that this is also the case (see figure 12). When we plot the ratio against n−1/2,

we see linear behaviour only close to our largest values of n. Because of this curvature,

we use a fit with n−1/2 and n−1 terms, which results in much more stable results. Our
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Figure 12. Ratio of end-to-end distances against 1/
√
n with fitted curves using

n0 = 100, for all lattices.

final estimates are again averaged over n0 ∈ [50, 400] and are

αsqr
NT/α

sqr = 0.9990(6),

αtri
NT/α

tri = 0.9989(7), αhex
NT/α

hex = 0.9988(5). (12)

These numbers are quite close to 1 (and remain close even if we try different fitting

terms) and it seems reasonable to suppose that they are exactly 1. Thus the intuition

of non-trapped walks being “more expanded” than all walks turns out to be false, in

the dominant asymptotic term at least.

If the ratios are exactly 1, (4) then implies that the ratio of squared end-to-end

distances for trapped to all SAWs also tends to 1 (and thus has the same critical

exponent). This follows because the proportions of the number of non-trapped and

trapped walks to all SAWs tend to positive constants which sum to 1.

3.3. Non-analytic correction-to-scaling term

The ratio of the number of walks seems quite clearly to be linear against n−1/2

(in particular plotting against n−1 shows a clear curve for large n). This suggests

the presence of a non-analytic correction-to-scaling term of n−1/2 in the asymptotic

behaviour of non-trapped self-avoiding walks. If this is so, this would be qualitatively

different to all self-avoiding walks, where the first non-analytic correction-to-scaling term

is n−3/2. With this in mind, we re-visit our fits from section 3.1 to include this term.

Therefore we fit to the form

log
cNT
n

µn
= logA+ (γNT − 1) logn+

B

n
+

C

n1/2
. (13)
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Figure 13. Fitted γNT against n0 for the square lattice, using correction terms over

a fitting window of [n0,∞). The fits get much worse when fewer points are used.

Table 2. Estimates of γNT and νNT for various lattices, using a n−1/2 correction-to-

scaling term. The numbers in brackets are the standard error of our estimates.

Lattice γNT νNT

Square 1.3444(11) 0.750 81(28)

Triangular 1.3446(13) 0.750 56(48)

Hexagonal 1.3449(13) 0.750 26(26)

After introducing this extra term, we found that the fits were less stable at larger

n0 (see figure 13). Because of this, we average our estimates over the smaller interval

n0 ∈ [50, 150] and the results are shown in table 2. We can see now that although

the error-bars are larger, the estimates are closer to 43/32 (and indeed, this value is

included in our error-bars). Given the evidence of the previous section, we consider this

fit more trustworthy, and strong evidence that γNT = γ. Of course, we cannot rule out

the possibility of very subtle differences in exponents, but we believe this to be unlikely.

It is less clear that the ratio of end-to-end distances is asymptotically linear in n−1/2.

While figure 12 suggests that this may be so, the ratio looks reasonably linear when

plotted against a number of different terms (though not n−1, which shows definite

curvature for high n). Because n−1/2 in particular works well for the ratio of the number

of walks, we include it in our fits for 〈R2〉NT
n (see figure 14). This results in the form

log〈R2〉NT
n = logA+ 2νNT logn +

B

n
+

C

n1/2
. (14)

The results are also given in table 2. Again, these values are more variable, but are closer

to and include the SAW value of 3/4. Once again we consider this strong evidence that
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Figure 14. Fitted νNT against n0 for the square lattice, using correction terms over

a fitting window of [n0,∞). The fits get much worse when fewer points are used.

the metric exponents are equal.

We note that the fits in this section are sufficiently variable that they do not

constitute overwhelming evidence in favour of a n−1/2 correction-to-scaling term for

non-trapped SAWs. Since such a term is not present in the scaling of all SAWs, it

follows that if it exists for non-trapped SAWs, then a corresponding cancelling term

must exist for trapped SAWs. However, our plots and the quality of our fits provide

quite compelling evidence that cNT
n /cn is actually linear in n−1/2.

4. Conclusion

In this paper, we have generated non-trapped self-avoiding walks of length up to 1024 by

means of the flatPERM algorithm, on the square, triangular and honeycomb lattices.

The results indicate that the critical exponent of the number of walks, γ, and the

exponent of the mean squared end-to-end distance, ν, are equal to their values for all

self-avoiding walks, and in particular that they are still universal across the three lattices.

This also implies that they are equal to their values for the alternative definition [10] of

non-trapped walks as walks which can be continued by at least one step.

We have also estimated the limiting proportion of non-trapped walks to all self-

avoiding walks, and the limiting ratio of their end-to-end distances. The former is

a non-universal quantity, while the latter appears to be universally equal to 1. Our

findings also suggest the presence of a non-analytic correction-to-scaling term of n−1/2,

which is not present for all SAWs.

There are two interesting extensions of this work that we would like to pursue in the

future. The first would be to determine whether or not the behaviour of non-trapped
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walks remains similar to that of SAWs when interactions are present. For example, one

can ask if NTSAWs have the same free energy as all SAWs when adsorbing or collapsing.

If this is the case, then one could take advantage of the non-trapping condition to

simulate far longer conformations than is possible for SAWs and so probe further into

low temperature regimes.

The second is to determine if the behaviour of NTSAWs and SAWs remain the

same when they are sampled purely kinetically — this is equivalent to sampling walks

with the Rosenbluth method, but all walks have weight 1. It is conjectured [15] that the

squared end-to-end distance of SAWs in this regime grows like n4/3, but no corresponding

conjecture has been made for NTSAWs.
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