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Abstract. In this paper the number and lengths of minimal length lattice knots
confined to slabs of width L are determined. Our data on minimal length verify
the recent results by Ishihara et al for the similar problem, except in a single case,
where an improvement is found. From our data we construct two models of grafted
knotted ring polymers squeezed between hard walls, or by an external force. In
each model, we determine the entropic forces arising when the lattice polygon is
squeezed by externally applied forces. The profile of forces and compressibility
of several knot types are presented and compared, and in addition, the total
work done on the lattice knots when they are squeezed to a minimal state is
determined.
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1. Introduction

Chemically identical ring polymers may be knotted and these are examples of topological
isomers which may have chemical and physical properties determined by their topology.
There has been a sustained interest in the effects of knotting and entanglement in polymer
physics and chemistry, and it is known that entanglements may play an important
role in the chemistry and biological function of DNA [29]. For example, entanglement
and knotting are active aspects of the functioning of DNA and are mediated by
topoisomerases [16, 17], while proteins are apparently rarely knotted in their natural
active state [26].

Ring polymers with specified knot type have been chemically synthesized [5], but more
often, random knotting of ring polymers occurs in ring closure reactions [23, 2, 20]. In
this case, a spectrum of knot types are encountered [28, 6, 24], and these are a function of
the length of the polymer: Numerical studies show that longer ring polymers are knotted
with higher frequency and complexity [14].

Ring polymers adsorbing in a plane or compressed in a slab also appear to have
increasing knot probability [19, 21], although the probability may decrease in very narrow
slabs [27]. Similar effects are seen when a force squeezes a ring polymer in a slab [10], and
the results of the calculation in [9] suggest that knotted polygons will exert higher entropic
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Figure 1. A minimal length lattice knot of type 31 squeezed between two hard
walls. The lattice knot is grafted to the bottom wall—that is, it has at least one
vertex in this wall. If the two hard walls are a distance L apart, then the height
of the lattice knot is h ≤ L, since the polygon must fit between the two walls.
The number of these lattice knots of length n are denoted pL

n(K).

forces on the walls of a confining slit. More generally, the phase behaviour of lattice ring
polymers confined to slabs and subjected to external forces have been examined in [25].

The entropic force of a knotted ring polymer confined to a slab between two plates
were examined using a bead-spring model in [18]. In this study it was found that more
complex knot types in a ring polymer exert higher forces on the confining walls of the slab
(if the slab is narrow).

In this paper we obtain qualitative results on the entropic properties of tightly knotted
polymers confined to a slab or squeezed by a flexible membrane, using minimal length
cubic lattice knots. We will consider two different models.

The first is a model of a tightly knotted ring polymer of fixed length squeezed between
two hard walls or plates (see figure 1). Self-avoidance introduces steric repulsions between
monomers, which causes (self)-entanglement of the polymer. Confining the polymer to
a slab results in the loss of configurational entropy, inducing a repulsive force which
depends on the entanglements between the walls of the slab. This entropically induced
repulsion will be overcome by an externally applied force at critical magnitudes, and we
shall determine these critical forces for several knot types in our model. An external force
will tend to squeeze the walls of the slab together and, at some critical widths of the slab,
the polymer cannot shrink further without expanding laterally and increasing its length.
Beyond this critical width there may also be an elastic energy contribution to the free
energy—the polymer stretches in length to accommodate the narrow slab. We model this
with a Hooke energy.

The second model is inspired by the study in [7]. In figure 1 therein, a polymer is
grafted to a hard wall and covered by a soft flexible membrane. The membrane may
be modelled by a hard wall as in the first model above. On the other hand, a pressure
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Figure 2. A minimal length lattice knot of type 31 grafted to the bottom wall
and covered by a weightless flexible membrane. The lattice knot is grafted to the
bottom wall (which is hard) by having at least one vertex in this wall. A pressure
gradient over the top membrane will exert a force compressing the knot onto the
bottom wall. The force is mediated through the membrane onto the monomers
in the top layer of the lattice knot. If the height of the lattice knot is h, then the
number of vertices at height h is conjugate to a force pushing the lattice knot
towards the bottom wall. The number of these lattice knots of length n is denoted
by pn(K;h).

difference across the membrane will induce forces on the monomers in the top layer of
the grafted polymer. This couples the force to the height of the monomers in the top
layer—the force is mediated through the membrane and pushes on the highest monomers
of the polymer.

We consider the models presented above and illustrated in figures 1 and 2 in turn.
In section 2 we present our models and discuss the collection of numerical data. An
implementation of the GAS algorithm for knotted cubic lattice polygons in slabs [11] was
used, and we collected data on the entropy and minimal length of knotted lattice polygons
up to eight crossings. Our data verify similar results obtained in [8]. In section 3 we discuss
the first model and present our data, and in section 4 we present data on the second model
and discuss our results. The paper is concluded in section 5.

2. Models of lattice knots in slabs

A lattice polygon is a sequence ωn = {v0, v1, . . . , vn−1} of distinct vertices vi such that
vivi+1, for i = 0, 1, . . . , n− 2 and vn−1v0 are unit length edges in the cubic lattice Z3. Two
polygons ω0 and ω1 are equivalent if they are translates of each other. The length of a
polygon is its number of edges (or steps). A polygon is, by inclusion, a tame embedding of
the unit circle in R3 and so has a well defined knot type. A lattice polygon with specified
knot type is a lattice knot.

doi:10.1088/1742-5468/2012/09/P09004 4
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The number of distinct polygons of length n and knot type K will be denoted pn(K).
For example p4(01) = 3 while pn(01) = 0 if n < 4 or if n is odd, where 01 is the unknot
in standard knot notation. It is also known that p24(3

+
1 ) = 1664, while pn(3+

1 ) = 0 if
n < 24 [22], where 3+

1 is the trefoil knot type. By symmetry, pn(K+) = pn(K−) if K is a
chiral knot type.

The minimum length of a lattice knot K is the minimum number of edges required to
realize it as a polygon in Z3. For example, the minimal length of knot type 01 is 4 edges
and of knot type 3+

1 or 3−1 is 24 edges. The minimal length is denoted by nK , so that
n01 = 4 and n3+

1
= 24 [4]. It also known that n41 = 30 (41 is the figure eight knot) and

n5+
1

= 34 [22]. Beyond these, only upper bounds on nK are known.

If v ∈ ωn is a vertex in a lattice polygon, then the Cartesian coordinates of v are
(X(v), Y (v), Z(v)). A polygon is grafted to the XY plane Z = 0 if Z(v) ≥ 0 for all vertices
v in ω, and there exists one vertex, say v0, such that Z(v0) = 0. The height of a grafted
polygon is h = max{Z(v)|v ∈ ωn}.

A grafted polygon ωn is said to be confined to a slab SL of width L if 0 ≤ Z(v) ≤ L
for each vertex v ∈ ωn. A polygon confined to a slab is illustrated in figure 1, where the
bottom wall and top wall of the slab are indicated.

Next we define the number of polygons of length n, knot type K, and confined in a
slab of width L by pL

n(K). Similarly, define the number of polygons of length n, knot type
K, and of height h by pn(K;h). Clearly,

pL
n(K) =

∑
h≤L

pn(K;h). (1)

The minimal length of a lattice knot in a slab of width L will be denoted nL,K .
For example, one may deduce that n2,31 = 24 from [4]. However, simulations show that
n1,31 = 26 [8]. In other words, in a slab of width L = 1, it is necessary to have a polygon
of length 26 to tie a lattice trefoil, while if L ≥ 2 then 24 edges will be sufficient (and
necessary) [4].

With these definitions, we define two models of grafted lattice knots. The first model
is that of a grafted lattice knot in a slab with hard walls (see figure 1). In this model the
confinement of the lattice knot will decrease its entropy, and this will induce an entropic
repulsion between the top and bottom walls of the slab. The discrete geometry in this
model implies that the induced entropic force is given by free energy differences if the
distance between the walls is decreased by one step.

The second model is illustrated in figure 2. The grafted lattice knot is covered by a
flexible and weightless membrane. A (positive) pressure difference in the fluid above and
below the membrane induces a force pushing on the top vertices in the lattice knot. A
negative pressure difference in the fluid results in an effective pulling force on the vertices
in the top layer of the lattice knot. In this model, the partition function is given by all the
states of the grafted lattice knot (including those of any height). The force f induced by
the pressure difference will push on the highest vertices in the polygon as it is mediated
by the flexible lightweight membrane onto these vertices. A (linear) compressibility of the
lattice knot can be determined by taking second derivatives of the free energy of this
model to the applied force, as we shall show below.

doi:10.1088/1742-5468/2012/09/P09004 5
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2.1. Numerical approach

In this paper we examine the properties of minimal length lattice knots squeezed between
two hard walls, or squeezed by an applied force towards a hard wall. In both these models
it is necessary to determine the number and length of lattice knots in slabs of width L.
Some data of this kind were obtained in [8], and we will at the same time verify in most
cases, and improve in one case, on their results.

Our numerical approach will be the implementation of the GAS algorithm for lattice
knots [11]–[13] using BFACF elementary moves [1, 3]. The lattice knots will be confined
to slab SL of width L defined by SL = Z2×{0, 1, . . . , L}. We implement the algorithm by
noting that BFACF elementary moves on unrooted cubic lattice polygons are known to
have irreducibility classes which are the knot types of the polygons. The proof of this fact
can be found in [15]. Note that the proof in [15] applies mutatis mutandis to the model
in this paper as well, provided that L ≥ 2.

We estimate pnL,k
(K;h) (the number of polygons of knot type K, height h and of

length nL,K) using the GAS algorithm for knotted polygons. Here nL,K is the minimal
length of grafted lattice knots of type K in a slab of width L. By summing h ≤ L, one
obtains pL

nL,K
(K), the number of grafted lattice knots of type K which can fit in a slab of

width L, of length nL,K (and thus of height h ≤ L). Our results are not rigorous, and in a
strict sense the results of nL,K are upper bounds while pnL,K

(K;h) are lower bounds. Since
the GAS algorithm can be implemented as a flat histogram method, it is efficient at rare
event sampling and thus at finding knotted polygons of minimal length. A comparison of
our results with the data in [8] makes us confident that our results are exact in almost all
cases.

Data on lattice knots in slabs SL, with L ≥ 2 can be collected as in [12]. The case
L = 1 requires further scrutiny. Data in this ensemble were collected by generating lattice
knots in S2, and sieving out lattice polygons which fit into S1. By biasing the sampling
to favour polygons which fit into S1, we were successful in generating lists of lattice knots
in S1. We are reasonably confident that in most cases our lists of knotted polygons are
complete.

We display our data on the minimal length of lattice knots in SL in appendix A in
tables A.1 and A.3 (for some compound knots). The data in table A.1 agree for all knot
types, except for 818, with the data in [8]. We improved on the estimate for the minimal
length of 818 in S1 by finding states at length n = 70, compared to 72 in that reference.

As one might expect, we observe a steady increase of nL,K with decreasing L for each
knot type, and also down table A.1. Decreasing L squeezes lattice knots in narrower slabs,
and at critical values of L there is an increase in the minimal length. For example, for
the trefoil knot 3+

1 , there are realizations of lattice knots with this knot type at n = 24
edges for L ≥ 2. However, if L = 1, then 26 edges are needed. In figure 3 the minimal
lengths of lattice knots in S1 are compared to the minimal lengths of lattice knots in the
bulk lattice. In this scatter plot each knot type has coordinates (n1,K , nK). We found that
n1,K > nK for all non-trivial knot types, but the data do cluster along a line showing a
strong correlation between these two quantities. For slabs SL our data are displayed in
table A.1, showing that n1,K ≥ nL,K ≥ nK generally.

Naturally, nL,K is a non-increasing function of L for a given knot type K. In some
cases there is a large increase in nL,K with decreasing L. For example, 818 increases from
52 at L = 4 through 56, 60 and to 70 as L decreases through 3, 2 and 1.

doi:10.1088/1742-5468/2012/09/P09004 6
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Figure 3. A scatter plot of minimal lengths n1,K in S1 (X-axis) and minimal
lengths nK (Y -axis).

Figure 4. A scatter plot of the number of minimal length lattice knots pn1,K
(K)

in S1 (X-axis) and the number of minimal length lattice knots pnK
(K) (Y -axis)

on a log–log scale.

The number of lattice knots of minimal length in SL are displayed in tables A.2 and
A.4 (for some compound knots) in the appendix. We display some of these results in
figure 4, where we plot the number of minimal length lattice knots against the number

doi:10.1088/1742-5468/2012/09/P09004 7
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of minimal length lattice knots in S1 for different knot types on a log–log scale. The data
scatter in the plot, showing that the number of minimal length lattice knots may change
significantly with a decrease in L.

Lattice knots are partitioned into symmetry classes due to invariance under rotations
or (in the case of amphicheiral knots) reflections which respect the orientation of
SL. Thus, the sets of lattice knots enumerated in tables A.2 and A.4 partition
into symmetry classes. These classes are listed in tables A.5 and A.6 in the
appendix. The symmetry classes are denoted by 2a4b6c8d12e16f for each set of
lattice knots. For example, for the knot type 3+

1 #3+
1 in table A.5 and for L =

1, the symmetry classes are 234368285, meaning that there are 3 classes with two
members (each member is a lattice knot), 36 classes with 4 members and 285 with 8
members.

The data show that the entropy decreases with decreasing L, if the minimum length of
the polygon does not change. In cases where the minimum length increases with decreasing
L, it may be accompanied by a large decrease or increase in entropy. See for example the
data for 8+

5 and 8+
6 at L = 1 and 2 in table A.2.

In what follows, we will use the data in these tables to determine the response of the
lattice knots when forces are applied to squeeze them in slabs with hard walls, or in a
model where the forces are mediated via a flexible membrane to the highest vertices in
the lattice knots.

3. A grafted lattice knot between hard walls

The free energy of grafted lattice knots in a slab of width L is given by

FL = Energy− T × Entropy. (2)

The lattice knots have fixed length (this is the canonical ensemble), and we assume in this
model that the length is fixed at the minimal length in the slab SL.

In this model, the entropy should be given by log pL
nL,K

(K), where nL,K is the minimal
length of the lattice knot of type K in a slab of width L.

We assign an energy to the lattice knot as follows: compressing a minimal length
lattice knot in a slab of width L will generally reduce its entropy, but at a minimum value
of L, no further compression can take place because a minimal length lattice knot cannot
be realized in a narrower slab. Instead, a further increase of pressure on the SL will induce
forces along the edges of the polygon, and, at a critical value of the force, these induced
forces will overcome the elastic or tensile strength of the edges composing the lattice knot.
The result is that the lattice knot will either stretch in length to fit in a narrower slab, or
it will break apart and be destroyed. We assume the former case (our data show that in
most cases the level of stretching is less than 10% of the rest length of the lattice polygon).
Thus, we assign a Hooke energy to the polygon, with rest length equal to nK . The energy
is then given by

Energy = k(nL,K − nK)2, (3)

where nL,K is the minimum length to accommodate the lattice knot in a slab of width L.
There is no Hooke energy in the event that nL,K = nK .

doi:10.1088/1742-5468/2012/09/P09004 8
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With the above in mind, we define the free energy as follows

FL = k(nL,K − nK)2 − T log pL
nL,K

(K). (4)

For example, in the case of the unknot 01, one may determine directly that n01 = 4 and
pn0,01

= 1 while pn1,01
= 3. This shows that F0 = −T log 1 = 0 and F1 = −T log 3.

It is important to note that this free energy is a low temperature or a stiff Hooke
spring approximation. It is low temperature because thermal fluctuations in the length
of the lattice knot are not modelled (that is, the lattice knot is always in the shortest
possible conformations in SL), and it is a stiff Hooke spring approximation for that same
reason: the energy barrier to stretch the polygon to nL,K + 2 edges in length is too big,
and those states do not make a measurable contribution to the free energy.

Free energy differences as a result of change in entropy and the Hooke term induces
entropic forces pushing against the walls of the slab. These forces should push the walls
apart, both decreasing the length of the lattice knot and increasing its entropy. They are
given by

FL = ∆1FL = FL −FL−1. (5)

If an externally applied force f squeezing the walls of SL together exceeds FL (that is,
if |f | > |FL|), then the force f will overcome the entropic and Hooke terms in the free
energy and squeeze the lattice knot into SL−1. Thus, the critical values of an applied force
pushing against FL are given when

fL = −FL (6)

and if |f | > |fL| then the walls of SL will be squeezed together to compress the lattice
knot. We call fL the critical force of the model.

Compressing the lattice knot between two hard walls performs work on the knot, and
conversely, if a lattice knot is placed in a narrow slab and the slab expands as a result,
then the lattice knot performs work on the walls of the slab. The maximum amount of
useful work that can be extracted from this process is given by

WK =
∑

L

fLδL (7)

assuming that the expansion is isothermic and reversible. In our geometry, δL = 1. Thus,
WK reduces to

∑
LfL.

For example, compressing a minimal length unknotted polygon between two hard
walls reduces the entropy of the unknot polygon only when L transitions from 1 to 0.
That is, the top wall in figure 1 can be pushed down without encountering resistance until
L = 1. Further compressing to L = 0 reduces the free energy by

F1 = ∆1F1 = (F1 −F0) = −T log 3. (8)

This shows that the critical force is f1 = T log 3 in this model. In this case, the unknot
lattice polygon can do at most W01 = T log 3 units of work, assuming that it is placed in
S0 and allowed to expand the slab.

doi:10.1088/1742-5468/2012/09/P09004 9
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Figure 5. A profile of critical forces fL for the lattice knot of type 3+
1 .

Compressing the knot between two plates encounters no resistance for L ≥ 5.
If L = 4, then there is a small resistance (not visible on this scale), and for L ≤ 3
a larger resistance. Bars in red indicate that the critical forces are due to entropy
reduction alone, and blue bars denote a Hooke contribution to the critical force.
In this example, k = 1/4 and T = 1.

3.1. Squeezing minimal length lattice trefoils between two planes

These ideas can be extended to lattice knots, using the data in tables A.1 and A.2.
In the case of the trefoil knot 3+

1 , it follows from table A.1 that nL,3+
1

= 24 if L ≥ 2

but that n1,3+
1

= 26. In other words, the length of the lattice knot increases from 24 to 26

if it is squeezed by a force into a slab S1. This stretching of the polygon stores work done
by the compressing force in the form of elastic energy, which we indicate by the Hooke
term in equation (4).

If the compressing force is removed, the lattice knot will rebound to length 24, and
expand the slab to width L = 2, performing work while doing so. In L = 2 the lattice knot
is not stretched, but it still suffers a reduction in entropy. Further expansion of the slab
width to L = 3 increases entropy, and there is thus an entropic force pushing the hard
walls apart until the lattice knot enters a state of maximum entropy for values of L large
enough.

With this in mind, the free energies of minimal length lattice knots of type 3+
1 as a

function of L may be obtained from the data in tables A.1 and A.2. The results are

F1(3
+
1 ) = 4k − T log 36;

F2(3
+
1 ) = −T log 152;

F3(3
+
1 ) = −T log 1660;

F≥4(3
+
1 ) = −T log 1664.

doi:10.1088/1742-5468/2012/09/P09004 10
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Figure 6. A profile of critical forces fL for the lattice knot of type 41. Compressing
the knot between two plates encounters no resistance for L ≥ 5. If L = 4, then
there is a small resistance, and for L ≤ 3 a larger resistance. Bars in red indicate
that the critical forces are due to entropy reduction alone, and blue bars denote
a Hooke contribution to the critical force. In this example, k1 = k2 = 1/4 and
T = 1.

Observe the steady increase in the entropy of the lattice knot with increasing L. At L = 2
the knot cannot be compressed to L = 1 without increasing its length to 26 edges, and
the Hooke term 4k appears in F1(3

+
1 ).

From the above data one may compute the critical forces for lattice knots of type 3+
1 .

These are

fL =



∞, if L = 1;

4k + T log (38/9) , if L = 2;

T log (415/38) , if L = 3;

T log (416/415) , if L = 4;

0, if L ≥ 5.

(9)

The results for fL above show that there is no entropy loss with decreasing L until L = 4.
Thereafter, compressing the lattice knot results in entropy loss, and the critical forces are
given above. At L = 2 the knot stretches to accommodate conformations in L = 1, with
the result that a Hooke term appears. Observe that f1 = ∞, since a non-trivial lattice
knot cannot be squeezed into S0, unless the compressing force overcomes the strength of
the edges and breaks the polygon apart.

The above expressions for the critical forces gives a compression profile for squeezing
the lattice trefoil between two planes. We illustrate this profile as a bar graph in
figure 5—where we put k = 1/4 and T = 1. In this case one may also compute W3+

1
=

4k + T log(416/9). The choice of k = 1/4 in figure 5 gives a Hooke contribution of one to
the free energy if the polygon should stretch by two edges. At this level, the Hooke energy
does not dominate the free energy.

doi:10.1088/1742-5468/2012/09/P09004 11
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Figure 7. A profile of critical forces fL for lattice knots of types 5+
1 and 5+

2 . There
is no resistance to compression until L = 5. There are small resistances if L = 4,
and this decreases even further for L = 3 in the case of 5+

1 . In the case of 5+
2 the

resistance increases with decreasing L. Bars in red indicate that the critical forces
are due to entropy reduction alone, and blue bars denote a Hooke contribution
to the critical force. In this example, k = 1/4 and T = 1. (a) 5+

1 and (b) 5+
2 .

Similar data can be obtained for the figure eight knot 41, and its critical forces are
give by

fL =



∞, if L = 1;

32k + T log (758/185) , if L = 2;

4k − T log (379/170) , if L = 3;

T log (114/85) , if L = 4;

0, if L ≥ 5,

(10)

displayed in figure 6.
In this knot type, the lattice knot increases in length both in the transition from

L = 3 to 2, and then again to L = 1, as seen in table A.1. While one will generally expect
fL ≥ fL+1 (that is, a larger force is necessary to compress the knot in narrower slabs),
there is an interplay between entropy and the Hooke terms in the free energy, and in some
cases fL < fL+1. This is for example seen in figure 6 in the data for L = 3 and L = 4 for
the knot type 41. One may also verify that W41 = 36k + T log(456/185).

The results for five-crossing knots 5+
∗ and six-crossing knots are illustrated in figures 7

and 8.
Our numerical data on seven- and eight-crossing knots in tables A.1 and A.2 were

used to compute critical forces and W for each of those knot types. Data on compound
knots up to eight crossings are listed in tables A.3 and A.4, and we similarly determined
critical forces and W for those knot types. The results are shown in tables 1 and 2.
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Figure 8. A profile of critical forces fL for the lattice knots of types 6+
1 , 6+

2 and
63. There is no resistance to compression until L = 5 in all cases. There are small
resistances if L = 4. The negative bar between L = 2 and L = 3 for 6+

1 shows
that a gain in entropy overwhelms the Hooke forces when the lattice knot is
compressed from L = 3 to 2—in fact, no force is necessary, as the entropic force
pulls the walls together. Bars in red indicate that the critical forces are due to
entropy reduction alone, and blue bars denote a Hooke contribution to the critical
force. In this example, k = 1/4 and T = 1. (a) 6+

1 , (b) 6+
2 and (c) 63.

Figure 9. A profile of critical forces fL for the compound lattice knots of types
3+
1 #3+

1 and 3+
1 #3−1 . There is no resistance to compression until L = 5 in all cases.

Bars in red indicate that the critical forces are due to entropy reduction alone,
and blue bars denote a Hooke contribution to the critical force. In this example,
k = 1/4 and T = 1. (a) 3+

1 #3+
1 and (b) 3+

1 #3−1 .
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Figure 10. The same data as in figure 9, but with the vertical axes scaled
logarithmically to enhance the data at larger values of L. (a) 3+

1 #3+
1 and

(b) 3+
1 #3−1 .

3.2. Discussion

Compressing a lattice knot between two hard walls decreases the entropy of the knot,
until the walls are close enough together. Then the lattice knot expands laterally and in
length as it finds conformations which can be accommodated in even narrower slabs.

For example, a lattice trefoil loses entropy in SL as L is reduced from L = 4 to 2,
but then has to increase in length by 2 if it is compressed into S1. This stretching of the
lattice knot to a longer length changes its entropic properties, and may even increase its
entropy, as the longer lattice polygon may be able to explore more states. However, the
Hooke energy involved in stretching the lattice knot increases the free energy, and also
increases the critical force necessary to compress the knot into a narrower slab.

The critical forces of the trefoil knot 3+
1 are listed in equation (9). These forces

are induced by entropy loss when L > 2, but at L = 2 a Hooke energy contribution
also appears. The sum of these forces gives the total amount of work in an isothermic
compression of the lattice knot. We found this to be W3+

1
= 4k + T log(416/9). There

are two contributions to W3+
1

, namely an entropic and a Hooke contribution. These

contributions are equal in magnitude at a critical value of k (or equivalently, a critical
value of T ). In the case of the trefoil knot this critical value of k is k3+

1
= [T log(416/9)]/4≈

(0.958 36 . . .)T . If k > kc, then the Hooke term dominates W3+
1

and if k < kc, then the

work done has a larger contribution from entropy reduction in the process.
In the case of the figure eight knot, one may similarly determine the critical value

of k: k41 = (0.025 05 . . .)T . In this case, kc is very small, and the total amount of
work done in compressing the knot to L = 2 is dominated by the Hooke term even for
relatively small values of k. The two five-crossing knots have k5+

1
= (0.239 74 . . .)T and

k5+
2

= (0.061 67 . . .)T .

Data on other knots are listed in tables 1 and 2. The critical values of k can be
determined by solving for k from the last column in these tables. Observe that some knot
types have negative values of kc, for example, k6+

1
= −0.015 025T . This implies that a

large entropy gain occurs when the knot stretches in length to fit in S1, and this can only
be matched by a negative Hooke constant.
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4. A grafted lattice knot pushed by a force

In this section we consider the model inspired by figure 2: an external force f compresses
a grafted lattice knot onto a hard wall. If pn(h,K) is the number of such lattice knots with
highest vertices at height h above the bottom wall and length nh;K , then the partition
function is given by

Z(f) =
∞∑

n,h=0

pnh;K
(h,K)e−Eh−fh (11)

where nh;K = minL≤h{nL,K} is the minimal length of the polygons in SL for all L ≤ h. For
example, n1;3+

1
= 26 and nh;3+

1
= 24 for all h > 1.

In the partition function, positive values of f mean that the vertices in the top layer
are pushed towards the bottom wall, and negative values f mean that the force is pulling
the vertices in the top layer from the bottom wall. Observe that we put the Boltzmann
factor kBT = 1 in this definition, and so use lattice units throughout.

The function Eh is an energy of the lattice knot. We shall again use a Hooke energy
for the polygons, namely

Eh = k(nh;K − nK)2. (12)

In addition, we assume a low-temperature approximation, namely that only polygons of
the shortest length in SL contribute to Z(f) for all L. That is, in the case of 3+

1 , only
polygons of lengths 24 and 26 (when h = 1) contribute. This approximation is also valid
in the regime where the Hooke constant k is large.

In other words, the low-temperature and large-Hooke-constant approximation of the
partition function is

Z∗(f) =
∞∑

h=0

pnh,K
(h,K)e−k(nh,K−nK)2−fh. (13)

For f < 0 we observe that the polygon is pulled by its highest vertices from the bottom
wall, and that it will stretch in length if the forces overcome the tensile strength of the
edges. Stretching the edges in this way will cause the Hooke energy term to increase
quadratically in n ∝ h, while the force f couples only linearly with h. Thus, this regime
will be a purely Hooke regime, provided that k is large enough.

Thus, we obtain a model of fixed length lattice knots, which may stretch to longer
states if pushed against the bottom wall by large forces to accommodate itself into a
conformation with small h.

The (extensive) free energy in this model is given by

Ff = logZ∗(f) (14)

and its derivatives give the thermodynamic observables of the model. For example, the
mean height of the grafted lattice knot is

〈h〉K = −dFf

df
=

∑∞
h=0 h pn(K;h)e−k(nh,K−nK)2−fh

Z∗(f)
, (15)
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Figure 11. The mean height 〈h〉01
(red curve) and compressibility κ01 (blue

curve) as a function of f for the unknot 01. For negative values of f (pulling
forces) the mean height is 1, and as the lattice knot is compressed into pushing
forces, its mean height decreases until it approaches zero. Note that 〈h〉 = 2/3 if
f = 0.

while the second derivative

κK = −d log 〈h〉K
df

= − 1

〈h〉K
d 〈h〉K

df
(16)

is the fractional rate of change in mean height with f , and is a measure of the linear
compressibility of the lattice knot due to a force acting on its highest vertices.

The data in tables A.1 and A.2 can be used to determine κK . For example, for the
unknot grafted to the bottom wall, one has nh;K = nL,K = 4 if L = h = 0 or L = h = 1.
Thus, we determine the partition function in this case to be

Z∗01
(f) = 1 + 2 e−f (17)

since Eh = 0 for both h = 0 and h = 1 in this case. Observe that p4(0, 01) = 1 and
p4(1, 01) = 2 in this model.

One may now compute the mean height and κ01 for the unknot directly from the
above. The results are

〈h〉01
=

2 e−f

1 + 2 e−f
, κ01 =

1

1 + 2 e−f
(18)

and these are plotted in figure 11. If this lattice knot is released from its maximum
compressed state in a slab of width L = 0, and allowed to expand, then work can be
extracted from the expansion. The maximum amount of work which may be extracted is
given by the free energy differences between the L = 0 slab and the free energy at f = 0.
This is given by

W01 = Ff |f=0 = Ff |L=0 = log 3− log 1 = log 3. (19)

This is the same value obtained in the first model.
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4.1. Compressing minimal length lattice trefoil knots

By noting that nh;3+
1

= 24 if h ≥ 2 and n1;3+
1

= 26 in table A.1, one may determine

pn(h,3+
1 )(h, 3

+
1 ) by examining the data in table A.2.

In particular, it is apparent that pn(1,3+
1 )(1, 3

+
1 ) = 36 and pn(2,3+

1 )(2, 3
+
1 ) = 152. However,

these 152 lattice knots of length n = 24 in S2 are also counted in S3, and so must be
subtracted from the data in column L = 3 to obtain pn(3,3+

1 )(3, 3
+
1 ). In particular, it follows

that pn(3,3+
1 )(3, 3

+
1 ) = 1660− 152 = 1508.

Similarly, one may show that pn(4;3+
1 )(4, 3

+
1 ) = 4 and pn(≥5;3+

1 )(≥5, 3+
1 ) = 0.

This shows that

Z∗(3+
1 ) = 36 e−4k−f + 152 e−2f + 1508 e−3f + 4 e−4f . (20)

The mean height of the lattice knot is

〈h〉3+
1

=
9 e−4k + 76 e−f + 1131 e−2f + 4 e−3f

9 e−4k + 38 e−f + 377 e−2f + e−3f
. (21)

The (linear) compressibility of the lattice knot of type 3+
1 is a more complicated expression,

given by

κ3+
1

=

(
342 + 13572 e−f + 81 e−2f

)
e−4k−f +

(
14326 + 152 e−f + 377 e−2f

)
e−3f

(9 e−4k + 76 e−f + 1131 e−2f + 4 e−3f ) (9 e−4k + 38 e−f + 377 e−2f + e−3f )
.

In figures 12 and 13 the mean height and κ3+
1

are plotted as a function of the force for

k = 1/4 (figure 12) and k = 4/3 (figure 13). In figure 12 the mean height decreases to
L = 1 in two steps, the first step at negative (pulling) forces, and the second step from a
height of roughly h = 3 to h = 1. In this step (which shows up as a peak in figure 12(b))
the polygon is squeezed into S1 as the force overcomes both the entropy reduction and
Hooke term.

Increasing the Hooke constant k produces graphs similar to figure 13. There are now
three peaks in κ, each corresponding to a reduction of the lattice knot from height h to
height h − 1 as the applied force first overcomes entropy and then the Hooke energy to
push the lattice knot into S1.

The total amount of work done by letting the lattice polygon expand at zero force
from its maximal compressed state in L = 1 is given byW3+

1
= Ff |L=1−Ff |f=0. This gives

W3+
1

= log
(
1664 + 36e−ik

)
− log

(
36e−4k

)
= log(416

9
e4k + 1). (22)

4.2. Compressing minimal length lattice figure eight knots

The minimal length of a lattice polygon of knot type 41 (the figure eight knot) is 36 in
S1, 32 in S2 and 30 in SL with L ≥ 3. In other words, states with heights 1 or 2 will have
a Hooke energy, as they have been stretched in length to squeeze into slabs with small
height.

By consulting the data in tables A.1 and A.2, the partition function of this model can
be determined, and it is given by

Z∗(41) = 1480 e−f−36k + 6064 e−2f−4k + 2720 e−3f + 928 e−4f . (23)
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Figure 12. The mean height 〈h〉3+
1

and compressibility κ3+
1

of grafted lattice knots
of type 3+

1 . Negative forces are pulling forces, stretching the lattice knot from the
bottom plane. Positive forces are pushing forces. The mean height decreases in
steps from a maximum of about 4 to about 3 at f = 0 and then to 1 for large
positive f . There are two peaks in κ3+

1
. The highest peak at positive f corresponds

to the pushing force overcoming the Hooke term in F , increasing the length of the
lattice from 24 to 26 and pushing it into a slab of width L = 1. In this example,
k = 1/4. (a) The mean height of 3+

1 and (b) the compressibility of 3+
1 .

Figure 13. The similar plots to figure 12, but with k = 4/3. This larger Hooke
energy requires a larger force to push the lattice knots from a L = 2 slab into S1.
This shows up as a third peak in the κ-graph above. (a) The mean height of 3+

1
and (b) the compressibility of 3+

1 .

The mean height of this lattice knot is given by

〈h〉41
=

185 e−36k + 1516 e−f−4k + 1020 e−2f + 464 e−3f

185 e−36k + 758 e−f−4k + 340 e−2f + 116 e−3f
(24)
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Figure 14. The mean height 〈h〉41
and compressibility κ41 of grafted lattice knots

of type 41. Negative forces are pulling forces, stretching the lattice knot from the
bottom plane. Positive forces are pushing forces. The mean height decreases in
steps from a maximum of 4 to about 2.8 at f = 0 and then to 1 for large positive
f . There are two peaks in κ41 . Both peaks correspond to a reduction in the slab
width L as the force first overcomes the Hooke term from L = 3 to L = 2, and
then again at larger pushing forces, the Hooke term from L = 2 to L = 1. In this
example, k = 1/4. (a) The mean height of 41 and (b) the compressibility of 41.

and it is plotted in figure 14(a) for k = 1/4. Observe that the mean height decreases
in steps with increasing f , from height 4 to height 2, before it is squeezed into S1 for
sufficiently large values of f .

The compressibility is plotted in figure 14(b), and the two peaks correspond to the
decreases in 〈h〉41

in steps. At the peaks, the lattice knot has a maximum response to
changes in f . The expression for the compressibility is lengthy and will not be reproduced
here.

Finally, the total amount of work done by releasing the knot from S1 at zero pressure
and letting it expand isothermically, is given by

W41 = log
(

456
185

e36k + 758
185

e32k + 1
)

(25)

In the case that k = 0,W3+
1
≈ 3.855 > 2.023 ≈W41 . In other words, more work is done

by the trefoil knot. However, if k = 1/4 (and a Hooke term is present), then the relation
is the opposite:W3+

1
≈ 4.841 < 10/379 ≈W41 . Equality is obtained when k = 0.065 88 . . ..

4.3. Compressing minimal length lattice knots of types 5+
1 and 5+

2

The partition functions of minimal lattice knots of types 5+
1 and 5+

2 are given by

Z∗(5+
1 ) = 72 e−f−16k + 760 e−2f + 600 e−3f + 1936 e−4f + 40 e−5f ;

Z∗(5+
2 ) = 6240 e−f−36k + 720 e−2f + 24 072 e−3f + 30 544 e−4f + 2120 e−5f .

(26)

These expressions show that the maximum height is 5 while there are Hooke terms for
the transition from h = 2 to 1.

doi:10.1088/1742-5468/2012/09/P09004 23

http://dx.doi.org/10.1088/1742-5468/2012/09/P09004


J.S
tat.M

ech.(2012)
P

09004

Squeezed lattice knots

Figure 15. The mean height 〈h〉5∗
and compressibility κ5∗ of grafted lattice knots

of types 5+
1 (red curves) and 5+

2 (blue curves). The mean height decreases in steps
from a maximum of 5 to 1 for large positive f . The transition for 5+

2 is smoother
than for 5+

1 , which exhibits peaks in κ corresponding to critical forces overcoming
the Hooke terms and entropy. There are one low and two prominent peaks in κ5+

1
.

In this example, k = 1/4. (a) The mean height of 5-crossing knots and (b) the
compressibility of 5-crossing knots.

The mean heights can be computed, and are given by

〈h〉5+
1

=
9 e−16k + 190 e−f + 225 e−2f + 968 e−3f + 25 e−4f

9 e−16k + 95 e−f + 75 e−2f + 242 e−3f + 5 e−4f
,

〈h〉5+
2

=
780 e−36k + 180 e−f + 9027 e−2f + 15272 e−3f + 1325 e−4f

780 e−36k + 90 e−f + 3009 e−2f + 3818 e−3f + 265 e−4f
.

(27)

WK are similarly given by

W5+
1

= log(139
3

e16k + 1) and W5+
2

= log(1197
130

e36k + 1). (28)

The results for the 5-crossing knots are plotted in figure 15. The curves for the mean
height 〈h〉 are very similar, with 5+

2 undergoing a smoother compression with increasing
f . The knot type 5+

1 shows more variation, and this is very visible in the plots for κ in
figure 15(b), where there are several sharp peaks for 5+

1 , but less pronounced changes for
5+

2 . In both knot types, the Hooke constant is k = 1/4.

4.4. Compressing minimal length lattice knots of types 6+
1 , 6+

2 and 63

The results for 6-crossing knot types are displayed in figure 16. These knot types exhibit
more similar behaviour than the two 5-crossing knot types.

4.5. Discussion

The compression of lattice knots typically show a few peaks in the compressibility. Since
the compressibility is defined as the fractional change in the width of the lattice knot with
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Table 3. The work done by releasing the lattice knot in S1 and letting it expand
to equilibrium at zero pressure.

Knot Work

01 log 3
3+
1 log

(
416
9 e4k + 1

)
41 log

(
456
185 e36k + 758

185 e32k + 1
)

5+
1 log

(
139
3 e16k + 1

)
5+
2 log

(
1197
130 e36k + 1

)
6+
1 log

(
768
2009 e64k + 3176

2009 e60k + 1
)

6+
2 log

(
171
23 e64k + 15

46 e60k + 1
)

63 log
(

37
13 e100k + 157

26 e84k + 1
)

7+
1 log

(
1415

9 e36k + 1
)

7+
2 log

(
14 015
1869 e64k + 62507

5607 e60k + 1
)

7+
3 log

(
5
31 e100k + 1202

31 e84k + 1
)

7+
4 log

(
21

3361 e100k + 100
3361 e96k + 1

)
7+
5 log

(
197
230 e100k + 52

115 e96k + 1
)

7+
6 log

(
2127
731 e100k + 220

731 e96k + 1
)

7+
7 log

(
63 e144k + 322 e140k + 2248 e108k + 1

)
8+
1 log

(
989
3575 e100k + 254

2145 e96k + 1
)

8+
2 log

(
11 460
649 e100k + 73714

649 e84k + 1
)

83 log
(

3
2273 e144k + 500

2273 e128k + 1
)

8+
4 log

(
1994
1683 e100k + 140

297 e96k + 1
)

8+
5 log

(
8 e100k + 206

3 e96k + 102 047
18 e64k + 1

)
8+
6 log

(
138
241 e144k + 1

1205 e140k + 1
)

8+
7 log

(
3

2429 e196k + 6172
2429 e160k + 1

)
8+
8 log

(
195
1696 e144k + 95

32 e140k + 347
1696 e128k + 1

)
8+
9 log

(
245
106 e144k + 355

318 e128k + 1
)

8+
10 log

(
105
26 e144k + 51

2 e140k + 2982
13 e108k + 1

)
8+
11 log

(
3

122 e144k + 2533
244 e140k + 453

488 e128k + 1
)

8+
12 log

(
54
305 e144k + 2897

183 e128k + 1
)

8+
13 log

(
1632 e144k + 190 e128k + 1

)
8+
14 log

(
9

1475 e196k + 154
1475 e192k + 172

1475 e180k + 1
)

8+
15 log

(
5013

2 e100k + 55 e84k + 1
)

8+
16 log

(
3

2045 e256k + 3
2045 e252k + 73

2045 e220k + 1
)

8+
17 log

(
1108
1257 e256k + 539

1257 e252k + 518
3771 e220k + 1

)
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Table 3. (Continued.)

Knot Work

8+
18 log

(
111 e324k + 2125 e308k + 189

8 e260k + 1
)

8+
19 log

(
6996
163 e36k + 1656

163 e32k + 1
)

8+
20 log

(
30
29 e64k + 318

29 e60k + 1
)

8+
21 log

(
2335

2 e64k + 30 e60k + 1
)

Table 4. The work done by releasing the lattice knot in S1 and letting it expand
to equilibrium at zero pressure.

Knot Work

3+
1 #3+

1 log
(

2552
405 e64k + 1

)
3+
1 #3−1 log

(
760 e16k + 1

)
3+
1 #41 log

(
7494
503 e64k + 3434

1509 e60k + 1
)

3+
1 #5+

1 log
(

4187
9 e64k + 1

)
3+
1 #5−1 log

(
11 849

12 e36k + 1
)

3+
1 #5+

2 log
(

459 813
18802 e64k + 1

)
3+
1 #5−2 log

(
55
287 e100k + 1

246 e96k + 1
)

41#41 log
(

41 853
100 e64k + 5477

100 e60k + 1
)

Figure 16. The mean height 〈h〉6∗
and compressibility κ6∗ of grafted lattice knots

of types 6+
1 (red curves), 6+

2 (blue curves) and 63 (green curves). The mean height
decreases in steps from a maximum of 5 to 1 for large positive f . These knot types
follow a very similar pattern, with 63 posing the most resistance to compression.
Each knot also exhibits two peaks in κ of similar height. In this example, k = 1/4.
(a) The mean height of 6-crossing knots and (b) the compressibility of 6-crossing
knots.
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Figure 17. A scatter plot ofW with k = 1/4 (horizontal axis) and k = 1, (vertical
axis). The data for prime knot types accumulate along a band, indicating that
the Hooke term makes a significant contribution to the free energy.

incrementing force, a high compressibility corresponds to a ‘soft’ lattice knot, and a low
compressibility to a ‘hard’ lattice knot. The peaks observed in the figures from figures 12
to 16 correspond to values of f where the lattice knots are soft.

Our general observation is that the compressibility of lattice knots in this model is
not monotonic: that is, the lattice knot does not become increasingly more resistant to
further compression with increasing force. Instead, it may alternately become more or less
resistant to compression, as the compressibility goes through peaks (‘soft regimes’) and
troughs (‘hard regimes’).

The work done by releasing the lattice knot in S1 and letting it expand at zero pressure
was computed above for knots up to 5-crossings. For example, if the lattice unknot is placed
in S0 and allowed to expand isothermically to equilibrium at f = 0, then W01 = log 3.

A similar calculation gave W3+
1

= log
(

416
9

e4k + 1
)

for expansion from S1, and

expressions were also determined for other knot types. The results are given in tables 3
and 4 for the remaining knot types.

Observe that these expressions are different from those in the model in section 3: there
the data were obtained by computing the sum over all the critical forces. In each case the
minimal values of the forces required to overcome resistance by the squeezed polygon were
determined. This is a different process to the above, where the lattice knots are placed in
S1 and then allowed to expand isothermically to equilibrium. The total work was obtained
by computing the free energy difference between the initial and final states.

Finally, we examined the effect of the Hooke parameter k by comparing W for
two different values of k, namely k = 1/4 and k = 1. For each knot type, the point
(Wk=1/4,Wk=1) is plotted as a scatter plot in figure 17. These points line up along a
band, indicating that the Hooke term makes a significant contribution to the free energy.

5. Conclusions

In this paper we presented data on minimal length lattice polygons grafted to the bottom
walls of slabs SL. We collected data on these polygons by implementing the GAS algorithm
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for knotted lattice polygons in a slab in the lattice, and sieving out minimal length
polygons. Our data were presented in tables A.1 and A.2 for prime knot types, and
tables A.3 and A.4 for compound knot types. Our results verify, up to single exceptions,
the data obtained in [8].

We determined the compressibility properties of minimal lattice polygons in two
ensembles. The first was a model of a ring polymer grafted to the bottom wall of a
slab with hard walls, and squeezed by the top wall into a narrower slab.

The second was a model of a ring polymer grafted to a hard wall, and then pushed
by a force f towards the bottom wall.

In these models we determined free energies, from which thermodynamic quantities
were obtained. In the first model we computed the critical forces which squeeze the lattice
polygons into narrower slabs, and we computed the total amount of work that would be
done if the lattice polygon was squeezed into S1. These data are displayed in tables 1 and
2.

The profiles of critical forces in this model are dependent on knot types, and
generally increase with decreasing values of L. The dependency on knot type shows that
entanglements in the lattice knot, in addition to the Hooke term and the entropy, plays a
role in determining the resistance of the lattice knot to be squeezed in ever thinner slabs.

We examined the mean height and compressibility profiles for some simple knot
types in section 4. The amount of work done by expanding lattice knots from maximal
compression at zero force was also determined, and the results are listed in tables 3 and
4.

In contrast with the results in section 3, we computed the compressibility of lattice
knots as a function of the applied force in section 4. Our results show that the
compressibility is dependent on the knot type and the Hooke energy and is not a monotonic
function of the applied force. In many cases there are peaks in the compressibility where
the lattice knot becomes (relatively) softer (more compressible) with increasing force. This
feature may be dependent on either the entanglements, or the loss of entropy, or the Hooke
term, or on a combination of these. These observations indicate that such peaks may be
seen in some conditions when knotted ring polymers are compressed.

Finally, the inclusion of other energy terms, for example a bending term, or a binding
term to the walls of the slab, can be done. We expect such additional terms to have an
effect on our results. For example, a bending energy will make the lattice knot more rigid
and less compressible, increasing the critical forces computed in section 3, and reducing
the heights of the peaks seen in the compressibility in section 4. A further generalization
would be to simulate lattice knots in other confined spaces, for example in pores or in
channels. Such models pose unique questions, since the algorithm is not known to be
irreducible.
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Appendix. Numerical results

Our raw data on the estimates of the exact minimal lengths and number of minimal length
lattice knots in SL are displayed in tables A.1, A.3, A.2 and A.4.

Table A.1. The minimal length of lattice knots of prime knot type to eight
crossings confined to slabs of width L. Cases with an increase in minimal length
are underlined.

Knot
nL,K

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

01 4 4 4 4 4 4 4 4
3+
1 26 24 24 24 24 24 24 24

41 36 32 30 30 30 30 30 30
5+
1 38 34 34 34 34 34 34 34

5+
2 42 36 36 36 36 36 36 36

6+
1 48 42 40 40 40 40 40 40

6+
2 48 42 40 40 40 40 40 40

63 50 44 40 40 40 40 40 40
7+
1 50 44 44 44 44 44 44 44

7+
2 54 48 46 46 46 46 46 46

7+
3 54 48 44 44 44 44 44 44

7+
4 54 46 44 44 44 44 44 44

7+
5 56 48 46 46 46 46 46 46

7+
6 56 48 46 46 46 46 46 46

7+
7 56 50 46 44 44 44 44 44

8+
1 60 52 50 50 50 50 50 50

8+
2 60 54 50 50 50 50 50 50

83 60 52 48 48 48 48 48 48
8+
4 60 52 50 50 50 50 50 50

8+
5 60 56 52 50 50 50 50 50

8+
6 62 52 52 50 50 50 50 50

8+
7 62 54 48 48 48 48 48 48

8+
8 62 54 52 50 50 50 50 50

89 62 54 50 50 50 50 50 50
8+
10 62 56 52 50 50 50 50 50

8+
11 62 54 52 50 50 50 50 50

812 64 56 52 52 52 52 52 52
8+
13 64 54 50 50 50 50 50 50

8+
14 64 54 52 50 50 50 50 50

8+
15 62 56 52 52 52 52 52 52

8+
16 66 56 52 50 50 50 50 50

817 68 58 54 52 52 52 52 52
818 70 60 56 52 52 52 52 52
8+
19 48 44 42 42 42 42 42 42

8+
20 52 46 44 44 44 44 44 44

8+
21 54 48 46 46 46 46 46 46
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Table A.2. The number of lattice knots of prime knot type to eight crossings
confined to slabs of width L.

Knot

pnL,K
(K)

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

01 3 3 3 3 3 3 3 3

3+
1 36 152 1 660 1 664 1 664 1 664 1 664 1 664

41 1 480 6 064 2 720 3 648 3 648 3 648 3 648 3 648

5+
1 72 760 1 360 3 296 3 336 3 336 3 336 3 336

5+
2 6 240 720 24 792 55 336 57 456 57 456 57 456 57 456

6+
1 8 036 12 704 1 168 3 000 3 072 3 072 3 072 3 072

6+
2 2 208 720 2 984 14 632 16 416 16 416 16 416 16 416

63 1 248 7536 592 3 408 3 552 3 552 3 552 3 552

7+
1 108 1200 5668 11 560 16 880 16 980 16 980 16 980

7+
2 22 428 250 028 51 696 123 008 164 276 168 180 168 180 168 180

7+
3 1 488 57 696 160 160 240 240 240 240

7+
4 13 444 400 20 64 84 84 84 84

7+
5 5 520 2 496 120 4 648 4 728 4 728 4 728 4 728

7+
6 5 848 1 760 640 12 920 17 016 17 016 17 016 17 016

7+
7 4 8 992 1 288 196 252 252 252 252

8+
1 42 900 5 080 2192 8024 11 148 11 868 118̇68 11 868

8+
2 2 596 294 856 10 328 25 984 42 104 45 840 45 840 45 840

83 9 092 2 000 8 8 12 12 12 12

8+
4 20 196 9 520 1840 14 928 23 464 23 928 23 928 23 928

8+
5 72 408 180 4944 384 384 384 384 384

8+
6 9 640 8 24 184 3680 5520 5 520 5 520 5 520

8+
7 19 432 49 376 8 16 24 24 24 24

8+
8 13 568 2 776 40 280 1 040 1 560 1560 1 560 1 560

89 15 264 17 040 4920 30 584 42 492 42 492 42 492 42 492

8+
10 208 47 712 5304 560 840 840 840 840

8+
11 3 904 3624 40 528 64 96 96 96 96

812 14 640 231 760 288 1 728 2 592 2 592 2 592 2 592

8+
13 159 792 1 520 80 8 592 12 832 13 056 13 056 13 056

8+
14 59 000 6 880 6 160 240 360 360 360 360

8+
15 16 880 4 512 24 376 40 104 40 104 40 104 40 104

8+
16 32 720 1168 48 32 48 48 48 48

817 60 336 8288 25 872 26 736 52 704 53 184 53 184 53 184

818 32 756 68 000 1184 3552 3552 3552 3552
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Table A.2. (Continued.)

Knot

pnL,K
(K)

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

8+
19 163 1 656 1 132 6708 6996 6996 6996 6996

8+
20 116 1 272 40 80 120 120 120 120

8+
21 24 720 3 428 25 500 28 020 28 020 28 020 28 020

Table A.3. The minimal length of lattice knots of compound knot type to eight
crossings confined to slabs of width L. Cases with an increase in minimal length
are underlined.

Knot

nL,K

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

3+
1 3+

1 48 40 40 40 40 40 40 40
3+
1 3−1 44 40 40 40 40 40 40 40

3+
1 41 54 48 46 46 46 46 46 46

3+
1 5+

1 58 50 50 50 50 50 50 50
3+
1 5−1 56 50 50 50 50 50 50 50

3+
1 5+

2 60 52 52 52 52 52 52 52
3+
1 5−2 60 52 50 50 50 50 50 50

4141 60 54 52 52 52 52 52 52

Table A.4. The number of lattice knots of compound knot type to eight crossings
confined to slabs of width L.

Knot

pnL,K
(K)

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

3+
1 3+

1 2430 8 7 800 10 492 15 304 15 304 15 312 15 312
3+
1 3−1 144 448 56 616 78 576 109 424 109 424 109 432 109 440

3+
1 41 12 072 27 472 56 944 129 448 168 208 179 856 179 856 179 856

3+
1 5+

1 216 80 31 600 66 992 71 424 100 392 100 488 100 488
3+
1 5−1 288 3 152 53 984 198 896 245 248 283 576 284 376 284 376

3+
1 5+

2 150 416 1 880 729 528 2187 592 3190 064 3637 128 3678 504 3678 504
3+
1 5−2 13 776 56 880 1 808 2 640 2 640 2 640 2 640

4141 800 43 816 40 608 172 808 309 224 332 120 334 824 334 824

Data on the symmetry classes of lattice knots confined to slabs SL. Data are presented
in the format AaBbCc . . ., denoting a symmetry classes of polygons, each with A members,
b symmetry classes of polygons, each with B members, and so on.
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